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1 Introduction.

The set of the positive integers is denoted by N. If m € N, n € N then w,,(n)
denotes the number of distinct prime factors of n not exceeding m, while
wm(n) denotes the number of prime factors of n not exceeding m counted
with multiplicity:

wm(n) = Z 1, Qn(n) = Z a,

p<m p<m
pln p*[In

and we write

The smallest and greatest prime factors of the positive integer n are denoted
by p(n), and P(n), respectively.

The counting function of a set A C N, denoted by A is defined by

A(z) =|AN[l,z]|, € N,

The upper density d(.A) and the lower density d(.A) are defined by

A(z)

d(A) = lim sup

T—00

and 4
d(A) = lim inf (:p)’

T—00 €T

respectively, and if d(A) = d(A), then the density d(.A) of ¢ is defined as

d(A) = d(A) = d(A).

The upper logarithmic density 6(.A) is defined by

- ) 1 1
oA = Jmm, sup log = Z a’
acA

a<x

and the definitions of the lower logarithmic density 0(.A) and logarithmic
density 6(.A) are similar.

A set A C N is said to be primitive, if there are no a,a’ with a € A, a’ € A,
a # a' and ala’. There are two classical results on primitive sequences:
Behrend [2] proved that if A C {1,2,..., N} and A is primitive, then we

have . log N
og

E o —2 1.1

- Cl\/loglogN (1)



(so that an infinite primitive sequence must be of 0 logarithmic density), and
Erdos [4] proved that if A C N is a (finite or infinite) primitive sequence

then .
> —— <o (1.2)
aeAa oga

These results have been extended in various directions; surveys of this field
are given in [1], [8], [10], [14].

For A C N, a € A let Q% denote the set of the integers ¢ such that ¢ > 1
and ag € A, and write

Qa=J Q% (1.3)

acA

Then @) 4 consists of the integers ¢ > 1 that can be represented in the form
q= %l with a € A, ' € A. We call this set ()4 the quotient set of the set
A. By Behrend’s and Erdos’s theorems, the quotient set of a “dense” set A
is non—empty. We will also study the set Q% defined by

[e.9]

x=U @

n=1 a>n

acA

This set consists of the integers ¢ > 1 which have infinitely many represen-
tations in the form ¢ = % with a € A, o’ € A. We will call this set Q% the
infinite quotient set of A.

Pomerance and Sarkozy [12] initiated the study of quotient sets of “dense”
sets. They investigated the arithmetic properties of () 4 and, in particular,
they proved the following theorem:

Theorem A. There exist constants cz, Ng such that if N € N, N > Ny, P
1s a set of primes not exceeding N with

Z% > ¢, (1.4)

peEP

AcC{l,2,...,N} and

—-1/2
1 1
> ~ > 10log N (Z 5) : (1.5)

ac€A peEP

then there is a ¢ € Q4 such that q| ] p-
peP

They discussed various consequences of this theorem, and they also studied
the occurence of the numbers of the form p — 1 (p prime) in Q4.

In this paper our goal is to continue the study of the quotient set by studying
the density related properties of it.



2 The problems and results.

Our first goal is to study the connection between §(.A) and §(Q ). First we
thought that for all A C N we have

3(Q.4) > 6(A). (2.1)

However, it is not so, as the following example shows: Let A be the set of
the integers that can be represented in the form 2m, 3m or 5m with m € N,
(m,30) = 1. Then a simple computation shows that we have

S(A) = 5(A) = d(A) — %
and B A 30
0(Qa) =0(Qa) =d(Qa) = = 55@4),

so that (2.1) does not hold. Later we prove that there is a connection
between the densities in (2.1), however, they can be far apart:

Theorem 1.

(i) If a set A C N has positive upper logarithmic density then Q4 also
has positive upper logarithmic density.

(ii) For alle >0, § > 0 there is a set A C N such that
d(A) >1—¢, (2.2)

howewver, B
d(Q.a4) < 6. (2.3)

Next we will study the following problem: what density assumptions are
needed to ensure that Q% is non—empty, resp. infinite? We will prove

Theorem 2.

(i) If a set A C N has positive upper logarithmic density then Q% is
infinite.

(ii) For all e(z) \, O there is a set A C N such that
Ax) > e(x)x for x> o, (2.4)

however, Q% is empty.



By (i) in Theorem 2, if A has positive upper logarithmic density, then Q%
is non—empty, so that there are integers ¢ > 1 which have infinitely many
representations in the form

!/

=2 with ac Ad € A (2.5)
a

This result can be sharpened by showing that under the same assumption,
there is a ¢ > 1 such that for infinitely many z it has “many” representations
of the form (2.5) with a not exceeding x:

Theorem 3. If A has positive upper logarithmic density, then there is a
q € Q% such that
> i

teA,gte A
lim sup ———— > 0. (2.6)
00 log x
By Theorem 2 (i) ~
i(A) >0 (2.7)

implies that )% is infinite. Next we will sharpen this result by estimating
the counting function Q% (z) under assumption (2.7):

Theorem 4.

(i) If A C N is a set of positive upper logarithmic density:

(A)=n>0, (2.8)
then for x > xy we have
1
Z = > exp{c(loglog )2 1ogloglog x} (2.9)
w 4
QGQA
q<z

with a positive constant ¢ = ¢(n).

(ii) For alle >0, § > 0 there is a set A C N such that
d(A) >1—¢ (2.10)
and

Q%X (y) < exp{ (loglogy)'**}  for y > yo. (2.11)

Y
logy



Note that, clearly, (i) implies that

Q% (y) > loZy exp{c(loglog y)'/?logloglog y}

for infinitely many positive integers y.

Moreover, we remark that by using a result of Erdos [5], for all e(x) N\, 0
one can construct a set A such that (2.10) holds and

Q% (x) < 2"~

for infinitely many positive integers x.

3 Proof of Theorem 1.

(i) By a theorem of Davenport and Erdos [3], §(A) > 0 implies that there
is an a € A with

5(Q%) > 0. (3.1)
By definition (1.3) we have Q% C Q4 and thus (3.1) implies §(Q.4) >
0.

(ii) For some b € N, K > 0 write
A= {n:neN,|Q(n)—loglogh| < K+/loglogb}.

We will show that if b, K are large enough in terms of € and 9§, then
this set A satisfies (2.2) and (2.3).

If K is large enough in terms of €, and then b is large enough in terms
of ¢ and K, then (2.2) holds by the Turdn—Kubilius inequality [10]
(see also [5]).

Moreover, if ¢ € ()4, then ¢ can be represented in the form ¢ = %
with a,a’ € A, a < a'. It follows from the definition of A that

a/

Qb(q) = Qb (E) = Qb(a’) — Qb(a) <
< (loglogb + K+/log logb) — (log logb — K+/log logb) =2K+/loglogh
so that we have

QaC {q g €N, Q(q) < ZK\/loglogb}.

Again by the Turan—Kubilius inequality, if K is large enough in terms
of 9 and then b is large enough in terms of K, then the upper density
of this set is < J so that (2.3) also holds.



4 Proof of Theorem 2.

(i) We will prove by contradiction: assume that

d(A) =n>0, (4.1)
however, Q% is finite so that there is a number K > 0 with
Q% N[K, ) = 2. (4.2)

It follows trivially from (4.1) that there is an infinite set IC of positive
integers k such that, writing

Ay =An (227,27, (4.3)
we have
#Zl>ﬂ (for all k€ K) (2.4)
log 22 o 4 ' '

Since the sum ) % is divergent, thus there is a positive integer L such

that )
1 4
Z — > min {03, (—O) } (4.5)
K<p<L p n

(where c3 is the constant defined in Theorem A). Then writing P =
{p : p prime, K < p < L}, (1.4) holds and, writing also N = 22" by
(4.4) and (4.5) we have

-1
1 n 1
g a>110gN>1OlogN<E —)

a€AL peEP p

so that Theorem A can be applied with 22° and A}, in place of N and
A, respectively. It follows that if k& € I and k is large enough, then
there is a number ¢(k) which can be represented in the form

a/
q(k) = — with a,d’ € Ag,a # d',ald
a
and which also satisfies

a®) [[r= ][] »

peP K<p<L

Since this product has only finitely many divisors, ¢(k) divides it, and
k can assume infinitely many values (I being infinite), thus by the
pigeon hole principle, there is a number ¢y such that

o I » (4.6)

K<p<L

7



and gy = q(k) for infinitely many values of k; denote the set of these
k’s by Ko. Then qo can be represented in the form

/

qo = % with a,a’ € Ap,a #d' (for all k€ Ky). (4.7)

Since Ky is infinite and the sets Ay are disjoint, thus (4.7) implies
g0 € Q%, and by (4.6) and (4.7) we have gy > K which contradicts
(4.2) and this completes the proof of (i).

It is well-known that if x > x¢, then uniformly for 2 < K < /= we

e |{n;ngx,p(n)>K}|>c4xH<1—1),

p<K p
and by Mertens’s formula, this is

T

>
“ log K

which is > e(x)x if
K < e/5),
It follows that defining A by
A={n:p(n)>K(n)}
with
K(n) = min{\/ﬁ, 666/5(")},
where ¢4 is a small positive constant, this set A satisfies (2.4).

Moreover, for this set A clearly we have

pla) 00 as a€ Aa— 0. (4.8)

If g > 1 and g € N, then representing ¢ in the form

/
q:g with a € A,d € A,
a
a’ must have a prime factor < ¢, and thus by (4.8) ¢’ must be bounded.
This implies ¢ ¢ Q% so that Q% is empty and this completes the proof
of the theorem.



5 Proof of Theorem 3.
Write §(A) =7 (> 0). For k € N, let

A = {a = ,4,22]671 <a< 22k}.
Let K denote the set of positive integers k£ such that

1
3 = > Thog2? (5.1)
a

4
a€ Ay

Clearly, K is infinite. Let L denote the smallest positive integer such that

g% > min{cg, (%)2} (5.2)

and write [[ p=V. For ¢ € N, k € N write
p<L

B = {a 22" a§22k,a€A,aq€A}.

We will show that for k € K, k > ko there is a ¢ such that ¢|V and

1 n ok
- log 2 .
Z a 8V 08 (5.3)

GGB(q,k)

We will prove this by contradiction: assume that for all |V we have

1
Z S log 2% (for all q|V). (5.4)
8V
aEB(q’k)
Write
Az = -Ak AN U B(ch)- (5.5)
qlv

Then by k € K, (5.1), (5.4) and (5.5) we have

IFEDIFED DD BITE

acAf a€Ag qlV a€Bq k)

n n 2k (77 77) ok 7] 2ok
TS 2 N ioga? > (71— 1) 10g2? = Tiog2?
~ |1 gy | 87 Z\y T g) 8 o8

qlv



By (5.2), it folows that

1 log 22"
Yo s 0 (5.6)

a 1
acAf Z P
p<L

By (5.2) and (5.6), we may apply Theorem A with 22°, A¢ and {p : p prime, p <
L} in place of N, A and P, respectively. It follows that if £ € K and k is
large enough, then there is a ¢’ which can be represented in the form

/

a
q = " with a,a’ € A5, a # d,ald (5.7)

and which also satisfies

¢ [[r=V (5.8)

p<L
For this a and ¢’ we have a € Ay and aq’ € Ay, and thus

a € B(q’,k)~ (5.9)

It follows from (5.5), (5.8) and (5.9) that a ¢ Af. This contradicts (5.7)
which proves that, indeed, for all £ € K, k < kg there is a ¢ such that
q|V and (5.3) holds. To each k € K, k > kq assign a ¢ = ¢(k) with
these properties. Since K is infinite and, by ¢(k)|V, ¢(k) may assume only
finitely many distinct values, thus there is a number ¢y (with ¢o|V') which
has infinitely many representations in the form gy = ¢(k). For this ¢o we

have . .
n
— D Ty
log 2 a€A,aqo€A a 8V
a<22”

for infinitely many & € N which proves (2.6) and the proof of Theorem 3 is
completed.

6 Proof of Theorem 4, (i). Combinatorial

lemmas.
Lemma 1. For all y1 > 0 there are numbers o, ¢ = c(p) > 0 such that if
r €N, r>ry, U is a finite set with |{U| =r, and Uy,Us, ..., Uy are subsets

of U with
k> u2", (6.1)

then there is a j (1 < j < k) such that

[{i:1<i<kU CU}| >exp{cyrlogr}. (6.2)

10



Proof: This is Theorem 2 in [7].

Lemma 2. For all p > 0 there are numbers ro, ¢ = c¢(u) > 0 such that if
reN, r>ry, T is a finite set with |T| = t,

T=UUVUNV =0 U|l=r,
and 11,75, ..., T, are subsets of T with
0> p2t, (6.3)
then there is a h (1 < h <) such that

Hi:1<i<lT,nUCT,NUTNY=T,NV} >exp{c\/7jlogr}. (6.4)

Proof: By the pigeon hole principle, it follows from (6.3) that the set V
has a subset V), such that

0 2
|{h:1§h§£,ThmV:v0}|ZW>%:M2W|:;&? (6.5)

Let Ty Thys - -y Tn, (h1 < ho < -+ < hy) be the subsets of 7 with 7,,NY =
Vo i = 1,2,...,k so that (6.1) holds by (6.5). Write U; = Tp,, NU for
1 <i < k. By Lemma 1, there is a j (1 < j < k) such that (6.2) holds.
Then clearly, 7;, satisfies (6.4) with h; in place of h which completes the
proof of Lemma 2.

7 Proof of Theorem 4, (i). Arithmetic lem-
mas.

Lemma 3. For all v > 0 there are constants ¢ = ¢(y) > 0, Ny and Ry such
that if N > No, AC {1,2,...,N},

1
Z—>710gN (7.1)
aeAa

and Ry < R < N, then, writing
f(A,R,n)={a:a€ A a|n,P(n/a) < R}| (7.2)
and
A*(R,c)=|{a:a € A, f(A R,a) > exp(c(loglog R)Y?loglog log R)},

11



we have

3 1>%Zé (7.3)

a
ac€A*(R,c) acA

Proof: We will prove by contradiction: assume that contrary to (7.3) we

have . 1
YooY - (7.4)
acA*(R,c) aEA

SIS
N |

We will show that if ¢ = ¢(vy) (> 0) is small enough (in terms of ) then
(7.4) leads to a contradiction.

Write A° = A\ A*(R, ¢) so that
A°={a:a€ A, f(A R, a) <exp(c(loglog R)Y?1loglog log R)}  (75)

and, by (7.1) and (7.4),

Z Z > ~log . (7.6)

aEAC

Write every a € A° as the product of a square (r(a))2 and a squarefree
integer s(a):

2
a = (r(@)*s(a), lu(s(@)] = 1
(where p(n) denotes the Mobius function).

Then (7.6) can be rewritten as

Since

r=1

it follows that there is an integer rq such that

1
Y > TN, (7.7)
= s(a) ~ 4
r(a)=ro

Write

S ={s: thereisan a € A° with r(a) =1, s(a) = s}

12



so that, by (7.7),

1
Y = > Tlog N, (7.8)
s 4
sesS
and clearly
Sc{l,2,...,N}, (7.9)
every s € S is square—free. (7.10)

13



Set
ds(n) =|{s:s €S, s|n}|

and let d(n) denote the divisor function:

d(n) = |{d:d e N,d|n}|.

Then it is well-known that for large N we have

> "d(n) < 2Nlog N. (7.11)

n=1

Write .
H(N,R) = {n :n < N,wg(n) > EloglogR} :
Now we will show that there is an integer n with

n € H(N, R),ds(n) > ﬁd( n). (7.12)

Clearly we have

S am= Y Y-

neH(N,R) neH(N,R) s€S
s|n
=2 2 =X > 1z ) >, ¢
ses n<N,s|n ses st<n seS t<N/S
wR(n)>%loglogR WR(St)>%10310gR S<N1=2/10 wR(t)>%loglogR

By the Turdn—Kubilius inequality [11], for Ry < R < N the inner sum is
> 1% so that, by (7.8), for large N we have

> odmzy > iz

neH(N,R) ses

s<N1_7/10
1 1 N v gl Y
> - _ _ [ L _ —
> > > oc)>5 (4logN 81ogN) TNlog N,
seS N1-7/10<S<N

(7.13)

Now assume that contrary to our statement there is no n satisfying (7.12).
Then it follows from (7.11) that

N
Y odst < Y %d(n)gg—éZd()<ENlogN

neH(N,R) nEH(N,R) n=1



which contradicts (7.13), and this completes the proof of the existence of an
n satisfying (7.12). Consider such an n, and write

ny = Hp

pln
Then by n € H(N, R) clearly we have
wgr(n1) = wr(n) > %log log R, (7.14)
and, by (7.10), it follows from (7.12) that

ds(ny) = dg(n) > %d(n) > 3—72d(n1). (7.15)

Let s;, < 84, < --- <'s;, (with £ = dg(n1)) be the elements of S dividing n;.
Write

T ={p:pprime,pjni}, t =|7T| =w(n), U = {p: p prime,p < R, p|n,},

r = |U| = wg(ni) and T; = {p: p prime, p[s;; } for j =1,2,... L.

Then 7,7y, ..., 7, are subsets of 7 and, by (7.15), their number is

2 T ot
= — = —2". q
(=dgs(ny) > 32d(n1) 37 (7.16)
Moreover, by (7.14) we have
1
U| =r = wgr(n1) = wr(n) > 3 log log R. (7.17)

If Ry is large enough in terms of v then, since R > Ry, by (7.16) and (7.17)
all the conditions in Lemma 2 hold with 5 in place of . Thus by Lemma
2 and (7.17), there is a h (1 < h < /) such that

{j:1<ji<tTNUCT,NUTNY=T,NV} >
> exp{cy/rlogr} > exp{d(loglog R)Y?1loglog log R} (7.18)

with positive constants ¢ = c¢(v), ¢ = (v). f T,nU C T,nU, T;NY = T,NY
then

rosi,|rgs;, and P (—) <R. (7.19)

Here rfs;, € A° C A (for all j) and @ = r§s;, € A°, so that by (7.18) and
(7.19) we have

f(A R,@) = |{a:a € Aala, P(@/a) < R}| > exp{c(loglog R)"/*logloglog R}.

15



This contradicts definition (7.5) of A€ if we choose there ¢ = ¢, and this
completes the proof of Lemma 3.

Lemma 4. For ally >0, if N > Ny, AC {1,2,...,N},
1
Z— > vlog N
aG.Aa

and Ry < R < N, then, writing
Q'(R) = {q: P(q) <R, there is an a with a € A,aq € A},

we have

1
Z — > exp(c(loglog R)Y?1loglog log R) (7.20)
q€Q’'(R)

where ¢ = ¢/2 with the constant ¢ = ¢(y) > 0 defined in Lemma 3.

Proof: Write (A R.a)
) Y a
§=2. a
acA
where f(A, R, a) is defined by (7.2).

Assume that contrary to (7.20), we have

1
Z = < exp(c(loglog R)Y?loglog log R).

q€Q’'(R)
Then
F(A R, a) | | | 1 1
= ==~ ) =) = > 5SZ; ) P
acA a€A  d'€A,a'g=a aeA a’qeA adeA  ¢eQ'(R)
P(g)<R P(g)<R
1
< exp(c(loglog R)'/*loglog log R) Z —. (7.21)
a
a’'eA

On the other hand, by Lemma 3 we have

f(A R, a) exp(c(loglog R)/?logloglog R)
soy ARGy

a
acA a€A*(R,c)

1
= exp(c(loglog R)Y?logloglog R) Z . >
acA*(R,c)

1 1
>3 exp(c(log log R)Y?loglog log R) E -
a

acA

16



If ¢ = ¢/2 and R is large enough then this lower bound contradicts the
upper bound in (7.21) which completes the proof of Lemma 4.

Lemma 5. For all v > 0 there are constants Ny, Uy such that if N > Ny,
AcC{l,2,... N},

1
> = >qlogN (7.22)
acA a

and Uy < U < exp((log N)?), then, writing
Q*(U)={q:q<U, thereis an a with a € A,aq € A},

we have

1
Z = > exp(c”’(loglog U)Y2loglog log U) (7.23)
q€Q*(U)

where " = ' /2 with the constant ¢ = () defined in Lemma 4.

Proof: Define R by
U = exp((log R)?)

so that )
3 loglog U = loglog R.

If U is large enough then, by Lemma 4, (7.22) implies that we have

1
Z = > exp(c(loglog R)Y?loglog log R) =
q€Q'(R)

= exp ((1 + 0(1))%(10g log U)*? log log log U) : (7.24)

Moreover, clearly we have

Q'(R)~Q*(U)c {q:U <gq,P(q) <R},

so that

)
q€Q*(U)

=

1 1 1 1
> — — - > - - =, (7.25)
qg%ﬂ Zq q Zq

It remains to estimate the last sum.

Write o = @ so that U? = R. Then, by

1
Z — =loglogz + 0(1),

p<w

17



we have

1 1 o e 1 —lqoy—1
I o 1

U<q q U<q P(¢)<R p<R
P(g)<R P(g)<R
:—exp{ Zlog 1+")}:
p<R
p<R p<R
1 log R)©)
=% exp{O(loglog R)} = % =o0(1) (as R — o0). (7.26)

For large U, (7.23) follows from (7.24), (7.25) and (7.26), and this completes
the proof of Lemma 5.

8 Completion of the proof of Theorem 4, (i).
By (2.8), there is an infinite set N; < Ny < ... of positive integers such
that Ny, > N2 for k=1,2,..., and, writing

Aﬂ (Nk—laNk] :Ak for k= 2,3,...,

we have

1
Z - > QlogNk
a 4

aEAk

Then for large k, by using Lemma 5 with §, Ny, Ay, and x in place of v, N, A
and U, respectively, we obtain that, writing

Qi(x) ={q:q <z, thereis an a with a € Ay, aq € A},

for x > ¢ and large enough k£ we have

1
Z = > exp{c’( (loglog z)*/2 logloglog z}. (8.1)
q€Qy, ()

Since for every large k there is such a set Q;(z) and we have Qi(z) C
{1, 2,..., [:)3]}, thus by the pigeon hole principle there is a set

Qo(z) C {1,2,...,[z]} (8.2)
which can be represented in the form
Qo(z) = Q(x) (8.3)

18



for an infinite set IC of positive integers k. If ¢ € Qp(z) and k € K, then ¢
can be represented in the form ¢ = %, a € Ag, @’ = agq € Ay. Since A, C A,

a

the sets A;, are disjoint, and K is infinite thus, by (8.2), this implies
Qo(z) C Q% N[L,z]. (8.4)

(2.9) follows from (8.1), (8.3) and (8.4), and this completes the proof of
Theorem 4, (i).

9 Proof of Theorem 4, (ii).

Let K be a large but fixed number, and let A denote the set of the integers
a such that
1Q(a) — loglogb| < (loglog b)/2+/2

for all K < b < a. We will show that if K is large enough then this set .4
satisfies (2.10) and (2.11).

Indeed, it follows from Erdés’s result [6, p. 4] that if K is large enough in
terms of 0 and ¢ then (2.10) holds.

Moreover, if ¢ € Q% and ¢ > K, then ¢ can be represented infinitely often
as q = %/ with a € A, o' € A, ald’, ¢ < a < da’. Then by the construction of

< (loglog g + (loglog q)1/2+5/2) — (loglog g — (loglog q)1/2+5/2) = 2(log log q)'/*%/2.
Thus by a theorem of Sathe [13] and Selberg [15] we have
QX)) < K+Hg: K<q<y,qeQY} <

<K+ Y Hara<y Q) =ifl=

i<2(loglog y)1/2+6/2

loglog y)"*
_oli+ T y (loglogy)™" ) _

p — 1)!
i<2(log log y)1/2+4/2 10gy (Z 1)‘

logy

— 0 (loZy exp((log log y)l/%‘s))

which proves (2.11).
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