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Abstract

For nonbinary codes it is proved that the Hamming bound is
asymptotically sharp in some range of the code rate.

1. Introduction

In [1], we claimed that the transmission rate of a nonbinary (q-ary) code of
length n which corrects τn localized errors asymptotically equals the Ham-
ming bound on an interval τ ∈ [0, τ0], τ0 ≤ 1/2, and conjectured that τ0 = 1/2
(transmission rate is zero if the number of errors is greater than or equal to
n/2). Though, in recent years, we came somewhat nearer to 1/2 and ob-
tained τ0 as a function of q which tends to 1/2 with growing q, we have not
succeeded in proving our conjecture. Therefore, it is apparently the right
time to promulgate the derivation of the incomplete result on the Hamming
bound, the more so, as the method of the proof itself is of independent inter-
est (this is also prompted by the publication of [2], where a lower bound is
presented which is everywhere significantly worse than the Hamming bound).
The authors have already used a similar approach in [3], but in that paper
it was accompanied by a number of additional tricks because of the com-
plexity of the problem considered. In this paper, however, the approach is
presented in a “pure” form; first, we explain the ideas only and after that
proceed to formal definitions and proofs. The situation with localized errors
is characterized by the following fact: to attain the Hamming bound asymp-
totically, it suffices to provide the decoder with “small” information (we have
already used this in [4]). Indeed, let us divide the transmitted segment into a
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growing number of segments of equal length (the length is also growing) and
arrange the segments in an ascending order with respect to the number of
possible errors on them. The number of the first segment (i.e., of that with
the least number of errors) and the number of a set that covers the positions
of possible errors on this segment are precisely the “small” information that
should be known to the decoder. Now, let us explain why this information
is sufficient to attain the Hamming bound. On the first segment, outside
the positions of the covering set, we transmit to the decoder the number of
the second segment and the number of a set that covers the error positions
on this segment. The remaining positions of the first segment are used for
message transmission. On the second segment, outside the positions of the
covering set, we transmit the number of the third segment and the number
of a set that covers the possible errors on it; the remaining positions are used
for message transmission, and so on. Surely, one can ask why we transmit
covering sets but not the actual positions of possible errors, which, in fact,
would leave more positions for message transmission. The answer is simple:
with the optimal choice of covering sets, the gain due to their rather small
number compensates the loss of positions for message transmission. Simple
computations show that thus we attain the Hamming bound.

Thus, the main problem is to transmit the mentioned “small” information
to the decoder. We overcome this problem (unfortunately, not for all values of
the parameters) with the help of special encoding and decoding procedures.
In encoding, we first construct three auxiliary code words from which the
transmitted word is constructed (these auxiliary words are defined on some
of n positions only and in the other positions they can be extended by zero
symbols). In decoding, we construct three auxiliary “de-code” words from
the word received and then reconstruct the transmitted message using them.

Transmission of “small” information is performed with the help of binary
constant-weight codes that correct localized errors and defects (see [5]). To
employ these codes, we proceed as follows: start the above-mentioned en-
coding procedure not from the first segment but from the (k + 1)st, leaving
the first k segments free (the choice of the parameter k, as well as all the
other parameters, is a technical detail of the proof to which we do not turn
our attention now; we note only that the total length of the first k segments
is small). Then this encoding procedure generates the first q-ary codeword
outside the first k segments and in positions outside the covering sets on the
other segments. The unity positions of this q-ary codeword (i.e., the posi-
tions with the symbol 1 in them) are considered as the defect positions for
the second binary codeword that we are going to construct (we can fix the
number of unity positions of the first codeword beforehand—this is required
for the paper [5] to be applicable). As the set of positions of localized errors
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for the second word, we consider, together with actual such positions, all
positions of the first k segments. According to [5], in this case we can choose
the second binary word to be of small weight w (since, in fact, we have to
transmit “small” information, namely, information of the (k + 1)st segment
and also the numbers of the first k segments), where these w unity symbols lie
outside the positions of defects and localized errors. On the first k segments,
we construct the third codeword of the binary localized-error-correcting code
in order to transmit information of the location of w unity symbols of the
second codeword and which q-ary symbols of the first codeword are in these
positions. Now, from three codewords constructed (one q-ary word and two
binary ones), we can construct a q-ary codeword to be transmitted:

(a) on the first k segments, we transmit the third codeword;

(b) from the second codeword, we transmit only w unity symbols;

(c) in the remaining positions, we transmit symbols of the first codeword.

In decoding, from the received word we first construct the second de-code
binary word which corresponds to the second codeword transmitted over the
above-described channel with defects and localized errors. To do this, we
replace all symbols from 2 to q−1 of the received q-ary word by 0. From this
word, the decoder reconstructs the “small” information to transmit which
was the main difficulty. In particular, this “small” information includes the
numbers of the first k segments which become known to the decoder, and
thus he can construct the third de-code word which coincides on the first
k segments with the received word. ¿From this word, the decoder recon-
structs the symbols of the first codeword in those w positions where the
unity symbols of the second codeword were transmitted. It is clear now how
to construct the first de-code word: in these w positions it coincides with the
first codeword and in the remaining positions outside the first k segments
it coincides with the received word. Now, from this first de-code word, the
decoder successively reconstructs the message starting from the (k+1)st seg-
ment since the “small” information previously reconstructed includes both
the number of the (k + 1)st segment and the number of the set that covers
the possible error positions on this segment.
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2. Statement of the problem and formulation of the
main result

After explaining the ideas, let us proceed to strict statements. Let Q =
{0, 1, . . . , q − 1} be the alphabet, B be the set of q-ary sequences of length
n,M = {m} be the set of messages (|M| = M), Et = {E | E ⊆ [1, 2, . . . , n], |E| =
t} be the set of all possible collections of error positions of multiplicity t

(|Et| =

(

n

t

)

), V (E) be the set of q-ary words of length n that are equal to

zero in positions outside E (|V (E)| = qt). Since, while encoding, we know
those t positions where errors can occur, a codeword x(m,E) depends on
m ∈ M and E ∈ Et. A code X = {x(m,E), m ∈ M, E ∈ Et} corrects t
localized errors if the condition

x(m,E) + e 6= x(m′, E ′) + e′ (1)

holds for all E,E ′ ∈ Et, e ∈ V (E), e′ ∈ V (E ′), m,m′ ∈ M, m 6= m′ (addition
in (1) is made modulo q). It is known [1] that the maximum transmission
rate R of such code does not exceed the Hamming bound

R ≤ 1 − hq(τ) − τ logq(q − 1),

where

hq(τ) = −τ logq τ − (1 − τ) logq(1 − τ), t = τn (0 ≤ τ ≤ 1/2).

Theorem. Let 0 < τ < 1/2−
q − 2

2q(2q − 3)
. Then, for any ε > 0, there is

a number n(ε) such that for n > n(ε) a code of length n with transmission
rate 1 − hq(τ) − τ logq(q − 1) − ε exists which corrects τn localized errors.
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3. Proof of the theorem

Let ε > 0. Let us describe the encoding procedure for a given E. Divide
the transmission length n into s consecutive segments A1, . . . ,As of length
N (Ai = [(i − 1)N + 1, . . . , iN ], n = sN , and we note in advance that both
s and N tend to infinity with growing n). Denote the intersection of the ith
segment Ai with E by Ei:

Ei = Ai ∩ E.

Denote the cardinality of Ei by ai (a1 + . . . + as = t). Arrange the segments
in an ascending order with respect to the number of possible errors on them:

Ai1 ,Ai2 , . . . ,Ais (ai1 ≤ ai2 ≤ . . . ≤ ais).

Let us fix ε1, ε2 > 0. Put s1 = ε1s and define s1 + s2 as the maximum num-
ber of the segment the number of possible errors on which is not greater than
(

q − 1

q
− ε2

)

N , i.e., ais1+s2
≤

(

q − 1

q
− ε2

)

N and ais1+s2+1
>

(

q − 1

q
− ε2

)

N .

Divide the set of the segments into three groups such that the first group con-
sists of the first s1 segments Ai1 , . . . ,Ais1

, the second group consists of the
next s2 segments Ais1+1

, . . . ,Ais1+s2
, and the third group, of the remaining s3

segments (s1 + s2 + s3 = s). Denote by tj, j = 1, 2, 3 the number of possible
errors on the jth group (t1 + t2 + t3 = t). It is clear that

t1 ≤ ε1t and t3 ≥

(

q − 1

q
− ε2

)

Ns3. (2)

Construction of the first codeword. Here we need the following
well-known covering lemma (see, e.g., [6]).

Lemma. Let N be a set with N elements and Nd be the set of all its

subsets of cardinality d. For d <
q − 1

q
N , a covering Cq(Nd) of the set Nd

by subsets of cardinality
q

q − 1
d exists such that

|Cq(Nd)| ≤ N

(

N

d

)

/





q

q − 1
d

d



 .

For d ≥
q − 1

q
N , the covering consists of the set N itself, (i.e., |Cq(Nd)| =

1).
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Both the lemma and the method for constructing the first codeword have
already been used in [4, Sec. V]; therefore, here we describe this procedure
in brief. The first codeword is successively defined on the segments from
the second group as follows: on a segment Ais1+1

, we take an element of the

covering c(Eis1+1
) of the set Eis1+1

(|c(Eis1+1
)| =

q

q − 1
ais1+1

) and in positions

outside this element of the covering (i.e., on Ais1+1
\ c(Eis1+1

)) we write an

arbitrary q-ary word with
1

q

(

N −
q

q − 1
ais1+1

)

unity symbols; the number

Bis1+1
of such words equals

Bis1+1
=











N −
q

q − 1
ais1+1

1

q

(

N −
q

q − 1
ais1+1

)











(q − 1)
(1−

1
q
)
(

N−
q

q−1
ais1+1

)

. (3)

These words are used to transmit the following information:

(a) the number of possible errors on the next segment, i.e., the value ais1+2

(there are at most N different values);

(b) the number of the set c(Eis1+2
) that covers the set Eis1+2

. By the lemma,
there are at most

N

(

N

ais1+2

)

/





q

q − 1
ais1+2

ais1+2





different numbers;

(c) “useful” information, i.e., information of the messages. According to (a)
and (b), it accounts for at least Mis1+1

words, where

Mis1+1
= Bis1+1





q

q − 1
ais1+2

ais1+2





/

N2

(

N

ais1+2

)

. (4)

Then we pass to the segment Ais1+2
and repeat the same procedure on it,

namely, consider the covering c(Eis1+2
) of the set Eis1+2

and in positions
outside this covering (i.e., on Ais1+2

\c(Eis1+2
)) write an arbitrary q-ary word

with
1

q

(

N −
q

q − 1
ais1+2

)

unity symbols; the number Bis1+2
of such words

equals

Bis1+2
=











N −
q

q − 1
ais1+2

1

q

(

N −
q

q − 1
ais1+2

)











(q − 1)
(1−

1
q
)
(

N−
q

q−1
as1+2

)

. (5)
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These words are used to transmit the following information:

(a) the number of possible errors on the next segment, i.e., the value ais1+3

(there are at most N different values);

(b) the number of the set c(Eis1+3
) that covers the set Eis1+3

. By the lemma,
there are at most

N

(

N

ais1+3

)

/





q

q − 1
ais1+3

ais1+3





different numbers;

(c) “useful” information, i.e., information of the messages. According to (a)
and (b), it accounts for at least Mis1+2

words, where

Mis1+2
= Bis1+2





q

q − 1
ais1+3

ais1+3





/

N2

(

N

ais1+3

)

. (6)

Denote by σ(J) the total number of unity symbols in the first codeword
constructed on J segments Ais1+1

, . . . ,Ais1+J
. According to our construction

rule, σ(J) depends not on a particular codeword, but only on the number of
segments J (with E given):

σ(J) =
1

q



JN −
q

q − 1

J
∑

j=1

ais1+j



 . (7)

The procedure of constructing the first codeword is terminated at the Jth
step, where J is determined by the condition

σ(J) = T
△
=

1

q

(

(s − s1)N −
q

q − 1
t

)

. (8)

If the condition (8) is not fulfilled for any J, J ≤ s2, then the procedure
is extended on all the s2 segments of the second group Ais1+1

, . . . ,Ais1+s2
,

and the deficit (to T ) unities of the first codeword are written in error-free
positions of the segments of the third group, i.e., in positions

Ais1+s2+1
\ Eis1+s2+1

, . . . , Ais \ Eis .

This is possible since

s3N − t3 +
1

q

(

s2N −
q

q − 1
t2

)

≥
1

q

(

(s − s1)N −
q

q − 1
t

)

.
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Remark 1. It should be noted here that we are only interested in the
behavior of the information rate, i.e., exponential behavior of the number of
messages (see the statement of the theorem), but since n = Ns where both
N and s grow with n, a change in a finite number of symbols on segments of
length N have no effect on the behavior of the rate. Therefore, though we deal
only with integer numbers in formulas like (3)–(8) (and in the latter formula,
we even have the equality which, generally speaking, may hold with accuracy
to the length N of the segment), we do not specify this anywhere since the
corresponding formal precise definitions only make the text awkward but do
not affect the result.

Thus, the total number of messages that can be transmitted on the seg-
ments of the first group is not less than

M1 =
J

∏

j=1

Mis1+j
. (9)

Also, since

Bis1+j
≥ N−1q

N−
q

q−1
ais1+j (10)

and

q
−

q

q−1
ais1+j





q

q − 1
ais1+j

ais1+j



 ≥ N−1(q − 1)
−ais1+j , (11)

we have

M1 ≥ N−4JqNJ
/

J
∏

j=1

(

N

ais1+j

)

(q − 1)
ais1+j ≥ N−4JqNJV −1

q



NJ,
J

∑

j=1

ais1+j



 ,

(12)
where by Vq(B, r) we denote the volume of a sphere of radius r in the q-ary
Hamming space of length B:

Vq(B, r) =
r

∑

k=0

(

B

k

)

(q − 1)k. (13)

In the last inequality in (12), we used the obvious relation

Vq(B1 + B2, r1 + r2) ≥ Vq(B1, r1)Vq(B2, r2). (14)

By virtue of this relation and the inequality

qB ≤ BVq

(

B,
q − 1

q
B

)

(15)
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we obtain from (12) that

M1 ≥ n−1N−4JqNJ+N(s−s1−J)

×



Vq



NJ,
J

∑

j=1

ais1+j



 Vq

(

N(s − s1 − J),
q − 1

q
N(s − s1 − J)

)





−1

≥ n−1N−4JqN(s−s1)/Vq



N(s − s1),
J

∑

j=1

ais1+j
+

q − 1

q
N(s − s1 − J)





= n−1N−4JqN(s−s1)/Vq(N(s − s1), t) for J ≤ s2,

and (16)

M1 ≥ n−1N−4JqNs2+Ns3/Vq(Ns2, t2)Vq

(

Ns3,
q − 1

q
Ns3

)

≥ n−1N−4JqN(s2+s3)/Vq(N(s2 + s3), t2 + t3 + ε2Ns3) otherwise.

For the final lower estimate of M1, we need the following simple statement.

Claim. Let ρ and ε3 be positive constants and B → ∞. Then a positive
constant ε4 exists such that for B large enough, the inequality

Vq(B, ρB) ≤ Vq(B − ε′B, ρB − ε′′B)qε3B

holds if |ε′| ≤ ε4, |ε
′′| ≤ ε4.

¿From this claim and the estimate (16) we obtain that there exist the
numbers ε1 and ε2 (see (2)) such that for n large enough, the inequality

M1 ≥
qn

Vq(n, τn)
q−

ε
2

n ≥ qn(1−hq(τ)−τ logq(q−1)−ε) (17)

holds. Thus, the first codeword is actually defined only in positions Ais1+1
\

c(Eis1+1
), . . . , Ais1+J

\ c(Eis1+J
), the number of unity symbols in it equals T

(see (8)), and the number of the corresponding messages satisfies the estimate
(17).

Construction of the second codeword. This word belongs to a
constant-weight binary code of length n with weight w = ωn which cor-
rects t + s1N = (τ + ε1)n localized errors and T single defects, where T is

defined in (8), namely, T =
1

q

(

1−ε1−
qτ

q − 1

)

n. Such codes were constructed

in [4]; it is proved there that the rate R′′ of such a code equals

R′′ =

(

1 −
1

q

(

1 − ε1 −
qτ

q − 1

))
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×













h2













ω + τ + ε1

1 −
1

q

(

1 − ε1 −
qτ

q − 1

)













− h2













τ + ε1

1 −
1

q

(

1 − ε1 −
qτ

q − 1

)

























, (18)

where

0 < ω <
1

2
−τ−ε1−

1

2q

(

1 − ε1 −
qτ

q − 1

)

=
1

2
−

1

2q
−

(2q − 3)τ

2(q − 1)
−ε1

(

1 −
1

2q

)

.

(19)
Moreover, it was proved in [5] that a codeword can be chosen in such a way
that all of its w unity positions be outside the positions of localized errors
and defects. In our case, besides the actual t positions of localized errors, we
regard as localized errors all the s1N positions of the first s1 segments. As
single defects, we regard T positions of unity symbols of the first codeword.
Our attention to the precise number of single defects is due to the fact that
in [5] the decoder must know the number of single defects, and the number
T is known to the decoder since he knows the numbers N, s, and s1.

Let us now specify the information that we transmit to the decoder with
the help of the second codeword:

(a) the set of numbers of the first (s1 + 1) segments i1, i2, . . . , is1
, is1+1. The

total number of different sets equals

(

s

s1 + 1

)

≤ 2s;

(b) the number of the covering set on the (s1+1)st segment. The total number

of covering sets is not greater than N

(

N

ais1+1

)

/





q

q − 1
ais1+1

ais1+1



 ≤ 2N .

It follows from (18) that for any arbitrarily small, but fixed, ω and suffi-
ciently large n, we can transmit this information with the help of the second
codeword; the restriction on τ in the condition of the theorem follows from
(19).

Construction of the third codeword. This word is constructed on
the segments of the first group Ai1 , . . . ,Ais1

and belongs to a binary code of
length s1N which corrects ε1s1N localized errors. As is known [7], the rate
R′′′ of such a code equals

R′′′ = 1 − h2(ε1). (20)

Let us now specify the information transmitted to the decoder with the help
of the third codeword:
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(a) the number of the set of those w positions where the second codeword

has unities. The number of such sets is

(

n

w

)

;

(b) the number of the ordered collection of symbols of the first codeword
in these positions. The number of such collections is not greater than
(q − 1)w since, first, the first codeword can be defined on not all of w
positions (we write zero symbols in positions where it is not defined) and,
second, it cannot have a unity symbol in these positions according to the
rule of the construction of the third codeword.

It follows from (20) that for ω small enough,

h2(ω) + ω log2(q − 1) < ε1(1 − h2(ε1)),

we can transmit this information with the help of the third codeword.

Encoding and decoding. From the three codewords constructed, we
can now construct the codeword to be transmitted:

(a) on the first s1 segments Ai1 , . . . ,Ais1
, it coincides with the third codeword;

(b) it coincides with w unity positions of the second codeword;

(c) in the other positions, it coincides with the first codeword and in the
positions where the first codeword is not defined, it equals zero.

After the encoding procedure is described in detail, decoding of a received
word should not require a more detailed description than that given in the
introduction. Indeed, if we substitute 0 for all symbols from 2 to q− 1 in the
received q-ary word, we obtain a binary word which could be received upon
the transmission of the second codeword through the described-above channel
with t1 + s1N localized errors and T single defects. Hence, the decoder can
reconstruct the information transmitted with the help of the second codeword
and thus reconstruct the numbers of the first (s1 + 1) segments and the
covering set on the (s1 + 1)st segment. Then, on the first s1 segments, the
decoder can reconstruct from the received word the information transmitted
with the help of the third codeword and thus reconstruct the symbols of the
first codeword in w unity positions of the second codeword. Then, starting
from the (s1+1)st segment, the decoder successively reconstructs the message
from the symbols of the first codeword since all of these symbols are in error-
free positions and the decoder, due to the construction of the first codeword,
can reconstruct these positions on a succeeding segment from the preceding
one. By (17), the number of messages satisfies the Hamming bound with

accuracy to ε if τ +
τ

2(q − 1)
<

1

2
−

1

2q
(this restriction on τ follows from

(19)). △
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Remark 2. For
1

2
−

q − 2

2q(2q − 3)
≤ τ <

1

2
, we cannot obtain the Hamming

bound, but we can obtain a worse bound by decreasing the number of unity

symbols in the first codeword. Taking this number to be λ
(

N(s−s1)−
qt

q − 1

)

,

where 0 ≤ λ ≤
1

q
, we obtain for each τ such that

τ +
λqτ

2(q − 1)
<

1

2
−

λ

2

the following bound:

R ≥

(

1 −
q

q − 1
τ

)

hq(λ)+(1−λ)

(

1 −
q

q − 1
τ

)

logq(q−1)−hq(τ)+
qτ

q − 1
hq

(

1

q

)

−ε.
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