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I. Abstract

In [1] we claimed that the transmission rate of a nonbinary (q-ary) code of length n which
corrects τn localized errors asymptotically equals the Hamming bound on an interval
τ ∈ [0, τ0], τ0 ≤ 1/2, and conjectured that τ0 = 1/2 (transmission rate is zero if the
number of errors is greater than or equal to n/2). Though we have not succeeded in
proving our conjecture we decided to promulgate the derivation of the incomplete result
on the Hamming bound, the more so, as the method of the proof itself is of independent
interest.

The situation with localized errors (when the encoder knows the positions where errors can
occur) is characterized by the following fact: to attain the Hamming bound asymptotically,
it suffices to provide the decoder with “small” information. Indeed, let us divide the
transmitted segment into a growing number of segments of equal length (the length is
also growing) and arrange the segments in an ascending order with respect to the number
of possible errors on them. The number of the first segment and the number of a set that
covers the positions of possible errors on this segment are precisely the “small” information
that should be known to the decoder. Now, let us explain why this information is sufficient
to attain the Hamming bound. On the first segment, outside the positions of the covering
set, we transmit to the decoder the number of the second segment and the number of
a set that covers the error positions on this segment. The remaining positions of the
first segment are used for message transmission. On the second segment we do the same
procedure, and so on. Surely one can ask why we transmit covering sets but not the
actual positions of possible errors, which, in fact, would leave more positions for message
transmission. The answer is simple: with the optimal choice of covering sets, the gain due
to their rather small number compensates the loss of positions for message transmission.
Simple computations show that thus we attain the Hamming bound.

Thus, the main problem is to transmit the mentioned “small” information to the decoder.
We overcome this problem with the help of special nonstandard encoding and decoding
procedures. In encoding, we first construct three auxiliary code words from which the
transmitted word is constructed. In decoding, we construct three auxiliary “de-code”
words from the word received and then reconstruct the transmitted message using them.

Transmission of “small” information is performed with the help of binary constant-weight
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codes that correct localized errors and defects (see [2]). To employ these codes, we proceed
as follows: start the above-mentioned encoding procedure not from the first segment but
from the (k+1)st, leaving the first k segments free (the local length of the first k segments
is small). Then this encoding procedure generates the first q-ary codeword outside the
first k segments and in positions outside the covering sets on the other segments. The
unity positions of this q-ary codeword (i.e. the positions with the symbol 1 in them) are
considered as the defect positions for the second binary codeword that we are going to
construct (we can fix the number of unity positions of the first codeword beforehand).
As the set of positions of localized errors for the second word we consider, together with
actual such positions, all positions of the first k segments. According to [2], in this case
we can choose the second binary word to be of small weight w (since, in fact, we have to
transmit “small” information, namely, information on the (k +1)st segments and also the
numbers of the first k segments), where these w unity symbols lie outside the positions of
defects and localized errors. On the first k segments, we construct the third codeword of
the binary localized-error-correcting code in order to transmit information on the location
of w unity symbol of the second codeword and which q-ary symbols of the first codeword
are in these positions. Now, from three codewords constructed, we can construct a q-ary
codeword to be transmitted:

(a) on the first k segments, we transmit the third codeword;

(b) from the second codeword, we transmit only w unity symbols;

(c) in the remaining positions, we transmit symbols of the first codeword.

In decoding, from the received word we first construct the second de-code binary word
which corresponds to the second codeword transmitted over the above-described channel
with defects and localized errors. To do this, we replace all symbols from 2 to q−1 of the
received word by 0. From this word, the decoder reconstructs the “small” information to
transmit which was the main difficulty. In particular, this “small” information includes
the nubmers of the first k segments which become known to the decoder, and thus he can
construct the third de-code word which coincides on the first k segments with the received
word. From this word, the decoder reconstructs the symbols of the first codeword in those
w positions where the unity symbols of the second codeword were transmitted. It is clear
now how to construct the first de-code word: in these w positions it coincides with the first
codeword and in the remaining positions outside the first k segments it coincides with the
received word. Now, from this first de-code word, the decoder successively reconstructs
the message starting from the (k + 1)st segment since the “small” information previously
reconstructed includes both the number of the (k + 1)st segment and the number of the
set that covers the possible error positions on this segment.

Now we proceed to the strict statement. Let Q = {0, 1, . . . , q − 1} be the alphabet, B
be the set of q-ary sequences of length n, M = {m} be the set of messages, Et{E | E ⊆
[1, 2, . . . , n], |E| = t} be the set of all possible collections of error positions of multiplicity
t(|Et| =

(

n

t

)

), and let V (E) be the set of q-ary words of length n that are equal to zero
in positions outside W (|V (E)| = qt). Since, while encoding, we know those t positions
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where errors can occur, a codeword x(m,E) depends on m ∈ M and E ∈ Et. A code
X = {x(m,E),m ∈ M,E ∈ Et} corrects t localized errors is the condition

x(m,E) + e 6= x(m′, E ′) + e′

holds for all E,E ′ ∈ Et, e ∈ V (E), e′ ∈ V (E ′), m,m′ ∈ M , m 6= m′ (the addition is made
modulo q). It is known [1] that the maximum transmission rate R of such a code does
not exceed the Hamming bound

R ≤ 1 − hq(τ),

where

hq(τ) = −τ logq τ − (1 − τ) logq(1 − τ+τ logq(q − 1), t = τn(0 ≤ τ ≤ 1/2).

Theorem. Let 0 < τ < 1/2 − q−2
2q(2q−3)

. Then, for any ε > 0, there is a number n(ε) such

that for n > n(ε) a code of length n with transmission rate 1 − hq(τ) − ε exists which

corrects τn localized errors.
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