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Abstract: It was shown in [1] that in any “dense” finite poset P = (P, <)
(e.g. in the Boolean lattice) every maximal antichain S may be partitioned
into disjoint subsets S and S», such that the union of the upset of S; with the
downset of Sy yields the entire poset: U(S1)U D(S2) = P.

Under suitable denseness assumptions we establish splitting properties in great
generality for infinite posets, directed graphs and set systems. We show also
that for countable posets the conjecture (4.4) of [1] is not true. The poset of
squarefree integers serves as an example.

It seems also to be of interest that already for the finite Boolean lattice there are
antichains which splitt cardinalitywise only in an extremely unbalanced way.
Finally we introduce new notions of splitting, called Y —splitting, A—splitting and
X-splitting. For instance in a Y-splitting {S1, S2} in addition to the property
above we have also that U(S1) U D(S1)U Sy = P. We establish first results in
a challenging new area.

BASIC DEFINITIONS FOR POSETS

Downsets, upsets, generators, antichains

Let P = (P, <) be a partially ordered set (poset) and let H be a subset of P.
The downset D(H) of the subset H is

DH)={zeP:3s€ H(xz <s)}. (1.1)

The upset U(H) of H is

UH)={zeP:3sc H(s<ux)}. (1.2)
29
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We introduce also the sets

D*H)y={zeP:3sc Hx<s)} (1.3)

and

U'(H)={zeP:3se€ H(s<ux)}. (1.4)
A subset G C P is called a generator of P, if

U(G)UD(G) = P. (1.5)

A generator G of P is called minimal, if no proper subset of G is a generator
of P.

A subset S C P is called antichain or Sperner system, if no two elements of S
are comparable. An antichain S is maximal (or saturated) if for every antichain
S'"c P, S c S implies S = S'. It is easy to see that an antichain S is maximal
iff it is a generator of P. We also remark that a minimal generator of P is not
necessary an antichain.

A splitting property and notions of denseness

We say that H C P has the splitting property, if there exists an H; C H with

U(H,)UD(H ~ Hy) = P. (1.6)

Of course, for H to have the splitting property it is necessary that H is a
generator of P. We say that P has the splitting property, if every maximal
antichain has the splitting property.

Now we introduce notions of denseness in P for H C P.

If for every open interval < x,y >= {z € P : ¢ < z < y} with endpoints
z,y € P\ H:

(d) (zy)NH#6= (@) NP >2,

then we call H di-dense in P,

(d2) (m,y) N H # 6= |(w.y) N H| > 2,

then we call H dy—dense in P.

Furthermore, if for every open interval (z,y) with endpoints z,y € P:

(d5) (wy) VH # 6= |(z,y) N H| > 2,

then we call H dj—dense in P.

Clearly, a d3—dense set is also da—dense and a ds—dense set is also d;—dense.
Remarks:

m  In the special case H = P in [1] for dj—denseness the term “P is weakly
dense” is used. Also, P is strongly dense, if for any non—empty interval
(z,y) and any z € (z,y) there is a 2’ € (z,y) incomparable with z. For
finite P the notions coincide. Then P is said to be dense.

m  If H is an antichain, then dy—dense coinsides with d5—dee and they are
the same as “the antichain H is dense in P”.
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Finally it is convenient to have the following notation:

For H,G C P we write H >|< G iff for all h € H and all g € G elements h and
g are incomparable. For s, s" € P and G C P we also write s >|< s instead of
{s} >|< {s'} and s >|< G instead of {s} >|< G.

Similarly, we write

U(s) = U({s}),U"(s) = U"({s}), D(s) = D({s}), D*(s) = D*({s}).  (L.7)

REDUCTION OF GENERATORS TO ANTICHAINS

We begin with an auxiliary result.
Lemma 1 For any poset P let C' C P be a set such that every element ¢ € C
is comparable with at least one other element ¢’ of C'. Then

(i) there exists a C; C C such that for Cy = C' \ C, we have the properties:
Va € Cy db € Cy such that a > b, Vb € Cy Ja € C such that b < a.

(ii) there exists a C; C C with D(C)UU(C) = D(Cy) UU(Cs).

Proof: (i) Let A C C be a maximal antichain in C. Its existence is guaranteed
by Zorn’s Lemma. By the maximality of the antichain A

CCD*"(AUU*(A)UA.
We write A in the form

A= Amax U Amin U AOa

where

Anax ={a€ A:Ace C with ¢ > a}, Apin ={a € A:Ac € C with ¢ < a},
Ag = AN (Amax U Amin)-

By our assumption on C' Apax N Amin = ¢ and also one of the sets D*(A) and
U*(A) is not empty. W.l.o.g. we can assume that D*(A) # ¢ and consider the
sets

C1 = (Amax UU*(A) U 4p) N C, (2.1)
Cy = (Amin UD*(A)) N C, (2.2)

which clearly satisfy Cy = C' \ C}.

One also readily verifies that they can serve as sets whose existence is claimed
in (i) and (ii).

Let now G C P be a generator of P. Partition it into G = G1UG2, where

Gi={9eG:3¢' €G, g #gand g>|<g'l}, (2.3)
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and G = G \ GG1. Obviously (G5 is an antichain in P.
We consider the poset P’ = (P', <), where

P'= P~ (D(G)UU(GY)). (2.4)

Since G is a generator of P, G5 is a generator and hence maximal antichain in
P'. This and Lemma 1 yield the following result on reduction.

Proposition 1. Let G C P be a generator of P and let GG, G5 be defined as
above, G1UG> = G. Now G has the splitting property in P iff the maximal
antichain G5 in P’ has the splitting property in P’.

The next and last result on reduction is readily verified.

Proposition 2. Let G be any d;—dense (resp. dy-dense) subset of P (not
necessarily a generator) and define Gy, G2 and P’ as in (2.3) and (2.4). Then
G+ is di—dense (resp. ds—dense) in the poset P'.

SPLITTING OF D;—-DENSE ANTICHAINS

Under the weakest of our density assumptions and further regularity conditions
we present next a splitting result for not necessarily finite posets.

Theorem 1 Let P be a poset and let S C P be a maximal antichain, which is
d—dense.
Additionally, we assume that

(i) in D*(S) exists an antichain S with D(S) = D*(S)
(ii) in U*(S) exists an antichain S with U(S) = U*(S)

(iii) S carries a well-ordering u with the property: for all u € S the set
A(u) = {s € S : s < u} has a maximal element according to p.

Then S has the splitting property.

Proof: For every d € S we consider the set

B(d)={s€S:d< s} (3.1)

Let f(d) be its minimal element according to y. We consider Sy = [Jyeo{f(d)}
and prove that it gives the desired splitting. Since S is a maximal antichain,
of course

D(S)UU(S) = P.

From condition (i) and the construction of S; we get

D(S1) = D(S) ~ (S~ S1).

It remains to prove that

U(S\Sl):U(S)\Sl.
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By condition (ii) for this it suffices to show that

SCUS~S).

Suppose then, to the opposite, that for some u € S we have u ¢ U(S \ Si).
We consider the set

A(u) ={s € S:s<u}. (3.2)

Since u ¢ U(S \ S1), necessarily A(u) C Si. Let so € A(u) be according to u
the maximal element of A(u), which exists by (iii). From the construction of
Sy it follows that so = f(dg) for some dg € S.

We consider now the open interval (dg,u), which contains so € S. Since S is
dy—dense there is a t € P with ¢t # sg and dg < t < u.

Furthermore, since dy € S and by (i) S is antichain with D(S) = D*(S), we
know that ¢t ¢ D*(S). Symmetrically, by (ii), ¢ ¢ U*(S), and hence t € S.
Now we have t € A(u), since t < u, and t € B(dy), since dy < t. However, sqg
is the maximal element of A(u) in the well-ordering . Hence, sq is not the
minimal element in B(dy) according to u. Therefore, sg # f(dp), which is a
contradiction.

Corollary 1 Let S be a maximal antichain in a finite poset P. If S is d;—dense
in P, then S has the splitting property.

Remark 3: Theorem 2.1 of [1] is a special case of this Corollary and also
Theorem 3.1 of [1] easily follows. Actually in case of finite posets the proof
above closely resembles the second proof of [1].

An instructive infinite poset is Z = (Z, <), where Z is the set of 0—1-sequences
and for two sequences a = (a1,as2,...),b = (b1,bs,...) € Z a < b exactly if
a; < b; for all i =1,2,.... Clearly, any subset H C Z is dy—dense.

Corollary 2 Let S C Z be a maximal antichain, whose members have at most
k ones. Then S has the splitting property.

Proof: The maximal elements in D*(S) form an antichain S and the minimal
elements in U*(S) form an antichain S. They guarantee (i) and (ii). Since for
u € S A(u) is finite, also (iii) holds.

THE LATTICE OF SQUARE-FREE NUMBERS DOES NOT HAVE THE
SPLITTING PROPERTY

Let Z* C Z = {0,1}* be the set of all 0—1-sequences with finitely many ones.
Those sequences can be identified with the sequences of exponents in the prime
number representation of square—free numbers IN*. The order relation in Z,
and thus in Z* says in terms of N*: for a,b € IN* a < biff a | b (a divides b).
According to this relation the upset of H C IN* is the set of multiples of H

M(H)={n € IN" : {|n for some (€ H} (4.1)

and the downset is the set of divisors of H
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D(H) ={n € IN* : n|{ for some (€ H}. (4.2)

Theorem 2 The poset of square—free numbers does not have the splitting
property.

Remark 4: IN* is a countable and strongly dense poset. Therefore Theorem
2 refutes Conjecture 4.4 of [1].

Proof of Theorem 2: We construct a maximal antichain S without the
splitting property as follows:
We choose an arbitrary 77 € IN and consider the set

Alz{nEﬂV*:T1<n§2T1}.

Next we choosse any T, 7> > 8 Tf, and define the set

A2:{n€ﬂ\/* :TLE(TQ,QTQ]\M(Al)}.

Inductively, for every k > 1 we choose Ty, T, > 8 T?_,, and define the set

k-1
A = {neﬂ\/* :nE(Tk,ZTk]\M(U Az)}

i=1

Finally we define
S=[J4 (4.3)

m  Clearly, numbers in A; are incomparable and a € A;, b € A; (i < j)
are incomparable, because we have excluded the multiples of A; in the
definition of A; and b > a. Thus S is an antichain (also called primitive
sequence in Number Theory).

m  We show next that S is maximal, that is, IN* = M (S) U D(S). If this is
not the case, then an o« € IN* with a ¢ M(S) U D(S) and, particularly,
a ¢ (T;,2 T;] for i = 1,2,... exists. Hence 2 T}, < a < Tg4q for some
k€ IN or2<qa<T;. It follows from Bertrand’s postulate that there
exists a prime p € P (the set of all primes) such that

T
k42

T
p<2 ht2 or, equivalently, Tgio < a-p <2-Tkys.
@
Since Tgyo > 8 T,?H and 2 Ty < a < Tg41, we conclude that

2 Thy1 <p < Tpqo.

Hence p >« and a-pe IN*.
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Now, if a-p € M(S) or (equivalently) a'|a - p for some o' € S (' <
2 Tyy1), then, since p € P and p > 2 Tpy1 we have o'|a and hence
a € M(S), a contradiction.

On the other hand, if « p ¢ M(S) S then the conditions Tji> <
ap<2This, ap€ IN" yield a p € S. But then a € D(S), again a
contradiction.

Finally we show that the maximal antichain S does not have the splitting
property.

Let us assume to the opposite that for some S; C S

D(S1)UM(S~ S;) = IN*.

Necessarily S; # ¢, because for example all squarefree integers from
[1,71) and all primes from (2 Ty, Ti+1], k € IN, are not in M (S).

3

Let then 8 € S; and T}, < 8 < 2 T} for some k € N. From Bertrand’s
postulate we know that there is a prime ¢ with 2 T}, < ¢ < 4 T},. Consider
the integer 3 - q. Obviously 8 -¢ € IN* and since Ty11 > 8 T we have

2Ty <Bq<Tggr.

Clearly, 8 -q ¢ D(S), because S is an antichain and € S.

On the other hand -¢ € M (S\.S1) would imply 5’| 8¢ for some ' € S\.S;
and then ' < 2 Ty, because - q < Tjy1, and hence 3’|, because
2 T) < q. But then 8,3 are in the antichain S and at the same time
comparable. This contradiction implies that for the integer - ¢ € N*

Bq ¢ D(S;)UM(S~S).

ON THE SPLITTING RATIO OF MAXIMAL ANTICHAINS
IN THE BOOLEAN POSET LY = {0,1}V

To fix ideas, let us consider the maximal antichain S = ([’l}]) in £". For a
splitting S = S1USs necessarily D(S;) D (l[f]l) and U(Ss) D (é[:f]l), 1<¢<
n — 1, and therefore

Thus

/ n . .
() 210z ) = e )

n—{¢ (n n "
n—£+1<£> 218 2 575 (4) = 72 (0):
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51| 1
(> — >
_|SQ‘_’I7,—€

(5.1)

e
or max (ﬁ %) < max({,n —{) < n.

So the ratio of the cardinalities is at most linear in n. However, we construct an-
|Sa|

tichains whose splitting ratios p(n) = min {W : {51, S2} is a splitting of E”}

satisfy for large n

p(n) > 2°" for some constant &. (5.2)

Construction: For a k € IN, 2|k, let L = L;, C ([ﬁ]) be a code with minimal

Hamming distance > 4 and with a maximal number of codewords. We consider
the poset Px = {0,1}¥ N U(L) and define E = Ej as the set of all maximal
elements in Pj. Every element of E has at least % ones.
For n = k-r € IN partition [n] into r blocks Ry, R, ..., R, each of cardinality
k.
We denote by I;, 1 < ¢t < r, the 0-1-sequence of length n, which has ones
exactly in the positions from block R;. For any £ € L, e € E and t,1 <t <,
we denote by ¢; and ¢; the 0—1-sequences of length n, which have zeros in the
blocks R;, i # t, and £ resp. e in the block R;.
Define Ly = {{; : £ € L} and Ef = {e; : e € E}. We consider now S = AUB C
{0,1}", where

A={ae{0,1}":anly € L} forall 1 <t <r}
and

B = {b € {0,1}" : 3t e {1,...,r} with bAT; € Ef and bATy = I for
t' £t}
One can verify that S is a maximal antichain and by Corollary 2 possesses the
splitting property.
We observe that A C ([?) and consider the set

X:U(A)n( ] )

24

It satisfies X N D(B) = ¢, because S is antichain and for any 2 € X there
exists exactly one a € A with a < z, since a1,a2 € A implies dy (a1, as) > 4.
Hence, for every splitting S = S1USy, D(S1) UU(S2) = {0,1}" we always have
ACSs.

Therefore, using a familiar lower bound on |L|,

(e
|Sa| > 4] = |L|F > | =5

n n
Si|<|Bl=="|E| < — -2k,
S| < Bl =7 - B] < 7

and

g
E
|

v

2:()" for large n, if we choose k ~ /.
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THE SET-THEORETICAL FORMULATION OF THE
SPLITTING PROPERTY, D;—-DENSENESS

Let P be a poset and let S C P be a maximal antichain in P. Consider the
families of sets A, B C 2° defined by

A= {A():ueu(S)}, B={B(d):de D*(S))}. (6.1)

Here we use again the definitions (3.1) and (3.2) for A(u) and B(d).
The splitting property of S can equivalently be written in the set—theoretic
formulation: There exists a partition of S; S = S;US»; such that

SiNA#¢forall Ae A and SoNB # ¢ forall B € B. (6.2)

We can forget now how A, B originated in (6.1) from (P, S) and can consider
abstractly any set S and two families A, B of subsets of S and ask whether they
have the splitting property (6.2).

Of course any abstract system (S, A, B) can be viewed as coming via (6.1) from
a suitable poset. The new language creates new associations. For instance in
[2] for any set system M C 2° a so called B-property was introduced, which
means that S has a partition S = S;US, with

HNS; #¢and HNSy # ¢ forall H e M. (6.3)

Obviously, if M = AU B has the B—property, then S possesses the splitting
property with respect to A, B, but the converse is not always true.
In the following special situation it is easy to establish the B—property.

Proposition 3. Let S be an infinite set and let M C 25 be countable, M =
{H,H,,...,}; and let every H; € M be infinite. Then M has the B-property.

Proof: Since |H;| = oo fori = 1,2,..., we can sequentially choose two different
elements h;,g; € H; for i = 1,2,... such that h; # hj, h; # g5, 9: # g5 (0 # J).
Now we define

Sl = {hl,hg,...} and 52 :S\Sl.

Here we consider for the first time the property do—dense for a maximal an-
tichain S C P. We study it right away in the new setting. The set S is dy—dense
for the set systems A, B C 2°, if for all A € A and all B € B necessarily

AN B| #1. (6.4)

We also say that A, B have property ds.

Theorem 3 Let A, B C 2° have property do, let ¢ ¢ AU B and let both, A
and B, be countable. Then S has the splitting property for (A, B).

Proof: First note that this theorem is not a consequence of Proposition 3,
where we require all members of A and B to be infinite.
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Let now A = {41, A4s,...}, B={B1,B>,...} and by property d» |4; N B;| # 1
for all A; € A, B; € B. Then we can choose ai € Ay and by € By; a1 # b1. We
remove all sets from A which contain a; and all sets from B, which contain b;.
We remove also the element a; from every set in B and the element by from
every set in A. We denote the remaining sets by A! and B!. Now verify that
¢ ¢ A UB! and A!, B! have again property ds!

We note also that the set system A' (as well as B!) is ordered according to
the ordering of A, ie. A' = {A],A},...} A, = A, ~ {a1} is followed by
Al = A~ H{ar} for k < tiff m < L.

Now we choose as € A}, by € B}, as # by and construct set systems A2, B2,
etc. Continuation of this procedure leads to the subsets of S : S; = {ay,a9,...}
and Sy = {by, b, ..., }. They splitt A, B.

Next we show how important it is that in Theorem 3 both, A and B, are
countable.

Example 2: (S countable, A,B C 2%, ¢ ¢ AUB, A, B have property dy (and
even a stronger property), A is countable, B is non—countable, but S does not
have the splitting property.)

S=N,A={AC N : |A° < oo}, where A° is the complement of A,
B={B C I :|B| =o0}. Clearly for every A € A and B € B

|AN B| = oo (stronger than ds).
Suppose that S = S;US, and that

SiNA#¢ YAcAand S$snB#£¢ VY BeB. (6.5)

In case |S1| < oo we have S{ € A and hence S; N Sf = ¢ violates the first
relation in (6.5). In case |S;| = oo we have S; € B and hence Sa NSy = ¢
violates the second relation.

SPLITTING OF SETS WITH PROPERTY Dy, MINIMAL
REPRESENTATIVE SETS AND MINIMAL COVERINGS

The results of the last Section gave the motivation for introducing a further
concept.
Let S be a set and M C 2°. The set R C S is a representative set for M, if

RNH#¢forall He M. (7.1)

A representative set for M R C S is minimal, if no proper subset R’ C R is
representative set for M.

Theorem 4 For a set S and A, B C 2° with property dy and ¢ ¢ AU B let
also A (or B) have a minimal representative set.

Then S has the splitting property.

Proof: We show that we can choose as Sy in the partition of S the minimal
representative set R C S of A.
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Since by definition RN A # ¢ for all A € A and it remains to be seen that
there does not exist a By € B with (S~ R) N By = ¢, or equivalently By C R.
Assume the opposite.

We choose an arbitrary b € By and consider the set R’ = R~ {b}. Since R' is
not representative for A there is an A € A with ANR # ¢ and ANR' = ¢.
Therefore AN R = {b} and since b € By, By C R we have |A N By| = 1. This
contradicts d».

Remark 5: The existence of minimal representatives is not necessary for the
splitting property.

Example 3: Let S = {s;,52,53,...} be any infinite countable set and A4 =
B=1{55\{s1},5~ {s1,82},...}.

Since |[AN B| = oo for A € A and B € B, we have property ds. Neither A (nor
B) has a minimal representative. However, for every infinite S; C S, for which
S\ S; is also infinite, we have a splitting of A and B. Moreover, in this case
the existence of a splitting follows from Proposition 3.

Minimal representative sets are related to minimal coverings:

The set M C 2% is a covering of the set X, if Umerm = X, and it is a minimal
covering if no proper subset is a covering of X.

Now, let S C P be a maximal antichain in the poset P. Recall the definitions
of U*(s) and D*(s) for s € S in Section 1 and consider the systems of sets

U={U*(s):s€S},D={D*(s):s€ S}
Since J,cg U*(s) = U*(S) and U, g D*(s) = D*(S), the systems & and D are
coverings of U*(S) and D*(S) resp.
The following statement is immediately proved by inspection.
Proposition 4. Let S C P be a maximal antichain in the poset P and let A,
B, U, and D be the associated set systems. Thus A (resp. B) has a minimal
representative set iff ¢/ (resp. D) contains a minimal covering of U*(S) (resp.
D*(S5)).
From here we get an equivalent formulation of Theorem 4.
Theorem 4’ Let S C P be a maximal antichain in the poset P with property
dy and let the associated set system U (resp. D) have a minimal covering of
U*(S) (resp. D*(S)). Then S possesses the splitting property.
Klimo [2] has studied minimal coverings and proved the following result.
Theorem [2] Let M C 2% be a covering of X.

(i) Suppose that there is a well-ordering u of M with the property: for all
z € X the sets {H € M : x € H} have a maximal element according to
. Then M contains a minimal covering of X.

(ii) Suppose that for all H € M |H| < k for some k € IN, then M contains
a minimal covering of X.

Remark 6: As explained in [2], this Theorem implies that a point—finite cov-
ering M of X (ie. Vo € X [{H € M : 2z € H}| < oo) contains a minimal
covering of X.
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From Theorems 4, 4, [2] and Proposition 4 we obtain
Corollary 3 Let S be a set, A, B C 2%, ¢ ¢ AUB and A, B have property d.

(i) Let u be a well-ordering of S such that every A € A has a maximal
element according to pu. Then S has the splitting property.

(ii) Suppose that for some k € IN every element of S is contained in at most
k sets from A, then S has the splitting property.

Remark 7: An immediate consequence of this Corollary is, that for A, B with
property dy and all A € A finite S has the splitting property.

NEW AND STRONGER SPLITTING PROPERTIES

We say that S, a maximal antichain in the poset P, has a Y —splitting, if for
some partition S = S;US5
U*(S1)UD*(S;) =U*(S)u D*(S) (8.1)

and
U*(Se) = U*(S). (8.2)

Symmetrically, we say that S has a A—splitting, if for some partition S = S;US,

D*(S2) = D*(S) (8.3)

and (8.1) holds.
Finally, S has an X —splitting, if for some partition S = S1US

U*(S1) UD*(S)) = U*(S2) U D*(S2) = U*(S) U D*(S). (8.4)

Clearly, all these properties imply the familiar splitting property.

We begin their exploration with one of the basic posets, namely Z = {0,1}*.
At first we analyse ds—dense antichains S for this poset. For this we look for
b € S at intervalls {(c,a) with b € SN (e,a) and

a :blbg...bi,1lblurl...bj,llijrl...

b =biby...biy Tbitq...bj 1 0bjq...
c Zblbg...bi_l Obi+1...bj_1 Obj_H... .

Clearly ¢ € D*(S), a € U*(S) and ¢ < b < a. Since S is by—dense, we must
have

blzblbg...bi_l ObH_l...b]'_l 1bj+1...€5.

Thus property dy implies the

Exchange property: S is closed under exchanging any two positions in its
elements.
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So, if S contains an element s = (s, S2,...) with finitely many, say k, ones,

then necessarily
N
s= (M) -

We know from Remark 7 that this S has the splitting property. Actually we
can choose S; = {s =(81,82,...) €S58 = 1} and Sy = S~ 5.

Next we consider Z2* C Z, the poset of all 0-1-sequences with finitely many
ones, O* C Z, the poset of all 0—1-sequences with finitely many zeros, and

Poo =Z N (Z2"U0Y) (8.6)
the poset of all 0—1-sequences with infinitely many ones and infinitely many
7€T08S.

Proposition 5. Every maximal antichain in Py is uncountable.
Proof: Cantor’s diagonal argument shows that countability is contradictory.

Theorem 5

(i) In the poset Z* every maximal dy—dense and non—trivial (S’ # (2’)) an-
tichain S has a A-splitting.

(ii) In the poset Ps every maximal do—dense antichain S has an X—splitting.

Proof:

(i) We have already demonstrated that for some k S = (7).
Case k even:

We choose S; = {az (a1,as,...) € (1,:]) P> a EOmon}. and Sy =
S\ 5. Verification of the A—splitting:

For b = (bi,bs,...) € (,Y,) either 322 i b; = Imod2 and then b € U*(Sy),
because for some odd iq b;, = 1 and its replacement by 0 produces an a € St
or .2, i b; = 0mod2 and then b € U*(S), because k + 1 being odd enforces
bi, = 1 for some even ig and its replacement by 0 produces an a € S;. Similarly
we show that D*(Sy) = D*(S,) = D*(S).

Case k odd:

Define Ny = {n € IN : 2 {n}, T = (¥) and let T = TyUT, be a splitting
(guaranteed by Corollary 2) of Z7, the poset of all 0—1-sequences with finitely
many ones in the positions IN; and zeros in the positions IN \ IN;.

Now we take

N
L1251UT1 and LQZ <k>\L1

and again verify the A—splitting.

(ii) Let S C P be a maximal and dy—dense antichain. We have to show that
there is a partition S = S'US? with

U*(S) UD*(S) = U*(SY) U D*(S%) = U*(S%) U D*(S?). (8.7)
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By the exchange property S is uniquely partitioned into equivalence classes
{S;}icr such that every class S;(i € I) consists of those elements of S which
can be obtained from each other by finitely many exchanges.

Clearly, S;(i € I) is countable and hence by Proposition 5 the set of indices I
must be uncountable.

Now we consider the sets

Si ={az(al,ag,...)epoo:38:(51,52,...)€Siwith se=0,ap=1
for some ¢ € IN and a; =s; for j#(}

and

S, :{a:(al,ag,...)epm:35:(31,32,...)€Siwith sg=1,a,=0
for some (€ IN and a; =s; for j#(}.

Let S and S be the “parallel levels” of S, that is, S = User S;and S = User S
It is clear that a partition S = S'US? satisfies (8.7) exactly if

SuScU(SY)uUD(SY)and SUS c U(S%) uD(S?). (8.8)

We observe that S and S are maximal antichains in P, and their equivalence
classes are {S;}icr and {S,}icr resp.

Moreover, for u € S; and d € S, the sets A(u) = {s € S : s < u} and
B(d) = {s € S : s > d} are contained in S;. For every i € I we consider now
the systems of sets

Ai={A):ue S;},B;={B(d):d€S;}, and M; = A; UB;.

We observe that M; C 2%, M; is countable and every subset of M; is infinite.
By Proposition 3 M; has property B. This is equivalent to the following:
there exists a partition S; = S} U S? such that S; US; C U*(S})uUD*(S}) and
S;US, C U*(S?)U D*(S?). Finally we choose

S'=Js!and S* =57
i€l i€l
In conclusion we return to our best friend, the Boolean poset {0,1}". Under

an exchange property its maximal antichains are of the form S = ([Z]).

Theorem 6 If there exists a partition S = S;US, for S = ([Z]) C {0,1}" such
that
U*(S1) = U*(S2) =U*(95),

then S has a Y-splitting.
Proof: We consider the set of partitions



SPLITTING PROPERTIES IN PARTIALLY ORDERED SETS AND SET SYSTEMS 43

V(S) = {(51,52) : 51052 = S,U(Sf) = U(S;) = U*(S)}

Let (S7,S4) € V(S) be extremal in the sense that S| C Sy, S} # S; implies
(S1,S~\ S1) ¢ V(S). Tt suffices to show that D*(S]) = D*(S).
Suppose, in the opposite, that there exists an a € (k[fl) with a ¢ D*(S]).

Hence, the elements (31, 82, ..., fp—k+1 € ([Z]) with 8; > «a are from the set S}.
But then (S{ U {B:1},S) ~ {81}) € V(S), because v > By implies also v > 5;
for some i > 2.

SPLITTING PROPERTIES FOR DIRECTED GRAPHS

We consider directed graphs G = (V, £) with multiple edges, that is, both edges,
(v1,v2) and (ve,v1) can be in £.

They can be viewed as generalizations of posets, because with every poset
P = (P, <,) we can associate a graph G(P) = (P,£(<,)) as follows:

For vy,v9 € P (v1,v2) € E(<p) & v1 <y V. (9.1)

In such a graph there are no directed cycles, so the class of directed graphs is
wider than the class of posets.
If S is an antichain in P, then for s{,s5 € S

(a) there is no edge in G(P) between s; and so
(b) there is no directed path in G(P) from s; to ss.

For G(P) properties (a) and (b) are the same. However, for general graphs
they are different. If for a set S C V (a) holds, then we call S an antichain,
and if (the stronger) (b) holds, we call S a pathwise or (shortly) p—antichain.
We extend now the notion of a dense poset in the sense of [1], discussed in
Section 1, to graphs. We use abbreviations like @ ~» b (resp. a v b), if there is
(resp. is not) a directed path from a to b.

We say that G = (V,E) is p—dense, if for every directed path [a1,as,..., a4
of length £ — 1 > 2 and every a; (2 < i <t — 1) there exists a directed path
a; ~ a;, a directed path a; ~ a; or there exists a b; on a directed path from
a1 to a; and p—independent of a;.

All notions of splitting in the previous Section 8 can be extended. However, we
consider here only the original concept of [1].

Let S be a maximal p—antichain, then S possesses a p—splitting of G, if there is
a partition S = S;US, with

U(S1)UD(S:) =V,

where
U(S1)={veV:3s~vforsome seS},

D(S;) ={v eV :3 v~ sforsome seS}.

Here is our generalization of the main result in [1].
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Theorem 7 Let G be a finite p—dense, directed graph, then every maximal
p—antichain S in G possesses a splitting of G.

Sketch of proof:

We follow the idea of the first proof of Theorem 3.1 in [1], which is by induction
on |V].

If s € S is needed for “up” to u and for “down” to d, then for the chain
d ~» s ~ u by p-denseness either we find a chain u ~~ d and we have a
contradiction, because d can be attained in U(S) (does not use full strength of
(c)!), or by (d) there is a v with d ~ v ~» u and s % v, v % s.

In this case independence of s from S would contradict maximality of S, so we
have either for some s; € S s1 ~ v or for some sy € S v ~ $s.

Therefore either sy ~» u or d ~ sy and in any case a contradiction to the
definition of s.

It remains to discuss the case where some U(s) (or D(s)) is removed from the
graph. As in [1] we show by inspection that the induced graph on V \ U(s) is
p—dense.

Remark 8: It is interesting to analyse number—theoretic examples such as
G = (V,&), where V. C IN and for m,n € V (m,n) € £ iff g.c.d {m,n} =1 and
m < n.

We thank Peter Erdos for proposing the study of splitting properties in infinite
posets.

References
[1] R. Ahlswede, P.L. Erdés, and N. Graham, “A splitting property of maximal
antichains”, Combinatorica 15 (4), 1995, 475-480.

[2] J. Klim6, “On the minimal covering of infinite sets”, Discrete Applied
Mathematics 45, 1993, 161-168.



