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New

Identification Without Randomization

Rudolf Ahlswede and Ning Cai

Abstract—In the theory of identification via noisy channels random-
ization in the encoding has a dramatic effect on the optimal code size,
namely, it grows double-exponentially in the blocklength, whereas in the
theory of transmission it has the familiar exponential growth.

We consider now instead of the discrete memoryless channel (DMC)
more robust channels such as the familiar compound (CC) and arbitrarily
varying channels (AVC). They can be viewed as models for jamming
situations. We make the pessimistic assumption that the jammer knows
the input sequence before he acts. This forces communicators to use the
maximal error concept (see [1]) and also makes randomization in the
encoding superfluous. Now, for a DMC W by a simple observation, made
in [2], in the absence of randomization the identification capacity, say
Cnr1(W), equals the logarithm of the number of different row-vectors
in W. We generalize this to compound channels.

A formidable problem arises if the DMC W is replaced by the
AVC W. In fact, for 0-1-matrices only in W we are—exactly as for
transmission—led to the equivalent zero-error-capacity of Shannon (see
[3]). But for general W the identification capacity Cnri(W) is quite
different from the transmission capacity C(W). An observation is that
the separation codes of [1] are also relevant here. We present a lower
bound on Cngri(W). It implies for instance for

w={(07)(Ga26) o (03)

that Cyg1(W) = 1, which is obviously tight. It exceeds C'(W), which is
known ([1]) to exceed 1 — h(6), where h is the binary entropy function.

We observe that a separation code with worst case average list size L
(which we call an NRA-code) can be partitioned into I2"¢ transmission
codes. This gives a nonsingle-letter characterization of the capacity of
AVC with maximal probability of error in terms of the capacity of codes
with list decoding.

We also prove that randomization in the decoding does not increase
Ci(W) and Cnri(W).

Finally, we draw attention to related work on source coding ([4], [5]).

Index Terms— Arbitrarily varying channels, identification, list code
capacity, separation codes.

I. INTRODUCTION AND RESULTS

Let X', YV be the finite input and output alphabets of the chan-
nels considered, namely, the discrete memoryless (DMC) W, the
arbitrarily varying channel (AVC) W specified by a set of |X| x
| V|-stochastic matrices and also written in the form

W = {W(:|,s): s €S finite},

and the compound channel (CC) C(W) associated with W.

We study here primarily identification codes without randomization
(NRI-codes) for W. An (n, M, A1, A2) NRI-code for W is a system
of pairs {(u, Dy): u € U} such thatif C X™, D, C Y™ (foru € U),
|U| = M, and for all u, v’ € U(u # u'), s* € "

W™ (Dulu,s™)>1— A\t (L.D

and

W™ (Dyu', s") < Ao. (1.2)
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Here for s" = (s1,:°*,8n), ¥ = (¥1,°**,Yn), and u =

(ula"',u")
W™ (y" [u, s") = [ [ W(elue, 0)-
t=1

(Recall that in the definition of ID-codes in [2] instead of 4 C &A™
we used more generally &/ C P(X™), the set of all probability
distributions (PD) on XA™).

We also point out that already in [1] it had been shown that for
the DMC W with distinct row vectors the capacity of NRI-codes
is log || even before the concept of identification was introduced
in [2].

A related concept, used already in [1], are (n, M, X)-(nonrandom)
separation codes (SP-codes), which we abbreviate as NRS-codes.
They are defined as a system of quadruples

{(u’u,,D(uau,)aD(uI’u)):u’ u' € U,u # ul}
where U C X", U| = M, D(u,u’) C Y*,

D(u, v YND(u ,u) =0(u £u), (1.3)
and
W™ (D(u,u')|u,s™) > 1 - A(s" € S™). 1.4
Notice that with the choice
D(u,u') = Dy \Dur (1.5)

we can associate with every (n, M, A1, A2) ID-code (respectively,
NRI-code) an (r, M, A) SP-code (respectively, NRS-code), where,
by (1.1) and (1.3), A = A1 + A2. This fact has been used in [2]
in the proof of the (soft)-converse (an exponential weak converse in
the sense of [4]), because for the DMC (in case of randomization
and no randomization as well) both code concepts lead to the same
capacities.

Next we present a third kind of codes, called NRA-codes, which
were discovered in [1]. Their properties are stronger than those of
NRS-codes, but weaker than those of NRI-codes.

These codes can be viewed as list codes with an additional
separation property (like (1.3) and (1.4)). They are essential for our
analysis and described below.

Analogously, we speak of A-codes, if in the definition &/ C
P(X™). For the CC only sequences s” = (s,---,5)(s € S) are
considered and the code constraints are modified accordingly.

For a system {(u,Dy): u € U} withif C &A™ satisfying (1.1) we
define the worst case average list size

Ly = edhaX L(u,s") (1.6)
where
L(u,s") = Y LM )W"(y"[u,s") (1.7)
Yy EDy
and
L(y") = {«' €U: y" € Du'}|. (1.8)

Now we say that {(u,D.): w € U} is an (r, M, A1, A, L)

NRA-code, if
Tu<I (19)
and for all u,u’ € U, u # u', there is a partition of Dy, N Dy, say
{A(u,u'), A(u',u)}, such that
W™ (A(u',u)|u,s") <A, for all s™. (129
Obviously, (1.2") holds for any partition of D, N Dyr, A = Ao, if
(1.2) is true and for D(u,u') = (Du\Dy) UA(u,u’), A = A1 + Ao,
(1.4) holds whenever (1.2") holds. On the other hand, for A(u',u) =
D NDu N D(u', ), (1.4) implies (1.2°).
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A. Partitioning NRA—Codes into (Nonrandom) Transmission Codes
We start now with a first basic result.

Theorem 1: Consider an (n, M, A1, A2, L) NRA-code for the
AVC W defined above. For every £ >0, 0<A1 <A there exists a A*
such that for all A2 < A" and sufficiently large n the NRA-code can
be partitioned into K transmission subcodes for W with maximal
probability of error Az, if for € = (1/n)log L

l10gK>£_”+z-:.
n

Moreover, clearly this partition contains a subcode of size at least
M/K.

B. A Formula for C(W)

From Theorem 1 we get a nonsingle letter characterization for
C (W) involving NRS-codes for the AVC. Those codes were known
(also for the DMC) already in [1, Secs. IV, V, and Lemma 3,
respectively]. So they were known already much earlier than ID-
codes and NRI-codes (see [2]). An elegant description was used
in [6]. Namely, for an integer m, we associate with VW a graph
G (W) = {X™,Em} such that (z™,z ™) € & iff there are PD’s
m,m € P(8™) such that

S (W™, 8™ = w(s™)W T (2 ™™

gm

(1.10)

(or
conv {W"(:]z™,s™): s € 8"}
N conv {W™(-fz ™, s™): s™ € 8™} # 0).

Denote by Z,, the family of independent sets of the graph. Then
U € I,n is an NRS-code and we have the following auxiliary result.

Lemma 8 [1]: For any € >0, A >0, and sufficiently large =, one
can choose {D(u"‘,u""): ut Fu et e U} suitable to obtain
an SP-code with probability of error A, if the pairwise Hamming
distances (with respect to alphabet If) of codewords in UCuU” are
not smaller than ne.

For alist code (U, (Du)ueu) satisfying (1.1) we consider the worst
case average list size L((D, )uerr) = Ly (defined in (1.6)) and define

Ly, = min{Ly((Du)ueu): (Du)ueu satisfies (1.1) for A1 }.

(L.1D)

In other terms clearly,

fu,,\ = min max
! (’Duu)uueuwith(l.l)ueu,s“ES"uleuz\{u}
W™Dy NDyrlu,s™) + 1. (1.12)
Theorem 2:
c(w) inf m L lo “ (1.13)
= sup in ax — = . .
m AiSouetn m 0 [Tuy, |

C. On Randomization in the Decoding

We mention here the effects of randomization in the decoding
on the transmission capacity C'(W) and the identification capacities
Cnri(W) and Cr(W) for the AVC W, that is, if the maximal
probability of error criterion is used.

Theorem 3: For every AVC W under the maximal error probabil-
ity criterion randomization in the decoding does not lead to higher
capacities than i) C(W), ii) Cxr1(W), and iii) C; (W), respectively.
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Remark 1: It follows immediately from the elimination technique
and the positivity characterization of [7] that also for the average
error probability criterion the transmission capacity does not increase
under randomized decoding.

D. A Lower Bound on Cnri(W)

Now we present a partial result for Cnr1(W), the quantity of our
main interest in this correspondence.

Theorem 4: For P € P(X) set
Q(P,W) ={(X,X",Y): Pyix,Prix' €W,
Px =Py, =Pand X, X',Y form
a Markov chain in this order}
and set

(pw) = I(X' AXY)

min
(X, X", Y)eEQ(P,W)
(where W is the row-convex hull of W) then

Cnri(W) > m}gxf(P,W). (1.14)

Remark 2: I(P,W) = H(P) for P,W such that (X,X",Y) €
Q(P,W) implies H(X|X') = 0.

Corollary: The quantities in the inequality

Cnri(W) > C(W) (1.15)
can be different.
This follows from
Example 1: For
w=00)Ga2e)) 2e(0g)
Theorem 4 (or also the Lemma below) yields
Cnraa(W) =1 (1.16)

and

1-h(6)<CW)<1 (by [1]D.

For the following class, including Example 1, (1.15) also follows
from Theorem 4.

Example 2: Let

W={{u6) 1-39) * €5}

where 1 > ¢(s) >0 for all s € S (finite). Then for P € P(X) of the
form P = (p,l _p)a P € (071)’ Q(P»W) = w» and by (113> we
get Cr1(W) > 1. This is obviously tight.

Next we give a formula for the capacities of a special class of
channels, including Examples 1 and 2.

Lemma: Let X = {1,2,---,a}, Y = {0,1,---,8}, |S| < oo,
and max,ex maxses W(0|z, s)<1. Furthermore, consider for input
alphabet X U {0} and output alphabet ) the AVC

W* = {W"(y|z, s) = W(ylz, 5)
forallz € X,y €)Y, s€ S, and W*(0|0,s) =1 for all s € S}.
Then

Cnri(W™) = Orélggcl[h(p) + pCnr1(W)).
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E. Combinatorial Problem Related to Cnri ({ ([1) (1)), (1;5
Finding Cnri(W) for the special case

w={G)(5" L)) ee (o)

is already a formidable task.
By Theorem 4 and numerical computations of B. Balkenhol

Cnri(W) > C(W) =1 — h(6)

where the identity is a very special case of the capacity theorem of
[1]. The heart of the matter seems to be related to the following
coding problem.

We denote by B(u™,d) C {0,1}" the Hamming ball with radius d.
For numbers 1 < <6< % and A € (0, 1) find a subset A C {0,1}"
as large as possible such that for all z™ € A

B(z",n8) N U < A|B(z",né)|.

y'n G A\{Z‘" )
F. The Capacity of the Compound Channel (CC) for NRI-Codes

Each member V(-|-,s) in the compound channel with |8| < co
introduces a partition {X(1|s),---, X (js|s)} of X such that z, 2’
are in the same subset exactly if V'(-|z,s) = V (-|z', s). Thus an RV

X taking values in A’ induces an RV X(s) for every s € S such
that X (s) = £ exactly if X € X (£]s).

Theorem 5: For a CCV = {V(-|-,s): s € S} with |S| < oo

Cnri(V) = m)?xggg H(X(s)).

B(y™,nf)

II. PROOF OF THEOREM 1

We color the M codewords in ¢ of an (n, M, A1, A2, L) NRA-
code {(u,Du): u € U} randomly and independently according to the
uniform distribution with K colors and show that the probability for
the existence of a coloring satisfying the conditions in the theorem
is positive, To estimate the probability, we first fix s™ € 8™ and
u € U and partition & \{u} into two parts 2 (i = 1,2) such that
o' € U iff

W™ (A(u', u)lu, s") < 2.1

1
F-
Then
UP | <n® YT WHAE, 0w, 5")
u’ €U
<n® Z W™ (Dy N Dyrlu,s™)
u/ €U
Z W™ (D N Dyrlu, s™)
u/€U\{u}
=n*(I(u,s") - 1)< n’T
where for the equality we use the useful observation
Z W™ (Dy N Dyrlu, s") = L(u,s”) — 1
u’€U\{u}
for all u € U and s™ € S™.
For the fixed u, s, and ¢ = 1,2 let

W (A(d', u)|u, s™),

<n?

2.2)

(2.3)

ifu' €U and u' is
colored by the same
color as u

0, otherwise.

z9 = 2.4)

If we can show that for all such w and s™, i = 1,2

16

D. A=A n _
Pry Y 20 >S5 b <(S"IUD) g

=70

2.5)
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for a @ € (0,1), then we can find a (coloring) partition
{h: k=1,2,---,K}
such that for all w € Uy, (kK =1,2,---,K), s" € 8"
> WA u)lu, s")<A = M

u/ €U\ {u}
and so
w" Du\ U Alu' u) ||u,s"”
u’ €U\ {u}

> Wn(Du|i73n) - Z WH(A(U”HNU,SH)
u' €U \{u}
>1-A—(A=X)=1-A

Thus if we let

D, =D\ U A(u,u')

u’ €Uy \{u}

for all w € Ur (k = 1,2,---,K) then {(u,D,): u € Ui}
(k=1,2,---,K) is the family of codes required by the theorem.
We first show (2.5) for i = 1. By the definition of the Z{})’s

| Y z®>2AA
uw'e(l)
[[ ew.n*?20}

r=7ieY
_ AT 1y, 1
_expe{ n 5 } H |:<1 K>+K

- exp, {n*/*W" (A(u,u")|u, 3")}}

u/ eu(l)
_apA— A
w2 ]

u’ et (L)

o {

. [1  (exp, (W™ (A ), 5™}~ 1)}

2

u/ eu(l)

IA

A i 3/2m ' n
[1+ %" W"(A(u,u ) |u, s )]

{ 3/2A =M }
exp, § —n —
u€U\{u}

: [1 + zn* /W (Du N Dylu, s")]

IA

—n3/2 A—X\ € n3/2

< exp, %

Z W™ (Du N Dy u, s™)
u€U\{u}

= exp, {—n3/2 [’\_2—’\1 - %(Z(u,s") - 1)” (by (2.3))

con (o5

Thus for any A — A1, sufficiently large n, and fixed  and s", (2.5)
holds for ¢ = 1 if we choose a K satisfying

4eL
> .
K_ A—A

(2.6)

(2.7)
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To show (2.5) for ¢ = 2, it is sufficient to show that the probability
of the event, that the number of u' € U with the same color in the
(random) coloring as u is larger than |A; *(A — A1/2)]| = ka2, say,
is not larger than the right-hand side (RHS) of (2.5).

That is,

(2) 1 J 1 (U@ |-z . .8
SN (E) (-5) <ty es

I>r2
Indeed, if
(2)
WK | <k, 2.9)
then by Stirling’s formula and with k2 = [A;1(A = A1 /2)]
LHS of (2.8)
< MOl (U
- V2m \ K2 UP| — k2 \ Kke

®)_x
. |u(2)|(K _ 1) US| —n2
K(U®)| - k2)

K )
< |u(2)| e |u(2)| 2 - Ko U | —ko
- V2r \ Kk2 U | — k2

¢ (BZN™ ¢ ), (LN
V2 \ Kh2 - K

Thus (2.8) holds if we choose

< u®|

K > eld'?] exp {llog|3||2c|2 +Liog E}
K2 Ko /)
= U | exp{nyps(r2)} (2.10)

where @p(2) is a function of z whose values are arbitrarily small
when z is arbitrarily large. By (2.2) it is sufficient for (2.9) and
(2.10) to hold that

K >n’Lexp{nps(r2)} (for sufficiently large n).

To satisfy the above inequality (2.7), we only need to choose

K> L 52 exp{nipe(s2)}

4L
A—-\
and sufficiently small A* (and, therefore, A2) depending on A, Ag,

and €.
This completes the proof.

III. PROOF OF THEOREM 2

The converse part is absolutely trivial because an (n, M)-code
{(u,Du): u € U} with maximal probability of error A1 satisfies

IL{,,\1=1 and L{EIm

The issue of the theorem is to show that one cannot do better by
increasing the size of lists, namely, the direct part. This is an easy
consequence of Theorem 1| and [1, Lemma 8] (see Section I-B).

For a fixed m, A1 >0 assume that Y € Z,,, {(u,Dy): u € U}
achieves the maximum in (1.13). Then we treat I/ as an input alphabet
and Y™ as an output alphabet. Then one can find, by the greedy
algorithm, a subset of codewords U C U* such that for all u?,
wte U, dH(uﬁ,u"f) > {e for any fixed £, and

log [4| — %log U] =0(1) (ase — 0,6 = o0).  (3.1)

Let ﬁuc for u® € U to be the union of Hamming balls with

radius £(A; + %) and centers at the points in the Cartesian product
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Dy X --- X Du,, for u* = (u1,---,ue). Then (1.1) holds for
sufficiently large £, if A1 is replaced by 2A1. Moreover, for any A
and sufficiently large ¢, by [1, Lemma 8], (1.4) holds, for suitable
D(ue,ulg and, therefore, (1.2") holds for suitable A(u'f,u"f) for all
u'f,u,“" €U, ut # u't.

To apply Theorem 1, we have to estimate Ly. Let us write
Dy, X --- X Dy, = D, and denote the Hamming ball with center
u® and radius r in #4¢ by B(u,r). Then for L(-) in (1.8)

wt =(u1,--,u) €U
s = (s, -, 5) € 8™
v* =(U1,---,1)£) €Dy

L(Uf)Wmf(vﬂutf, Smf)

vi€B(uf £(A1+e?))
< XY M ] L)W sl 5.
JCLe): |J|=£(A1+€2) J¢éJ
Thus one can find a 3(A1, €) such that 3(A1,€) — 0as A1, — 0,
and

1 — 1 -
ZlogL~ < ZlogLu + 8(A1,¢).

Finally, we choose n = m{ and apply Theorem 1 to
(@', Do) u €10}

(3.2)

to obtain a (transmission) subcode with probability of error € + Ay
and rate arbitrarily close to (1/n) log(|i/|/Lz), when £ is arbitrarily
large (depending on m) and A; and ¢ in (3.2) are arbitrarily small.
Since m is fixed when n = mf + r, r <m, we asymptotically loose
nothing, if we add  dummy letters. This completes our proof.

IV. PROOF OF THEOREM 3

1) This is an exercise in [9, p. 226, Problem 11(c)] and a very easy
consequence of Theorem 1 as well.

The proofs of ii) and iii) are essentially the same and so we only
prove ii).

We are given a system (U, Q) with 4 C X™ and Q: Y™ — 2¥
such that for all u, v’ € U, s" € 8"

> QAW (B [u, ") >1 - M 4.1)
A:u€EA ymEeEY™
SN QAW (" u,s") < e 4.2)

A:u'€EAYTEY™
(Here we note that A’s in (4.1) and (4.2) are “decoding sets” for u
and u', respectively.)
We extract an NRI-code (u, Dy )ueus with error probability Aj, A2
by letting

D.= {y > Q2 a}.

A:u€A
Then by (4.1) for all s
1-M< Y D> QAW (Y [u,s")

y”" ED, Ai u€EA

£ T QU e )
y"EDY A:u€A
<X LW+ Y a6 s®)
y" €D, y"E€DY
<W"*(Dylu,s")+a or W"(Dylu,s")>1— X — a.
(4.3)
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On the other hand, (4.2) implies that for all s"
>3 Y QAW (Y u,s")

y"€ED, s A:u/€A
A
>aW"™(Dyrlu, s) or W*(Dylu,s") <22, (44)
a

Finally, for instance with the choice & = 4/A2 we conclude from
(4.3) and (4.4) that we can achieve

A;=A2+\/A2 and A,2=\/A

Since for (A1, A2) — (0,0) also (A}, A;) — (0,0) we have es-
tablished equality of the (weak) capacities.

V. PROOF OF THEOREM 4
Fix R<I(P,W) — (£/2) and let

Qs(P,W) & {(X,X",Y): Py|x, Pyix» € W,I(X AY|X") < 6}.
G.1)

Then

QP,W) = [ Qs(P,W) 52

5>0
and, by the continuity of the mutual information, there are a, 6 >0
such that for all (X, X',Y) € Qs(P,W)

R<I(X'AXY) - . (5.3)

Next we apply the large deviation method in the standard way or
directly use [10, Lemma 3] to obtain a set of codewords U’ C X"
such that (1/n)log 4|~ R and for all U €U’, Pxx' EPp(X X X)
(where Pr(Z) is the set of n-types over Z)

]- r 4 ' n !
= log|{u' €U's (u,u') €T x/} < (B - I(XAX Nt+e (54

where € is a positive number and can be choosen arbitrarily small
and ™ = max{0,a}, if n is arbitrarily large. Thus by deleting the
“bad codewords” from the neighborhoods of the codewords, we can
obtain a subset ¢/ C U’ (for sufficiently large n) such that

1 1
~ log | > = log || - 2 (5.5)
n n 2

and there is no pair (u,u’) of codewords in ¢/ with (u,u') € Ty
for RV’s X and X' with R < I(X A X'). We choose I/ as our set
of codewords and

D, = B(u)\E(») (5.6)
as decoding set for u € U/, where
B(u)= |J T, (u), for6in(53) 5.7

Wew
and E(u) is the set of y™’s (in Y™) such that there exist a u’ # u
and a triple (X, X',Y) € Qs with (u,u’,y") € T x/y-

Analysis:

1) To show that for all s" € S"

W"(Dylu',s™) < Az, ifu#u' (5.8)

we partition D,, into polynomially many subsets according to
the conditional types of ¥™’s, Py xx'(-|u,u'), for the u, u'
in (5.8). By (5.6)

T ixx(u,u') N Dy # 0
implies

(X’X”Y) ¢ Qﬁ(P’W)
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or, by (5.1, I(X AY'|X')> 6, if Pyx,Py|x € W. Thus
because the number of conditional types is a polynomial
in n, (5.8) follows from the fact that for (X, X',Y) ¢ Q5(P),
Pyix,Pyixr €W

L 1og W (T xx (') < HY|XX') = H(Y|X')

n

= I(XAY|X)<—6 (59)

and W"(B(u')|u',s")>1 — 277 for all s" and suitable

7>0.
2) We have to show that for all » and s"

W"(Dylu, s")>1— Ar. (5.10)
Since for all s" € 8", by (5.7) W"(B(u)|u,s")>1 — 274"
for suitable >0, by (5.6) it is sufficient for (5.10) to show
W™ (E(u)|u,s") is exponentially small. Indeed, by the definition
of E(u) and (54)
1
L Jog W (B(w)u, )
1
= - max
n (X, X', Y)EQs(P,W)
Ty 1x x (us u')|2_nH(Y|X)
~R-I(XAX')+0+H(Y|XX') - HY|X)
=R-I(X'ANXY)+6<—(a—6)<0

if we chose 0 < a.

log |[{u": u' € T/ |x (u)}|

(5.11)

VI. PROOF OF THE LEMMA

Denote by An,x; 2, (W)(Ar,a, 2, (WF)) the maximal M such
that an (n, M, A1, A2) NRI-code for W (for W*) exists.
1) Cnrri(W*) < maxp[h(p) + pCrnr1(W)].
Let {(u,Dy): u € U} be an (n, M, A1, A2) NRI-code for
W*. We partition I/ into subsets {y}i—o according to the
number of zeros in the codewords. Then there must be a &
such that

1
[te] > — log |Usl- (6.1)

Moreover, the relation u ~ u' in U defined by the rule
“u ~ o' if 2, = 0 exactly if z; = 0 for u = (z1,---,zn),
w' = (z},---,7,) € Ur” is an equivalent relation, which

n

further partitions I into at most ( k) equivalence classes
Vesli=1, 7 < (R)-

All codewords in a fixed V ; have k zero components at the
same coordinates. By our assumption at all these coordinates
the outputs are zeros whenever the inputs fall into Vi ;. So
we can obtain an (r — k, [Vi ;|, A1, A2) NRI-code by deleting
the k£ components from codewords in Vi ; (and corresponding
components from decoding sets). Therefore,

A x, (W) L n(n i k)A"*k:’\hh (W).

2) Cnri(W") 2 maxp|h(p) + pCnri(W)]
We have to find an (r, M, A1, X2)-code for W* with

n

M>2""" (n _ k)An—k,Al,Az(W) (6.2)
for an arbitrarily small 7.

We first find, by a greedy algorithm, a set B of binary
sequences with Hamming weight n — k, pairwise Hamming
distance not less than 2ne, and size

g
Blz2(})

(6.3)
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where 77 is a positive constant depending on € and  — 0 as
e — 0. Let {(u,Dy): u € U} be an NRI-code of length n — k
for W achieving A, _k a; 2, (W). We define for b" € B a
subset Z/*(b") in A*"

U*(bn) = {wn: e =0if ¢ ?I: t5, (wtu' o "’Etﬂ.—k) € u}
6.4)

by, =1,

2

forl1<t1 <te<--- <t <m 6.5)

and let U* = UbneBu*(bn).
For w* = (x1,---,zn) € U*(D"), the decoding set is
defined by

D;:‘ = {yn: Yt = 0if¢ #t]' and ('ytp""ytn,;\,) € DU}

for 1, ,tn_k in (6.5) and v = (x4, -, &¢,,_,)-

Then for all s W*"(Dj-|u",s")>1 — A1, and for all
u*,u™ € U*("),s" € 8", W"(Dj-|u",s") <\, since
{(u,Du): u € U} has error probability (A1, Az). Moreover,
for all s* € ", u* € U*(b"), u* € U*(b"), b",b™ € B,
and " #b"

Wn(D;:*|U*I,Sn) < E(1/2)L{[.I(b”,b ") < T < Ao
for
A

max max W(0|z, s)
sES zEX

w

if n is sufficiently large.
Thus {(v*,Dj-): «* € U*} is a desired code.

VII. PROOF OF THEOREM 5

Without loss of generality assume that for s # s', V(-|-,8) #
V(8. )

It was shown in [1] that for any channel V: A — Y without two
identical rows, any ui,uz, & > 0, sufficiently large n, and any U C
X" such that for all u, ' € U, du(u,u') > ne, there exists a family
of subsets of V", say Dy, u € U, such that V" (Dy|u) >1—u; and
V" (Dylu') <us for all u' # u, where d is the Hamming distance.
Let us fix a family

Hx(s), -+, X(4sls)}: s € S}
of partitions in Section I-F. For z", z" € X", s €8, we define
dy(2",2™) = |{t: 2 € X(jls),} € X(§'|s) with j # j'}|. (7.1)

Thus by the above auxiliary result, we have that for any
A1, Az, £ >0, sufficiently large n, and any &4 C A™ such that
for all s € S,u,u’ € U

ds(u,u') > ne (7.2)

there is a family of subsets in ", say D,(s), u € U, s € S, such
that for all u, ' € U, u £ u',s €S
. A
V™ (Du(s)|u,8)>1 = 5
To find a good NRI-code for V, we first find a I/ satisfying (7.2).
Let X be the RV achieving the extremal value in the theorem. Then
for any fixed u € 7¥, if (7.2) is violated for s, u, and v’ € Ty, then
there exists a pair (X, X') such that with ' € T3/ x(u), Px = Px,
and E, d(X,X") <e. For such (X, X")

and V"(Du(s)|u',s)<%. (7.3)

1 ,
= log [T/ ()] = H(X'|X) + o(1) 7.4)
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and by the data processing inequality and by Fano’s inequality
I(X AX') > I(X(s) A X'(5)) 2 H(X(5)) ~ ale)
as Ed,(X,X") < & implies that Pr (X (s) # X(s)) < &, where a(g)

is a constant depending on € and &« — 0 as € — 0.

Denote by @ = {(X,X'): Px: = Px and d.(X,X')<¢ for
some s € S}.

Then the total number of u’s in 7%, such that for an s € S
(7.2) does not hold, are not larger than grlmax x xye HIX'IX)+o(M)]
Consequently, by the greedy algorithm one can find a & C Tx
satisfying (7.2) such that

(7.5)

L gl > H(X) - s HOX'IX) +o()
I3

X,X"eQ

I(XAX')+0(1) (since H(X') = H(X))

= min
(X,X")EQ

> min H(X(s)) — a(s) +o(1) (by (7.5)). (7.6)

Then the following procedure works.

1) For all @ € X define a* = (a,---,a). Choose a sufficiently
small 6 and a sufficiently large £ such that foralla € X,V € V

1
£ £ £ b

and for all V, V' € V there is an @ € & such that
Ty 5(a*) N Ty 5(a’) = 0
where
A .
A = min(A1, A2).

Then the encoder uses |X| blocks of length £ to send a’ for
all @ € A. The decoder tries to find a V' € V (and the
corresponding state s € S) such that for all @ € X, the ath-
block output of length £ falls into ’T‘f,g(af). If he can find it, it
must be unique by our construction, otherwise, the decoder just
declares an error. When any V' € V governs the transmission,
the decoder succesfully estimates V' with probability at least
1—-1A
2) Knowing the state s governing the transmission, the decoder

uses the decoding sets {D.(s): s € S} in (7.3) to identify the
message for which the two kind of error probabilities are A1 /2
and A2 /2, respectively. Thus the two kind of error probabilities
totally do not exceed A; and Az, respectively.

This and (7.6) complete the proof of the direct part (by
choosing £/n arbitrarily small).

To prove the converse we partition the set ¢ of codewords
of a given NRI-code of length n according to the types. Then
we can find an RV X and a i’ C U such that

U Ty and [U'|> (n+1)" Y.

Let p, be the mapping A" — {1,2,---,4,} for a fixed
s € 8 such that p, (z") = (é1,---,in), if ¢ € X(i¢|s). Then
for all s € S there are no u, v’ € U with p,(u) = p.(u')
and « # «'. Furthermore, the mapping ¢, sends 7 to T)?(s).
Consequently, for all s

1 ' 1 n v
—logU'| < = log |7 )| = H(X(s)) + o(1).
T T

Thus the converse holds.
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A Simple Randomized Algorithm for
Sequential Prediction of Ergodic Time Series

Laszl6 Gyorfi, Fellow, IEEE, Gabor Lugosi, Member, IEEE,
and Gusztav Morvai

Abstract—We present a simple randomized procedure for the prediction
of a binary sequence. The algorithm uses ideas from recent developments
of the theory of the prediction of individual sequences. We show that if
the sequence is a realization of a stationary and ergodic random process
then the average number of mistakes converges, almost surely, to that of
the optimum, given by the Bayes predictor. The desirable finite-sample
properties of the predictor are illustrated by its performance for Markov
processes. In such cases the predictor exhibits near-optimal behavior even
without knowing the order of the Markov process. Prediction with side
information is also considered.

Index Terms—Ergodic processes, Markov processes, on-line learning,
sequential prediction, universal prediction.

I. INTRODUCTION

We address the problem of sequential prediction of a binary
sequence. A sequence of bits y1, y2, --- € {0, 1} is hidden from
the predictor. At each time instant ¢ = 1, 2, ---, the predictor is
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