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SUMMARY

Let X = R be the “input alphabet” and Y = R be the “output alphabet”, where R denotes
the set of real numbers. Let X = Xand Y = Yfort=1,2,...,n

n

=[]X* and Y, =]]Y".
=1

Foro* Z o, = 0let S= {s|o* =5 = 04} and let

2s

1 (x'—y)z] : .
s) = ————exp| — | forall xeX,yeY,seS.

n
For every s, = (s!, ..., s") € I ] § define P(- | «|s,) by
1

P(A|x|5)~fAtls )exp[—(z( )zy)]dy,...,dy"

for every x, = (x1, .»x") e X, and every Borel set 4 — Y,. Consider the channel €,

={PC¢|+|sp)esS } with transmission probability densities f(- | « | 5) varying arbitrarily from
“letter” to “letter”.

The author determines the capacity of this channel when the code words satisbfy
(a) an average power constraint and
(b) an amplitude constraint.

I. INTRODUCTION

Let R be the set of real numbers and let X = R be the “input alphabet” and Y= R
be the “output alphabet™ of the channels we shall study below. Let X* = X and ¥* —
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=Yfort=1,..,n. By X, = HX * we denote the set of input n-sequences (words

n t=1
of length n) and by Y, = H Y* we denote the set of output n-sequences. We define
an additive Gaussian channel probability density function by

(1.1) fo]x] o) = — exp[_(";yf]

o /(2n) 20?

forallxeX, yeY. ,
The probability density functions for words of length n are given by

mier

for all x, = (x,...,x")e X, and all y, = (¥, ..., y") €,

Thus the output sequence is obtained from the input sequence by the addition
of a sequence of independent Gaussian random variables with mean 0 and variance ¢2.
For notational simplicity we avoid the definition of the random variables involved.

The transition probabilities of an additive Gaussian memoryless channel G, are
defined by

(1.3) | P(A|x,) = jAf,(yn | x,)dy'...d

(1'2) ’ fa(yn l xn) =

for every x, e X, and every Borel set A = Y, n = 1,2, ...

A code (n, N) for channel G, is a system of pairs {(u;, 4,) |i=1,...,N}, where
u;eX,fori =1,...,N,and the 4i =1, ..., N) are disjoint Borel sets inY,. A code
(n N,2) is a code (n N) with maximum probablhty of error <4, that is, a code
(n, N) satisfying

(1.4) P(A;|u)z1—1 for i=1,..,N.

N is called the length of the code. It is easy to see that if no restrictions are placed
on the choice of code words arbitrarily large N can be obtained for every n and A.
However, the inputs to a channel are usually required to satisfy certain constraints,
depending on the circumstances which lead to the channel model. Two constraints
which are useful are an amplitude constraint, that is, for every u; = (u}, oo U),
i=1,...,N, we have

(1.5) _ luzlgA, t=1,..,n,

and an average power constraint E, that is,

(1.6) SWw)?<n.E for i=1,...,N.
: =1
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3

We denote the Gaussian channel G, with an amplitude constraint by AG, and the
Gaussian channel G, with an average power constraint by EG,. The capacity for the
channel EG,, first deduced by Shannon [8], is

~ 1 E
(17) Co = ilog (1 -+ —2> .

g

A coding theorem and its strong converse for channel AG, have been proved by
Kemperman ([4], [11] ch. 9).

‘We introduce now a channel with arbitrarily varying additive Gaussian channel
probability functions, which we abbreviate thus: a.v.G. The channel a.v.G. with
an amplitude constraint shall be denoted by a.v.AG and the channel a.v.G with
an average power constraint shall be denoted by a.v.EG. Let S be a closed interval

[04, 6*] of non-negative real numbers, and let S, =]]S for n=1,2,... For
, _ 1
every n-sequence s, = (s', ..., s") € S, we define S]] sn) by

(1.8) 10l 50 = I 5 [— . X’)z]

- ex ——
sistem) LT 2y

forallx, = (x', .., x") e X, and all y, = (y', ..., y")€Y,, and P(-|-] 5,) by

(1.9) | P(A l‘x,, | s,) = -Lf(yn | x, [s,)dy' ... dy"

for every x, € X, and every Borel set 4 — Y:é n=12...
The channel a.v.G is defined by the sequence (%,,),,zlyz_.__ where

(1.10) o ={P(:]"| 5,) | sn€S,} .

Suppose that sender and receiver want to communicate over the channel a.v.G
without knowing which n-sequences s, will govern the transmission of any word
(input n-sequence). An (n, N) code is an (n, N, 2) code in this case, if
(L.11)  P(4, |ui|s,)=21—24, for i=1,..,N, and for all S, €S, .
A number C is called the capacity of the channel a.v.AG if, for any ¢ > 0 and any 4,
- 0< 1<, the following is true for all n sufficiently large: :

There exists a code (n, exp {n(C —¢)}, 1) and there does not exist a code
(n, exp {n(C + ¢)}, 2). Analogously we define the capacity C of the channel a.v.EG.
We prove in Section 3 that C and C exist and we give explicit formulas for them.

The present channel model seems to be very realistic from a practical point of view.
In practice the variance of a Gaussian channel is never precisely known, may be
different for different input letters and may also vary in time,
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In case of finite alphabets, channels with arbitrarily varying channel probability -

functions were studied in [5], [2], [1]. In case of an output alphabet of size greater
than 2, no formula for the capacity is known (see [1], [2]). The channel a.v.G has
certain symmetry properties which make it possible to obtain formulas for C and C
by a rather simple derivation. Our results can easily be extended to the time-continuous
case. For the definition of a time-continuous Gaussian channel and for its coding
theorem see [3]. '

II. AUXILIARY RESULTS

We formulate first a result by Kemperman ([4], [11] ch. 9) for the channel AG,,.
In the sequel we will choose the input alphabet X of the channel AG, to be the
interval [0, 1]. It is easy to see that this assumption can be made without loss of
generality.

Let a be a positive integer and let

(2.1) X(@) ={(i-Yat]|i=1,..a.
Define C;,(a) as
a) = max WX X|0)10 f(y,xlo) .
@l =max 3 w0 S01x] g 3 LU s a

(The maximum is taken over all probability distributions on X(a).) C,(a) is the
capacity of the semicontinuous channel (see [11], ch. 8), which we obtain, if we
restrict the input alphabet of AG, to the set X (a).

Define C, by
(2.3) C, = sup C,(a).

We can now formulate

TrEOREM K (Kemperman, [4], [11] ch. 9).Let0 <1< 1lande> 0 be arbitrary.
For all n sufficiently large there exists a code (n, exp {n(C, — ¢)}, 1), and there
does not exist a code (n, exp (C, + ¢)}, A), for the channel AG,.

We give now further definitions and state and prove two Lemmas which we shall
need in section 3.

The (n,N) code {(u;, 4,)|i=1,...,N} is a strict maximum likelihood code
(s.m.Lc.) with respect to P,(+]*) if

(2.4) A= folvalu) > foya|uy) for j+ i}, i=1,..,N.

d(,*) shall denote the distance in an n-dimensional Euclidean space E".
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Lemma 1 (Shannon [8]). {(u; 4))[i =1,...,N} is a s.m.lc. with respect to
P(l)tfandonlyzf ‘ ’

A; = {y,|d(u, yn) < d(u;, y,) for j+i}, i=1..,N.

The u;’s and the y,’s are viewed as elements of the same n-dimensional Euclidean

space.
Lemma 1 says that for the channel G, maximum likelihood decoding is equivalent
to minimal distance decoding.

Proof of Lemma 1. Write u; = (u;, ..., u}) for i = 1, ..., N. The inequality

holds if and only if the inequality d(u;, y,) <>d(uj, ¥,) holds.

Lemma 2. If {(u, A;) | i = 1,..., N} is a s.m.lc. for P,.(+|*), then
(2.5) P(A; | u;]s,) 2 Pou(A; | u)
foralli =1,...,Nandalls,eS,. '

Proof. Minimal distance decoding results in a partitioning of E” into n-dimensional
polyhedra, or polytopes, around the different signal points, each polyhedron bounded
by a finite number (not more than N — 1) of (n — 1)-dimensional hyperplanes.
Denote the polyhedra by H, ..., Hy. A; equals the interior of H, i=1..,N.
From (1.2), (1.3), (1.8) and (1.9) we have that for any i

(2.6) P, {4, | ;) = JAi W tli[l exp[ (VQ(_ ;12) ] yloody”

and

.(2.7) ~ P(A; | u,

Applying the affine transformation T; given by

(2.8) Vi—ui=w, t=1,..,n,

to (2.6) and (2.7) yields

(29)  Po(4;]u) = J (——Wg [ O?i] dw' ...dw"‘
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and

(2.10)  P(4;|u;]s,) = 1 Ij itexp [— (WI)Z:I dw' ... dw".

roa; (20)"72 i=1 s 2(s")?

T;A; 1s the interior of a polyhedron containing the origin. Now we apply the
transformation S;, given by

(2.11) — =" t=1,..n,

to (2.10) and obtain
1 t

(2.12) P(4;]u;|s,) =J P — ljexp [— —Z—]dzl .dz

SiT:d; (0*)n (211:)"/2 =1 (G*)Z
Since o*/s" 2 1, for t = 1,..., n, $;TiA; > TiA,. This, (2.9) and (2.12) imply '

P(A;|u;]s,) = Pa(A;|u) for i=1,..,N.

III. THE MAIN RESULTS

This paper started with the observation that the Schalkwijk coding scheme for the
channel EG, with feedback (see [6], [7], [10]) can be used for the channel a.v.EG
with feedback and yields a coding theorem with capacity Ce = +log (1 + Ef(c*)?)
that is the capacity of the channel EG,.. Only the largest occuring variance (o*)?
matters. - '

Theorem 1 below says that this is also true for the channel a.v.EG (without
feedback). For the channel AG, with feedback there seems to exist until now no
optimal coding scheme “similar” to the Schalkwijk scheme for the channel EG,
with feedback, but still we can determine the capacity for the channel a.v.AG with
and without feedback (Corollary and Theorem 2 below).

THEOREM 1 (Coding theorem and strong converse for the channel a.V.EG). Let C =

= 3log(1 + E/(c*)?), 0 <A< 1 and ¢ > 0, arbitrary otherwise. For all n suf-
ficiently large :

~a) there exists a code

(n, exp {[C — ¢] n}, 1),
and

b) there does not exist a code

(n, exp {(C + &] n}, 4)
for channel a.v.EG.
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Proof. b) is obvious from the definition of the channel a.v.EG and the strong
converse for the channel EG,. ([11], ch. 9).

We prove now a). The coding theorem for the channel EG,. ([8], [11] ch. 9)
yields that for all n large enough there exists a s.m.l.c. {(u; A)] i=1,..,K},

. where u;eX,, A, c Y, fori = ., K, such that

(3.1) YWY <E.n for i=1,....n,

t=1
1 X A

3.2 — (A |u)z1 - =
() o LR u)z 1~
and

(3.3) K 2 2exp {[C — ¢] n}.

(3.2) and (3.3) imply the existence of a subcode {(u;, 4;), ..., (u;,, 4;,)} satisfying

(3.4) P, |u) =1~ 2
forv =1,..., N and '
(3.5) N z exp {[C — ¢] n}.

(3.4) and Lemma 2 implies that
(3.6) P(A, |u;, |s) 21— 2
forv=1,..,N and all 5,€ 8S,.

THEOREM 2 (Coding theorem and strong converse for the channel a.v. AG) Let
C = C,. (defined in (2.3)), 0 < A < 1 and ¢ > 0. For all n sufficiently large

a) there exists a code
(n, exp {{[C — €] n}, A}
and ‘
b) there does not exist a code
~(n,exp {[C + €] n} 2)
for the channel a.v.AG.
Proof. b) is obvious from the definition of the channel a.v.AG and Theorem K.
For all n large enough Theorem K yields that there exists a s.m.l.c. {(u;, 4 )|i=
=1, ..., K} for the channel AG,. such that
(3.7) 0<sui<t for t=1,...,ﬁ;i=1,...,K;

19




1 X A
3.8 ~ Y P4 ju)y=1-17
(3-8) o 2 PolAi]u) )
and
(39) K z2exp{[C—¢]n}.

(3.8) and (3.9) imply the existence of a subcode {(wi, A5, o (g, A ) satisfy'ing‘

(3.10) P4, |u )21 —4 for p=1,. N
and
(3.11) N = exp {[C — ¢] n}.

a) follows now from (3.10), Lemma 2 and (3.11).

COROLLARY. The capacity of the channel a.v.AG with Jeedback equals C.

Proof. The coding theorem is a consequence of Theorem 2, because feedback
could only increase the capacity. The strong converse of the coding theorem follows
from the strong converse for channel AG,. with feedback ([107).

ReMARK. The main tool for proving Theorems 1, 2 is Lemma 2. This Lemma can
also be used to extend the error bounds for G, obtained in [8], and the results
of [9] to a.v.G.
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