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Abstract

To use common randomness in coding is a key idea from the theory of identi-
fication. Methods and ideas of this theory are shown here to have also an impact
on Shannon’s theory of transmission. As indicated in the title, we determine the
capacity for a classical channel with a novel structure of the capacity formula. This
channel models a robust search problem in the presence of noise (see R. Ahlswede
and I. Wegner, Search Problems, Wiley 1987).

1 Introduction

Let X ,Y be the finite input and output alphabets of an AVC defined by the class of
|X | × |Y|–stochastic matrices W , which we assume to be finite. Eventhough our results
hold for every W , we assume here W to be finite, because already under this restriction
the proofs are highly sophisticated and we don’t want to burden the reader with additional
technical, but known, approximation arguments (like i.e. in [2]).

It was assumed in [1] that W equals its row–convex hull
=

W and it was shown that in the
presence of noiseless feedback under the maximal error probability criterion its capacity

CF (
=

W) has the formula

CF (
=

W) = max
P∈P(X )

min
W∈

=

W

I(P,W ), if the capacity is positive. (1.1)

Here P(X ) is the set of probability distributions (PD) on X and I is the mutual infor-
mation.

Actually, this result was shown with an explicit coding strategy. Clearly, the known (in
[11]) exact condition for positivity in the absence of feedback, namely,

W(x) ∩W(x′) = ∅ for some x, x′ ∈ X , (1.2)
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where W(x) = convex hull (W(x)) and W(x) =
{

W (·|x) : W ∈ W
}

, is also sufficient
for positivity in the presence of feedback.

However, it is not necessary for positivity of CF (
=

W).

On the other hand (see Lemma 3 of [1]) condition (1.2) is necessary and sufficient for

positivity of CF (
=

W) (and also of CF (W)), if W contains only 0–1–matrices.

Furthermore, Example 2 of [1] shows that CF (
=

W) and CF (W) can be different. This
construction shows that in cases where (1.2) does not hold (for letters) its extension for
feedback strategies can still hold.

In this paper we determine CF (W) completely. The formula distinguishes three cases and
therefore we speak of a trichotomy. It is an absolute novelty for capacity formulas in
Information Theory.

A dichotomy occurred — quite surprisingly at its time — for AVC without feedback under
the average error criterion ([2]): Cav(W) is zero or else equals the random code capacity
CR(W) = max

P
min
W∈W

I(P,W ), where W is the convex hull of W .

We settle now the positivity problem for CF (W) and we prove the Trichotomy Theorem.
The Positivity Theorem and the easy direction of its proof are presented in Section 2.
The much harder direction is given in Section 6. It uses a Balanced Coloring Lemma,
which we establish in Section 3.

The Trichotomy Theorem is stated in Section 4. It incorporates the Positivity Theorem
and the Capacity Theorem for 0–1–matrices of [1], which also readily leads to the Converse
of the Trichotomy Theorem. Its direct part, however, is far more complex. The main
ingredients are the List Reduction Lemma of [1], the Elimination Technique of [2], and
the Balanced Coloring Lemma (see [2], [7]) in the version of Section 3.

Finally we mention that the coding problem for the AVC with feedback has another
appealing interpretation. One of the simplest search problems is to find an unknown
element x ∈ X by sequentially “Yes–No” questions like “Is x ∈ A?” where A is any
subset of X . It is easy to see that the minimal number of such questions which specify x
is in the worst case ⌈log |X |⌉. Now, if the answers are false with probability ε, allowing
an error probability λ, then this problem is equivalent to the coding problem for the BSC
W =

(

1−ε ε
ε 1−ε

)

with complete feedback. A proof can be found in the book mentioned in
the abstract.

More generally there is the same connection for a–ary questions with b–ary answers with
noise, that is, the BSC can be replaced by a general DMC. In a robust noise model this
DMC is to be replaced by an AVC.

Needless to say that channels with feedback links are of practical interest (see [13]) in
error control coding (ARQ, FEC systems etc.). Here we settle the capacity problem for
the robust channel model AVC.
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2 Positivity of the capacity CF (W)

We are given the set of transmission matrices

W =
{

W (·|·, s) : s ∈ S
}

, |S| < ∞. (2.1)

For state sequence sn ∈ Sn the n–length feedback transmission matrix W n
F (·|·, sn) is an

|X |

n−1
P

t=0

|Yt|
× |Yn|–stochastic matrix with entries W (y1|f1, s1)

n
∏

t=2

W
(

yt|ft(y
t−1), st

)

, where

the feedback strategy fn = (f1, . . . , fn) is defined by f1 ∈ X and ft : Y t−1 → X for
t = 2, . . . , n.

We denote the set of those strategies by Fn and then write W n
F (·|·, sn) = (W n(·|fn, sn))fn∈Fn

and
Wn

F =
{

W n
F (·|·, sn) : sn ∈ Sn

}

(2.2)

and draw an immediate consequence of (1.2).

Lemma 1. CF (W) > 0 iff for some n there are two n–length strategies fn, f ′n ∈ Fn

with disjoint corresponding convex hulls, that is, convex hull
({

W n(·|fn, sn) : sn ∈ Sn
})

∩
convex hull

({

W n(·|f ′n, sn) : sn ∈ Sn
})

= ∅.

Next we need for our analysis two concepts, namely, for x ∈ X

Sx =
{

s ∈ S : for some y W (y|x, s) = 1
}

(2.3)

and

Yx =
{

y ∈ Y : for some s W (y|x, s) = 1
}

. (2.4)

Notice that both, Sx and Yx, can be empty and that Sx = ∅ iff Yx = ∅.

Lemma 2. If CF (W) > 0, then necessarily

(i) CR(W) > 0 (2.5)

and

(ii) Yx ∩ Yx′ = ∅ for some x 6= x′. (2.6)

Proof: If (i) does not hold, then there is a distribution P on S such that the ma-

trix
∑

s

P (s)W (·|·, s) has identical rows. Therefore for all n and P n(sn) =
n
∏

t=1

P (st) also
∑

sn

P n(sn)W n
F (·|·, sn) has identical rows and (as a special case of Lemma 1) CF (W) = 0.

If (ii) does not hold, then for all x, x′(x 6= x′) there are y(x, x′) ∈ Y and s(x, x′), s′(x, x′) ∈
S with the property W

(

y(x, x′)|x, s(x, x′)
)

= W
(

y(x, x′)|x′, s′(x, x′)
)

= 1.

This implies that for all n and any two rows of W n
F corresponding to the feedback strategies

fn = (f1, f1, . . . , fn) and f ′n = (f ′
1, f

′
1, . . . , f

′
n) we can choose y1 = y(f1, f

′
1), s1 = s(f1, f

′
1),
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s′1 = s′(f1, f
′
1) and; for t = 2, 3, . . . , n; yt = y

(

ft(y
t−1), f ′

t(y
t−1)

)

, st = s
(

ft(y
t−1), f ′

t(y
t−1)

)

,
and s′t = s

(

ft(y
t−1), f ′

t(y
t−1)

)

such that

W (yn|fn, sn) = W (yn|f ′n, s′n) = 1 and thus CF (W) = 0.

Quite remarkably also the converse of Lemma 2 holds. This is a much deeper result.

Positivity Theorem. CF (W) > 0 iff (i) and (ii) in Lemma 2 hold.

The rather sophisticated proof is based on the Coloring Lemma of Section 3, which is
closely related to its predecessors in [3] and [7]. We give it in the last section so that
readers, who are interested only in our coding scheme of Section 4 can skip it.

3 Balanced coloring

Lemma 3. Let Q ⊂ P(V) be a finite set of PD’s on V and let there be associated with
every P ∈ Q a family E(P ) of subsets of V such that

α(P ) , max







P (v) : v ∈
⋃

E∈E(P )

E







< 1. (3.1)

Now, if there are positive numbers η(P ) for all P ∈ Q such that for k ≥ 2, δ ∈ (0, 1) and
all E ∈ E(P )

(

1

α(P )

)1−δ
[

η(P ) −
e

2k
α(P )δP (E)

]

> ℓn

{

2k
∑

P∈Q

|E(P )|

}

, (3.2)

then there is a function g : V → {1, 2, . . . , k} which satisfies for all P ∈ Q, E ∈ E(P ),
and i ∈ {1, 2, . . . , k}

∣

∣

∣

∣

P
(

g−1(i) ∩ E
)

−
1

k
P (E)

∣

∣

∣

∣

< η(P ). (3.3)

Furthermore, for δ = 1
4
, η(P ) = 2α(P )

1

4 , and α , max
P∈Q

α(P )

α− 1

2 > ℓn

[

2k
∑

P∈Q

|E(P )|

]

(3.4)

implies (3.2) and thus (3.3) holds.

Proof: The idea behind the following probabilistic existence proof is to use a union bound
argument to show that the probability of a randomly chosen coloring to be “bad” is less
than 1. We color all v ∈ V at random independently and uniformly with k colors.
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Next we introduce the RV’s

Ψi(v) =

{

1, if v gets color i

0 otherwise

and

ZP
i (E) =

∑

v∈E

P (v)Ψi(v) for P ∈ Q.

With Bernstein’s version of Chebyshev’s inequality

Pr
(

ZP
i (E) >

1

k
P (E) + η(P )

}

≤ expe

{

−α(P )−(1−δ)

[

1

k
P (E) + η(P )

]}

· E expe

{

α(P )−(1−δ)
∑

v∈E

P (v)Ψi(v)

}

= expe

{

−α(P )−(1−δ)

[

1

k
P (E) + η(P )

]}

·
∏

v∈E

E expe

{

α(P )−(1−δ)P (v)Ψi(v)
}

= expe

{

−α(P )−(1−δ)

[

1

k
P (E) + η(P )

]}

·
∏

v∈E

(

k − 1

k
+

1

k
expe

{

α(P )−(1−δ)P (v)
}

)

.

Using Lagrange’s remainder formula for the Taylor series of the exponential function we
continue with the upper bound

expe

{

−α(P )−(1−δ)

[

1

k
P (E) + η(P )

]}

·
∏

v∈E

{

1 +
1

k

[

α(P )−(1−δ)P (v) +
[α(P )−(1−δ)P (v)]2 · e

2

]}

and since ℓn(1 + x) < x for x > 0 with the upper bound

expe

{

−α(P )−(1−δ)

[

1

k
P (E) + η(P ) −

1

k

∑

v∈E

P (v) −
e

2k
α(p)−(1−δ)

∑

v∈E

P 2(v)

]}

= expe

{

−α(P )−(1−δ)

[

η(P ) −
e

2k
α(P )−(1−δ)

∑

v∈E

P 2(v)

]}

≤ expe

{

−α(P )−(1−δ)

[

η(P ) −
e

2k
α(P )−(1−δ) ·

∑

v∈E

α(P )P (v)

]}

,

because P (v) ≤ α(P ) for v ∈ E.

The last upper bound equals

expe

{

−α(P )−(1−δ)
[

η(P ) −
e

2k
α(P )δP (E)

]}

.
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Analogously,

Pr
{

ZP
i (E) < 1

k
P (E) − η(P )

}

≤ expe

{

−α(P )−(1−δ)
[

η(P ) − e
2k

α(P )δP (E)
]}

for all

P ∈ Q, E ∈ E(P ) and i ∈ {1, 2, . . . , k}. This together with (3.2) implies (3.3).

Finally, since
(

1
α(P )

)
3

4
[

2α(P )
1

4 − e
2k

α(P )
1

4 P (E)
]

>
(

1
α(P )

)
1

2

≥ α− 1

2

(3.4) implies (3.2).

4 The Trichotomy Theorem

For the formulation of our main result we need a concept from [1].

With our set of matrices W we associate the set of stochastic |X |× |Y|− (0− 1) matrices

Ŵ =
{

Ŵ : Ŵ (·|x) ∈ W(x) for all x ∈ X and Ŵ (y|x) ∈ {0, 1} for all y ∈ Y
}

. (4.1)

Let this set be indexed by the set Ŝ. Then we have that for all ŝ ∈ Ŝ and x ∈ X there is
an s ∈ Sx with

Ŵ (·|x, ŝ) = W (·|x, s). (4.2)

Of course, Ŵ (and thus also Ŝ) can be empty. This happens exactly, if for some x Sx = ∅

or (equivalently) Yx = ∅. These sets are defined in (2.3) and (2.4).

Shannon determined in [12] the zero–error feedback capacity C0,F (W ) of a DMC W .

An alternate formula — called for by Shannon — was given in [1]. For

V̂ (·|·) = |Ŝ|−1
∑

ŝ∈Ŝ

Ŵ (·|·, ŝ)

this formula asserts

C0,F (V̂ ) = CF (Ŵ) =







max
P

min
W∈Ŵ

I(P,W ), if Yx ∩ Yx′ = ∅ for some x, x′

0 otherwise.
(4.3)

Moreover, we have an inequality for this quantity.

Lemma 4. CF (W) ≤ CF (Ŵ), if Ŵ 6= ∅.

Proof: It suffices to show that every feedback code with maximal error probability ε < 1
for W is a code for Ŵ . Indeed, otherwise there exists a feedback code for W with two
encoding functions fn = (f1, . . . , fn) and f ′n = (f ′

1, . . . , f
′
n) such that for some yn ∈ Yn

and ŝn, ŝ′n ∈ Ŝn

Ŵ n(yn|fn, ŝn) = Ŵ n(yn|f ′n, ŝ′n) = 1.
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But then, if we choose st, s
′
t corresponding to

(

ft(y
t−1), ŝt

)

and
(

f ′
t(y

t−1), ŝ′t
)

, respectively,
according to (4.2), we get

W n(yn|fn, sn) = W n(yn|f ′n, s′n
)

= 1,

a contradiction.

Clearly by averaging we see that an ε–code with feedback for the AVC W is an ε–code
for the AVC with feedback and therefore CF (W) = CF (W . Furthermore, since feedback
does not increase the capacity of an individual DMC W ∈ W we have that

Lemma 5. CF (W) = CF (W) ≤ CR(W).

We are now ready to state our main result.

Trichotomy Theorem.

CF (W) =











0, iff CR(W) = 0 or Yx ∩ Yx′ 6= ∅ for all x, x′ ∈ X (i)

CR(W), if CF (W) > 0 and Yx = ∅ for some x (ii)

min
{

CR(W), CF (Ŵ)
}

, if CF (W) > 0 and Yx 6= ∅ for all x. (iii)

Remark 1: There is almost no connection between the values of CR(W) and CF (Ŵ).

Example 1:

Choose X = S = {1, 2, . . . , a}, Y = {1, 2, . . . , a, b}, and W as set of matrices W with

W (y|x, s) = 1, if x 6= s and y = x or x = s, y = b.

Then CF (Ŵ) = 0, but with P as uniform distribution on X ,

CR(W) ≥ min
W∈W

I(P,W ) =

(

1 −
1

a

)

log a

and this goes to infinity with a going to infinity.

Example 2:

Choose X ′ = {0, 1, . . . , a}, S ′ = {1, 2, . . . , a}, Y ′ = {0, 1, . . . , a, b} and define W ′ as set of
matrices with W (y|x, s) = 1, if x = y = 0 (for every s) or x 6= 0, x 6= s and y = x or
x = s, y = b, x 6= 0.

Then CF (Ŵ ′) = log 2 > 0, however for W in Example 1 CR(W ′) > CR(W). So CR(W ′)
can be arbitrary large and much larger than a positive CF (Ŵ).

Example 3:

Choose X = Y = S = {0, 1}, W (·|·, 0) =

(

1
2

1
2

1
2

1
2

)

, W (·|·, 1) =

(

1 0
0 1

)

.
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Then CR(W) = 0 and CF (Ŵ) = 1.

Finally, we formulate the Trichotomy Theorem in a more elegant, but less informative
way. For this we define

C∞
F (Ŵ) =

{

CF (Ŵ), if Ŵ 6= ∅

∞, if Ŵ = ∅.
(4.4)

Then Lemma 4 says that always

CF (W) ≤ C∞
F (Ŵ)

and with Lemma 5 we conclude that

CF (W) ≤ min
(

CR(W), C∞
F (Ŵ)

)

. (4.5)

Furthermore, now (ii) and (iii) say that there is equality in (4.5), if CF (W) > 0. Finally,
if CF (W) = 0, then by (i) and (4.3) either CR(W) = 0 or CF (Ŵ) = 0.

We summarize our findings.

Capacity Theorem. CF (W) = min
{

CR(W), C∞
F (Ŵ)

}

.

5 Proof of the Trichotomy Theorem

It remains to be seen that for CF (W) > 0

(ii) CF (W) ≥ CR(W), if Sx = ∅ for some x,

and

(iii) CF (W) ≥ min
{

CR(W), CF (Ŵ)
}

otherwise.

For the convenience of the reader we mention first that in the case, where W contains
only 0–1–matrices, we are in the case (iii) and (4.3) gives the desired result.

In the other extreme case (ii) we have Ŵ = ∅ and can use Lemma 3 (to establish a
common random experiment) in conjunction with the elimination technique of [2]. (This
approach of [7] works here even for maximal errors, because the “edges E” are big enough,
if 0–1–distributions are excluded. In contrast to the previous work now the sender cannot
randomize!)

To be specific, for any γ > 0 choose ℓ ∼ n
2

γ C−1
R (W), an x0 ∈ X with Sx0

= ∅, and the
encoding

ft(y
t−1) = x0 for 1 ≤ t ≤ ℓ. (5.1)

Next, clearly for xℓ
0 = (x0, . . . , x0) and all yℓ, sℓ

W ℓ(yℓ|xℓ
0, s

ℓ) ≤ ω∗ℓ < 1, (5.2)
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where
ω∗ = max

{

W (y|x, s) : W (y|x, s) 6= 1, x ∈ X , s ∈ S, and y ∈ Y
}

. (5.3)

By applying Lemma 3 to Q =
{

W ℓ(·|xℓ
0, s

ℓ) : sℓ ∈ Sℓ
}

, k = (n − ℓ)2, E(P ) = {Yℓ} for all

P , α = w∗ℓ

in (3.4) then when ℓ is sufficiently large, so that w∗− 1

2
ℓ > ℓn(n − ℓ)2|S|ℓ, i.e.

(3.4) holds, there is a coloring or equivalently a partition {Ai}
(n−ℓ)2

i=1 of Yℓ such that for
all sℓ ∈ Sℓ and i = 1, 2, . . . , (n − ℓ)2

∣

∣

∣

∣

W ℓ(Ai|x
ℓ
0, s

ℓ) −
1

(n − ℓ)2

∣

∣

∣

∣

< 2−ℓτ (5.4)

for a positive τ
(

= −1
8
log w∗

)

, which is independent of ℓ.

For this we have used ℓ letters and for the remaining n − ℓ letters we use a random code
with rate CR(W)− γ

2
, maximum error probability λ

2
, and with ensemble size (n− ℓ)2. Its

existence is guaranteed by the elimination technique of [2].

Now, after having sent xℓ
0 and received yℓ ∈ Ai, which is also known to the sender, because

of the feedback, for any message m the m–th codeword in the i–th code of the ensemble
is send next.

This n–length feedback code achieves a rate

1

n

(

n −
n

2
γ C−1

R (W)
)(

CR(W) −
γ

2

)

≥ CR(W) − δ

and a maximum error probability less than (n− ℓ)22−ℓτ + λ
2

< λ, when ℓ is large enough.

The main issue is really to prove the direct part for the mixed case:

Ŵ 6= ∅ and W r Ŵ 6= ∅, CF (W) > 0.

We design a strategy by compounding four types of codes. There germ is the iterative list
reduction code of [1].

However, now we must achieve a higher rate by incorporating also codes based on common
randomness. The detailed structure will become clear at the end of our description.

We begin with the codes announced.

1. List reducing or coloring code (LROCC)

As in [1] we start with T ℓ
P , the set of P–typical sequences in X ℓ, where P ∈ Pℓ(X ) =

{

P ∈ P(X ) : T ℓ
P 6= ∅

}

.

However, right in the beginning we gain a certain freedom by deviating from [1] by choos-
ing parameters such that |T ℓ

P | is much smaller than the size of the set of messages M.
An (ℓ, ξ, c) LROCC (where the role of parameter ξ becomes clear in (5.6) and (5.7)) is
defined by a triple (g, L,K) of functions, which we now explain.

Function g : L → T ℓ
P (called balanced partition function) is chosen such that
∣

∣|g−1(xℓ)| − |g−1(x′ℓ)|
∣

∣ ≤ 1 for all xℓ, x′ℓ ∈ T ℓ
P . (5.5)
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Function L : Yℓ → 2L

This function, which we call list function, assigns to every yℓ ∈ Yℓ a sublist of L as follows.
Define first for xℓ ∈ X ℓ, yℓ ∈ Yℓ, and Yx

δ̃(xℓ, yℓ) = |{t : yt /∈ Yxt
}|, (5.6)

the discriminator.

Then set
L(yℓ) =

{

v ∈ L : δ̃
(

g(v), yℓ
)

< ξ
}

for yℓ ∈ Yℓ. (5.7)

We need later interpretations for the relation v ∈ L(yℓ). Since by our assumptions Yx 6= ∅

for all x, δ̃(xℓ, yℓ) < ξ implies that a y′ℓ ∈ Yℓ can be found so that (in the Hamming
distance)

dH(yℓ, y′ℓ) < ξ (5.8)

and
y′

t ∈ Yxt
for all t = 1, 2, . . . , ℓ. (5.9)

Equivalently, we can say that there is a

Ŵ ∈ Ŵ with y′ℓ ∈ T ℓ

Ŵ
(xℓ).

Also, by (5.7) – (5.9) for all yℓ ∈ Yℓ

1

ℓ
log |L(yℓ)| <

1

ℓ
log |L| − min

Ŵ∈Ŵ

I(P, Ŵ ) + u(ℓ, ξ), (5.10)

where u is a function with

u(ℓ, ξ) → 0 as
ξ

ℓ
→ 0 and ℓ → ∞. (5.11)

(Notice: when ξ = 1, then L is a list reduction via Ŵ as in [1].)
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Function K : Yℓ → {1, 2, . . . , c}

In this coloring function we choose c of polynomial growth in ℓ. Let Q =
{

W ℓ(·|xℓ, sℓ) :

xℓ ∈ X ℓ, sℓ ∈ Sℓ
}

, E
(

W ℓ(·|xℓ, sℓ)
)

=
{

{yℓ : δ̃(xℓ, yℓ) ≥ ξ}
}

and k = c in Lemma 3.

Then by Lemma 3 we can also assume that for all xℓ ∈ T ℓ
P , sℓ ∈ Sℓ, and j ∈ {1, 2, . . . , c}

∣

∣W ℓ
(

K−1(j) ∩
{

yℓ : δ̃(xℓ, yℓ) ≥ ξ
}

|xℓ, sℓ
)

− c−1W ℓ
({

yℓ : δ̃(xℓ, yℓ) ≥ ξ
}

|xℓ, sℓ
)∣

∣ < 2ω∗ 1

4
ξ,

(5.12)
because δ̃(xℓ, yℓ) ≥ ξ implies W ℓ(yℓ|xℓ, sℓ) ≤ ω∗ξ for all sℓ (ω∗ was defined in (5.3)) and

consequently, w∗− 1

2
ξ > log[2c|X |ℓ|S|ℓ], i.e. (3.4) holds for sufficiently large ξ satisfying

(5.11).

2. Index Code (IC)

This code has two codewords of length j and error probability µ. The codewords stand for
messages L,K. They are used by the sender (based on the discriminator) to inform the
receiver whether next he uses reducing the list, by sending L, or coloring on the output,
by sending K.

3. Eliminated correlated code (ECC)

An m–length and (maximal) µ–error probability ECC is a family

{

{(uq
i , D

q
i ) : 1 ≤ i ≤ M} : 1 ≤ q ≤ m2

}

of m2 codes with the properties

m−2

m2

∑

q=1

Wm(Dq
i |u

q
i , s

n) > 1 − µ for all sn ∈ Sn and all i = 1, . . . ,M (5.13)

and
m−1 log M > CR(W) − δ′. (5.14)

Their existence was proved in [2].

4. (k, 2γk, µ)–Code

This is just an ordinary feedback code for W of length k, rate γ, and maximal error
probability µ. Its existence is provided by CF (W) > 0.

11



Choice of parameters:

Before we present our coding algorithm we adjust the parameters. It is convenient to
have the abbreviation

C = min
(

CR(W), CF (Ŵ)
)

. (5.15)

a.) Let P attain the maximum in maxP ′∈Pℓ(X ) min
Ŵ∈Ŵ

I(P ′, Ŵ ).

b.) Fix now any δ ∈ (0, C) and λ ∈ (0, 1).

c.) By our assumption CF (W) > 0 there is a positive number γ so that for large enough
k and log M ≤ k · γ (k,M, µ)–codes exist.

d.) Define

ro =

⌈

2

δ

(

log |X |

γ
+ 2

)

C2

(

C −
δ

2

)−1
⌉

(5.16)

and let j be a fixed integer such that a j–length IC with error probability λ
4ro

exists.

e.) Let ξ increase with ℓ, but keep for sufficiently large ℓ ξ
ℓ

so small that for the u in
(5.10)

u(ℓ, ξ) <
δ

4
. (5.17)

f.) Insure ℓ > roj (5.18)

and for the message set M set

n0 = log |M| =

⌈

2

δ

(

log |X |

γ
+ 2

)

C2ℓ

⌉

. (5.19)

g.) Require ℓ and also ξ to be so large that the coloring function K for the LROCC can
be obtained with Lemma 3 and still

n2
0ω

∗ξ/4 <
λ2

64ro

. (5.20)

h.) Finally we make ℓ so large that all codes in the following algorithm exist.

12



Encoding Algorithm

Begin:
Input: v ∈ M

1. Set i := 0 and let Li := M, go to 2.

2. If |Li| ≥ |T ℓ
P |, then let mi :=

⌊

log |Li|

CR(M)− δ

2

⌋

, encode Li to an (ℓ, ξ,m2
i ) LROCC (g, L,K)

over T ℓ
P , send g(v) := xℓ to the receiver, go to 3.

Otherwise, go to 5.

3. Receive the output yℓ and encode a j–length IC with λ
4ro

–error probability.

If δ̃(xℓ, yℓ) < ξ, send the word “L” of the IC to the receiver. Let i := i + 1,
Li := L(yℓ) and go to 2.

Otherwise send the word “K” of the IC to the receiver, let q = K(yℓ), go to 4.

4. Encode Li to an mi–length ECC with λ
4
–error probability and send the codeword

uq
v to the receiver, go to 6.

5. Encode Li to a
(

k, |Li|,
λ
4

)

–code with rate γ and send the codeword standing for v
to the receiver, go to 6.

6. Stop.

End.

Decoding Algorithm

Begin:

1. Set i := 0 and let Li = M, go to 2.

2. If |Li| ≥ |T ℓ
P |, go to 3.

Otherwise go to 5.

3. Receive (yℓ, yj) and decode yj for the j–length IC.

If the decoding result is “L”, let i := i + 1, Li = L(yℓ), go to 2.

Otherwise let q = K(yℓ) and go to 4.

4. Let mi :=
⌊

log |Li|

CR(M)− δ

2

⌋

, receive ymi and decode ymi for the q–th value–code of the

mi–length ECC, go to 6.

5. Receive yk and decode it for the
(

k, |Li|,
λ
4

)

code with rate γ and length k, go to 6.

6. Stop

End.

13



Analysis

According to the choice of our P , by (5.10) and (5.17), for sufficiently large ℓ we have

1

ℓ
log |Li+1| <

1

ℓ
log |Li| − CF (Ŵ) +

δ

2
, (5.21)

or in other words

log |Li| < log |M| − iℓCF (Ŵ) + iℓ
δ

2

≤ log |M| − iℓC + iℓ
δ

2
. (5.22)

Thus, according to our encoding program, by (5.16), (5.19), and (5.22), at most ro

LROCC–IC–pairs may be encoded, and at most one “K”. If it exists, it must be in
the last IC. Therefore we can define the RV U as

U =











r, if r LROCC–IC–pairs are sent and

the last sent word of IC is “K”

ro + 1, if no “K” is sent,

(5.23)

or in other words,

U = r ≤ ro ⇔ After the message set is reduced r − 1 times, the “r–th output”

is “colored” and then the message is sent by the value “with this

color” in an ECC.

U = ro + 1 ⇔ After the size of the message set is reduced to less than |T ℓ
P |,

the message is sent by the ordinary (feedback) code with rate

γ. (5.24)

The rate:

Although the encoding algorithm may produce sequences with different lengths, by obvi-
ous reasons, we only need their common bound, say b.

Moreover, we only have to show that

b ≤

(

C −
δ

2

)−1

log |M| +

(

log |X |

γ
+ 2

)

ℓ. (5.25)

This is so, because by an elementary calculation, for any positive a, aC2 ≤ δ
2
log |M|

implies
(

C − δ
2

)−1
log |M|+ a ≤ (C − δ)−1 log |M| and then (5.19) and (5.25) imply that

the lengths of the encoding sequences are bounded by (C − δ)−1 log |M|.
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Case U = r ≤ ro:

By (5.24), after having been reduced r − 1 times, the “message list” with size at most
log |M| − (r − 1)ℓ

(

C − δ
2

)

(by (5.22)), is encoded by an
⌊

(

CR(M) − δ
2

)−1 (

log |M| − (r − 1)ℓ
(

C − δ
2

))

⌋

–length ECC.

Therefore the total length of the encoding sequences is not exceeding

r(ℓ + j) +
(

C − δ
2

)−1 (

log |M| − (r − 1)ℓ
(

C − δ
2

))

≤
(

C − δ
2

)−1
log |M| + roj + ℓ

≤
(

C − δ
2

)−1
log |M| + 2ℓ (by (5.18))

Case U = ro + 1:

By (5.16), (5.18), (5.19), (5.24) and the wellknown fact that |T ℓ
P | ≤ 2ℓ log |X |, the total

lengths of encoding sequences are bounded by

ro(ℓ + j) +
log |X |

γ
ℓ ≤

[

(

ℓ

(

C −
δ

2

))−1

log |M| + 1

]

ℓ + roj +
log |X |

γ
ℓ

≤

(

C −
δ

2

)−1

log |M| +

(

2 +
log |X |

γ

)

ℓ,

i.e. (5.25).

The error probability:

Denote by E, EI , and Eγ, the events that errors occur at any step, at decoding an IC,
and at the decoding of the ordinary code with rate γ, respectively, and by Pr(·|v, sn),
v ∈ M, sn ∈ Sn, the corresponding output probability, when v is sent and the channel is
governed by sn. Notice that EI , Eγ ⊂ E. We have to upperbound Pr(E|v, sn). For this
we first notice that

Pr(EI |v, sn) <

ro
∑

r=1

Pr(U = r|v, sn) · r
λ

4ro

≤
λ

4
(5.26)

and therefore

Pr(E|v, sn) <
λ

4
+ Pr(E|Ec

I , v, sn). (5.27)

We are left with upper bounding

Pr(E|Ec
I , v, sn) =

ro+1
∑

r=0

Pr(U = r|Ec
I , v, sn)Pr(E|Ec

I , U = r, v, sn). (5.28)

Here the last summand is upper bounded by the error probability λ
4

in a
(

k, |Lr|,
λ
4

)

–code,
which is used for r = ro + 1, because

Pr(E|Ec
I , U = ro + 1, v, sn) = Pr(Eγ|v, sn) <

λ

4
, (5.29)
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Finally, for r ≤ ro by our coding rules

W ℓ
({

yℓ : δ̃(xℓ, yℓ) ≥ ξ
}

|xℓ, sℓ(r)
)

≥ Pr(U = r|Ec
I , v, sn) (5.30)

where xℓ ∈ T ℓ
P is the value of the r–th g(v), sℓ(r) is the segment of sn corresponding to

the r–th LROCC.

Therefore by (5.12), (5.13), and (5.20) in the case

Pr(U = r|Ec
I , v, sn) ≥

λ

4ro

and with the convention that smr(mr) is the last part of sn

Pr(E|Ec
I , U = r, v, sn) =

(

W ℓ
(

{yℓ : δ̃(xℓ, yℓ) ≥ ξ}|xℓ, sℓ(r)
))−1

×

m2
r

∑

q=1

W ℓ
(

K−1(q) ∩
{

yℓ : δ̃(xℓ, yℓ) ≥ ξ
}

|xℓ, sℓ(r)
)

Wmr((Dq
v)

c|uq
v, s

mr(mr)
)

≤

m2
r

∑

q=1

m−2
r Wmr

(

(Dq
v)

c|uq
v, s

mr(mr)
)

+

(

λ

4ro

)−1

· 2m2
rω

∗ 1

4
ξ <

λ

4
, (5.31)

This and (5.27) – (5.29) imply

Pr(E|v, sn) <
λ

4
+

λ

4
+

(

1 ·
λ

4
+

λ

4
· 1

)

≤ λ.

6 Proof of the Positivity Theorem

We shall, in this section, show that the conditions in Lemma 2 are also sufficient for the
positivity. To this end we assume a contradiction, (i) and (ii) in Lemma 2 hold, that is,

CR(W) > 0 (6.1)

and w.l.o.g. for 0, 1 ∈ X
Y0 ∩ Y1 = ∅, (6.2)

but that
CF (W) = 0. (6.3)

We establish the desired result by deriving a contradiction. First we rewrite (6.1) in the
form

θ , min
π∈P(S)

max
x,x′,y

|
∑

s

π(s)W (y|x′, s) −
∑

s

π(s)W (y|x, s)| > 0 (6.4)

and with Lemma 1 (6.3) in the following form: for any two encoding functions fn
0 and fn

1

there exist PD’s αn and βn on Sn such that for all yn ∈ Yn

∑

sn

αn(sn)W n(yn|fn
0 , sn) =

∑

sn

βn(sn)W n(yn|fn
1 , sn). (6.5)
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The proof in this part is much harder than others in the paper and as well as in most
papers in this direction, which contain only a few new ideas and techniques. So it may
be hard to understand for some readers. Therefore, we first describe the main idea and
give an outline of the proof.

For an input, a sequence of states (or a distribution on the sequences of states) governing
the channel and a coloring of the output space, a subset in the output is said to be well
colored if its members are colored with (nearly) uniform probability. We have seen that if
one can find an input such that for all distributions on the sequences of states the output
space is well colored (with a large probability), then the positivity follows. In fact, we
shall see that by Lemma 1 any well colored subset is sufficient. However it cannot always
be done, and actually it is not hard to see that one can never find such an input, if for
all x ∈ X Sx 6= ∅ (unless (6.5) holds). To obtain the well colored subsets we have to
construct 2 encoding functions fn

0 and fn
1 and to show that under the assumption (6.5)

one is always able to find a well colored subset for both of them. Our functions consist of
3 blocks with lengths m1, m2 and 1, here m1 and m2 will be chosen carefully.

In the first two blocks and for both encoding functions, only letters “0” and “1” satisfying
(6.2) are used. The first blocks of fn

0 and fn
1 are m1 zeros and ones respectively. At the

same time, the output space Ym1 is colored by 22m2 colors, say
{

(bm2 , b′m2) : bm2 , b′m2 ∈
{0, 1}m2

}

. For the output ym1 colored by (bm2 , b′m2), the encoding functions fn
0 and fn

1

encode in the second block to bm2 and b′m2 , respectively. We use the Balanced Coloring
Lemma 3, and color Ym in the following way.

— Let δ∗(xm, sm) = |{t : st /∈ Sxt
}|. Then for 0m1 and all sm1 with δ∗(0m1 , sm1) ≥ ℓ1

(i.e. the number of t’s such that st ∈ Sxt
is not “too large”) for a properly chosen

ℓ1, Y
m1 is well colored.

— For 1m1 and all sm1 ∈ Sm1 all subsets in Ym1 of the form Am1 =
m1
∏

t=1

At, At ∈ {Y ,Y0},

and |{t : At = Y0}| = m1 − ℓ1 + 1, are well colored.

We shall show in Lemma 6 below that if for a probability measure µ on Sm and fixed
xm ∈ Xm µ

(

sn : δ∗(xm, sm) < ℓ
)

is sufficiently small, then (for some coloring for xm and
µ), Ym1 is well colored.

Thus,

Case 1: If αn
(

sn : δ∗(0m1 , sm1) < ℓ1

)

is sufficiently small, then for 0m1 and αm, Ym1 (and
Ym1 × L for all L ⊂ Ym2+1) is well colored.

Moreover in Lemma 7 below we shall show

Case 2: If the condition in Case 1 does not hold, under condition (6.5) one can always
find an Am1 such that for 1m1 and βn, Am1 (and Am1×L for all L ⊂ Ym2+1) is well colored.
Thus in the first round of coloring at least for one input we can find a well colored subset.

Next we use the Balanced Coloring Lemma 3 again, but this time we color Ym2 such
that for 0m1 and sm1 with δ∗(0m2 , sm2) ≥ ℓ2 (for suitable ℓ2) and for 1m1 and sm1 with
δ∗(1m2 , sm2) ≥ ℓ2, Y

m2 is well colored.
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The hard kernel in the proof is Lemma 8, which we call the Crowd Lemma. It means that
if the decoding functions (in the second block) take sufficiently many values and those
values crowd the input space, one can always find “good pairs”.

We shall show there that, because in the first block we can always for at least one
encoding function find a well colored subset, we can always find a pair (bm2 , b′m2) (as
values for fn

0 and fn
1 , respectively, in the second block), such that for the probability

distribution αn or its conditional probability under certain conditions (probability dis-
tribution βn or its conditional distribution under certain conditions), the probability of
αn

(

sm2 : δ∗(bm2 , sm2) < ℓ2

)

,
(

βn
(

sm2 : δ(b′m2 , sm2) < ℓ2

))

for suitable ℓ2 is sufficiently
small.

Thus by Lemma 6 again, we show that for both, fn
0 and αn and fn

1 and βn, Ym2 is well
colored. This will complete our proof. Now let us start it.

First we define a pair (fn
0 , fn

1 ) of encoding functions and then show that for them (6.4)
and (6.5) cannot hold simultaneously. The definition is given in four steps.

1. Let m1 > l1 > m2 > l2 and n = m1 + m2 + 1 be (large) integers depending on a
(small) real ε > 0, to be specified later, such that

l2
m2

,
m2

l1
,

l1
m1

∼ ε. (6.6)

2. Recall the definition of S0,S1 in (2.3). For bm ∈ {0, 1}m, sm ∈ Sm we introduce the
“distance”

δ∗(bm, sm) , |{t : st /∈ Sbt
}| (6.7)

and for m1 the sets of PD’s

P1 , {Wm1(·|0m1 , sm1) : δ∗(0m1 , sm1) ≥ l1}, (6.8)

P2 , {Wm1(·|1m1 , sm1) : sm1 ∈ Sm1}, (6.9)

and the set of output sets

A , {Am1 =

m1
∏

t=1

At : At ∈ {Y ,Y0} and |{t : At = Y0}| = m1 − l1 + 1}. (6.10)

We now apply the (balanced coloring) Lemma 3 for the choices V = Ym1 ,Q =
P1 ∪ P2, and

E(P ) =

{

{Ym1}, if P ∈ P1

A, if P ∈ P2.

}

, (6.11)

and color Ym1 with a coloring function g = (Φ1, Ψ1) : Ym1 → {0, 1}m1 × {0, 1}m1

with k = 22m2 colors.

Let

w , max{W (y|x, s) : W (y|x, s) 6= 1, x = 0, 1, s ∈ S and y ∈ Y}. (6.12)

18



Denote the inverse image of the coloring function g for (bm2 , b′m2) by

Ω1(b
m2 , b

′m2) , g−1(bm2 , b′m2) = Φ−1
1 (bm2) ∩ Ψ−1

1 (b
′m2) (6.13)

and the subset of Am colored by (bm2 , b′m2) by

Am1(bm2 , b
′m2) , Am1 ∩ Ω1(b

m2 , b
′m2), (6.14)

(where Am1 ∈ A is defined in (6.10)).

(This change is wrong, please keep my original parameters.)

To apply Lemma 3, we check (3.4) i.e.

α− 1

2 > ℓn

[

2k
∑

P∈Q

|E(P )|

]

= ℓn
[

2k(1 + |A||Sm2 |
]

, which is true since α(P ) ≤ wℓ1

for P ∈ P1 and by (6.2) α(P ) ≤ wm1−ℓ1+1.

Then by Lemma 3 we have that (c.f. the choices in (3.4))

|Wm1(Ω1(b
m2 , b

′m2)|0m2 , sm1) −
1

22m2
| < 2w

l1
4 (6.15)

for all bm2 , b
′m2 ∈ {0, 1}m2 and all sm1 with

δ∗(0m1 , sm1) ≥ l1 (6.16)

and

|Wm1(Am1(bm2 , b
′m2)|1m1 , sm1) −

1

2m2
Wm1(Am1|1m1 , sm1)| < 2w

1

4
(m1−l1+1) (6.17)

for all bm2 , b
′m2 ∈ {0, 1}m2 , for all Am1 ∈ A, and for all sm1 ∈ Sm1 .

3. Next apply Lemma 3 for the choices V = Ym2 ,Q = P ′ = {Wm2(·|bm2 , sm2) : bm2 ∈
{0, 1}m2 , sm2 ∈ Sm2 , and δ∗(bm2 , sm2) ≥ l2}, E(P ) = {Ym2} for all P ∈ P ′, k = |X |2

and g′ = (Φ2, Ψ2) : Y m2 → X ×X . Similarly as in 2. we have for

Ω2(x, x′) , g′−1(x, x′) = Φ−1
2 (x) ∩ Ψ−1

2 (x′) (6.18)

|Wm2(Ω2(x, x′)|bm2 , sm2) −
1

|X |2
| < 2w

l2
4 (6.19)

for all x, x′ ∈ X , bm2 ∈ {0, 1}m2 , and sm2 ∈ Sm2 with δ∗(bm2 , sm2) ≥ l2 since here
α = wl2 and the right hand side of (3.4) polynomially increases, i.e. (3.4) holds.

4. Finally define the announced encoding functions

fn
0 = (0m1 , Φ1, Φ2) and fn

1 = (1m1 , Ψ1, Ψ2) (6.20)

which lead to the desired contradiction. If they satisfy (6.5) for some αn and βn,
then we can express this also by saying that for the pairs of RV ′s (Sn, Y n) and
(S

′n, Y
′n) with PD’s αn(·)W n(·|fn

0 , ·) and βn(·)W n(·|fn
1 , ·), resp., Y n and Y

′n have
the same (marginal) distributions.
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For the analysis of these RV ′s we need the following simple Lemmas 6 and 7 and finally
the crucial Crowd Lemma 8.

In the sequel we write (with some abuse of notation) Sm1Sm2+1 or Sm1Sm2S for Sn and
Y m1Y m2+1 or Y m1Y m2Y for Y n.

We notice that Y m1 or Y m2 following into Ω1(b
m2 , b′m2), i.e. it getting color (bm2 , b′m2),

implies that in the second block fn
0 and fn

1 will take values bm2 and b′m2 . A similar event
will happen in the third block, when the output in the second block gets color (x, x′).
These facts will repeatedly be used in our proof.

Lemma 6. (i) Suppose that

Pr (δ∗(0m1 , Sm1) < l1) < wl1 , (6.21)

then for all bm2 , b
′m2 ∈ {0, 1}m2 and L ⊂ Ym2+1

|Pr(Y m1 ∈ Ω1(b
m2 , b

′m2), Y m2+1 ∈ L)

−
1

22m2

∑

sm2+1

Pr(Sm2+1 = sm2+1), P r(Y m2+1 ∈ L|Sm2+1 = sm2+1, Y m1 ∈ Ω1(b
m2 , b

′m2))|

< 2w
l1
4 + wl1 (6.22)

and one can choose l1,m1, and m2 in (6.6) such that

|Pr(Y m2+1 ∈ L|Y m1 ∈ Ω1(b
m2 , b

′m2))−
∑

sm2+1

Pr(Sm2+1 = sm2+1)Pr(Y m2+1 ∈ L|Sm2+1 = sm2+1, Y m1 ∈ Ω1(b
m2 , b

′m2)| < w
l1
8

(6.23)

(ii) Suppose that for some bm2 ∈ {0, 1}m2 and E ⊂ Ym1

Pr(δ∗(bm2 , Sm2) < l2|Y
m1 ∈ E) < wl2 , (6.24)

then for all x, x′ ∈ X , K ⊂ Y, and b
′m2 ∈ {0, 1}m2

|
∑

sm2+1

Pr(Sm2+1 = sm2+1|Y m1 ∈ E)Pr(Y m2 ∈ Ω2(x, x′), Y ∈ K|Sm2+1 = sm2+1 , Y m1 ∈ Ω1(b
m2 , b

′m2))

−
1

|X |2

∑

s∈S

Pr(S = s|Y m1 ∈ E)W (K|x, s)| < 2w
l2
4 + wl2 . (6.25)

Moreover, one can replace (Sm2 , Y m1) and W (K|x, s) in (6.24) and (6.25) by (S
′n, Y

′n)
and W (K|x′, s).

Proof: Let L = Ym2+1 in (6.22). Then the resulting inequality
∣

∣Pr
(

Y m1 ∈ Ω1(b
m2 , b′m2)

)

− 1
22m2

∣

∣ ≤

2w
ℓ2
4 +wℓ1 and (6.22) imply (6.23) (c. f. (6.6)). We show now (6.22). By the definition of
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(Sn, Y n) Pr
(

Y m1 ∈ Ω1(b
m2 , b′m2), Y m2+1 ∈ L

)

=
∑

sm1sm2

Pr(Sn = sm1sm2+1)Wm1

(

Ω1(b
m2 , b′m2)|0m1sm1

)

Pr
(

Y m2+1 ∈ L|Sm2+1 = sm2+1, Y m1+1 ∈ Ω1(b
m2 , b′m2)

)

and then the LHS of (6.22) does
not exceed

∑

sm1sm2+1

Pr(Sn = sm1sm2+1)|Wm1(Ω1(b
m1 , b

′m1)|0m1 , sm1) −
1

22m2
|

×Pr(Y m2+1 ∈ L|Sm2+1 = sm2+1, Y m1+1 ∈ Ω1(b
m2 , b

′m2)),

which together with (6.15), (6.16) and (6.21) yields (6.22) (by splitting Sn to
{

sm1+m2+1 :
δ∗(0m1 , sm1) ≥ ℓ1

}

and
{

sm1+m2+1 : δ∗(0m1 , sm1) < ℓ1

}

).

Notice that by the definition of (Y n, Sn) and (6.20) for sm2+1 = sm2s in (6.25)

Pr(Y m2 ∈ Ω2(x, x′), Y ∈ K|Sm2+1 = sm2+1, Y m1 ∈ Ω1(b
m2 , b

′m2))

= Wm2(Ω2(x, x′)|bm2 , sm2)W (K|x, s)

and hence (ii) can be established exactly like (i).

The importance of (6.22) and (6.23) (resp. (6.25)) is that Sm2+1 (resp. S) in the second
terms (resp. term) is independent of Φ1(Y

m1) (resp. Φ2(Y
m2)). Intuitively speaking, the

jammer has very little knowledge about the output to come. The same phenomenon can
be encountered in the next auxiliary result.

Lemma 7. For all Am1 ∈ A, bm2 , b
′m2 ∈ {0, 1}m2 and L ⊂ Ym2+1

|Pr(Y
′m1 ∈ Am1(bm2 , b

′m2), Y
′m2+1 ∈ L)

−
1

22m2
Pr(Y

′m1 ∈ Am1)
∑

sm2+1

Pr(S
′m2+1 = sm2+1|Y

′m1 ∈ Am1)

× Pr(Y
′m2+1 ∈ L|S

′m2+1 = sm2+1, Ψ1(Y
′m1) = b

′m2)| < 2w
m1−l1+1

4 . (6.26)

Moreover, if (6.21) does not hold, one can always choose the parameters according to (6.6)
and find an Am1 ∈ A in such a way that

|Pr(Y
′m2+1 ∈ L|Y

′m1 ∈ Am1(bm2 , b
′m2)) −

∑

sm2+1

Pr(S
′m2+1 = sm2+1|Y

′m1 ∈ Am1)×

Pr(Y
′m2+1 ∈ L|S

′m2+1 = sm2+1, Ψ1(Y
′m1) = b

′m2)| < wl1 . (6.27)

Proof: (6.26) is proved analogously to (6.22). However, notice that here all Wm1(·|1m1 , sm1)
are contained in P2 ⊂ Q (see (6.9)) and therefore no condition analogous to (6.21) is nec-
essary. To obtain (6.27) from (6.26) we let L = Ym2+1 in (6.26) and get

|Pr(Y
′m1 ∈ Am1(bm2 , b

′m2)) −
1

22m2
Pr(Y

′m1 ∈ Am1)| < 2w
1

4
(m1−l1+1) (6.28)
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A difficulty now arises. In order to obtain a good bound wl1 at the RHS of (2.27), we
have to find an Am1 ∈ A such that Pr(Y

′m1 ∈ Am1) is not too small. Assume then that
(6.21) does not hold and we now look for our Am1 . Since the set {sm : δ∗(0m1 , sm1) < l1}
is covered by the family of sets

B ,

{

m1
∏

t=1

Bt : Bt ∈ {S0,S} and |{t : Bt = S0}| = m1 − l1 + 1

}

,

∑

Bm1∈B

Pr(Sm1 ∈ Bm1) ≥ Pr
(

δ∗(0m1 , Sm1) < ℓ1

)

≥ wℓ1 and therefore one member of B, say

Bm1 = Sm1−l1+1
0 × S l1−1, must have the probability

Pr(Sm1 ∈ Bm1) ≥

(

m1

l1 − 1

)−1

wl1 , (6.29)

if (6.21) does not hold since |B| =
(

m1

ℓ1−1

)

. We then choose Am1 = Ym1−l1+1
0 ×Y l1−1. Notice

that for all sm1 ∈ Bm1

Wm1(Am1|0m1 , sm1) = 1 (6.30)

Recalling Y n and Y
′n have the same distributions, we conclude from (6.20), (6.29), and

(6.30) that

Pr(Y
′m1 ∈ Am1) = Pr(Y m1 ∈ Am1) ≥

∑

sm1∈Bm1

Pr(Sm1 = sm1)Wm1(Am1 |0, sm1)

≥

(

m1

l1 − 1

)−1

wl1 .

With the above inequality and the relation 22m2+1
(

m1

ℓ1−1

)

w
m1−ℓ1+1

4
−ℓ1 = 0(1) (which follows

from the assumption in (6.6)) and (6.28), (6.227) can be obtained by dividing (2.26) by
Pr(Y ′m1 ∈ Am1).

Now comes the kernel of the proof.

Crowd Lemma 8. For suitable parameters in (6.6)

(i) For all PD σ on Sm2 there exists a bm2 ∈ {0, 1}m2 such that

σ(sm2 : δ∗(bm2 , sm2) < l2) < wl2 . (6.31)

(ii) If (6.23) holds, then for all bm2 ∈ {0, 1}m2 there exists a b
′m2 ∈ {0, 1}m2 such that

Pr(δ∗(b
′m2 , S

′m2) < l2|Y
′m1 ∈ Ω1(b

m2 , b
′m2)) < wl2 . (6.32)

(iii) If (6.27) holds, then for all b
′m2 ∈ {0, 1}m2 there exists a bm2 ∈ {0, 1}m2 such that

Pr(δ∗(bm2 , S
′m2) < l2|Y

m1 ∈ Am1(bm2 , b
′m2)) < wl2 . (6.33)
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Proof: Ad(i). Assume to the opposite that for some σ and all bm2

σ(sm2 : δ∗(bm2 , sm2) < l2) ≥ wl2 .

Then we add up these inequalities over all bm2 ∈ {0, 1}m2 . Since for all sm2 ∈ Sm2 there

are at most
l2−1
∑

j=0

(

m2

j

)

2j bm′

2s with δ∗(bm2 , sm2) < l2 we obtain that

l2−1
∑

j=0

(

m2

j

)

2j ≥
∑

sm2

σ(sm2)|
{

bm2 : δ∗(bm2 , sm2) < ℓ2

}

| =

∑

bm2∈{0,1}m2

σ(sm2 : δ∗(bm2 , sm2) < l2) ≥ 2m2wl2 ,

which cannot happen for sufficiently small ε and large l2 in (6.6).

Ad (ii) and (iii). We only show that (6.32) holds under (6.23), because (iii) can be proved
in the same way, whereas in (i) we dealt with one PD, we deal now with a family of PD’s.
This makes things harder. Define for all b

′m2 ∈ {0, 1}m2 and δ̃ in (5.6).

L∗(b
′m2) , {ym2 ∈ Ym2 : δ̃(b

′m2 , ym2) < l2}. (6.34)

Then for all sm2 with δ∗(b
′m2 , sm2) < l2 by the definitions of (S

′n, Y
′n) and Sx,

Pr(Y
′m2 ∈ L∗(b

′m2)|S
′m2 = sm2 , Y

′m1 ∈ Ω1(b
m2 , b

′m2)) = Wm2(L∗(b
′m2)|b

′m2 , sm2) = 1.
(6.35)

Consequently, if (6.32) is false, i.e. for some bm2 and all b
′m2 .

Pr(δ∗(b
′m2 , S

′m2) < l2|Y
′m2 ∈ Ω1(b

m2 , b
′m2)) ≥ wl2 ,

then for such a bm2 and all b
′m2 , by (6.35)

Pr(Y
′m2 ∈ L∗(b

′m2)|Y
′m1 ∈ Ω1(b

m2 , b
′m2)) =

∑

sm2

Pr(S
′m2 = sm2 |Y

′m2 ∈ Ω1(b
m2 , b

′m2))

× Pr(Y
′m2 ∈ L∗(b

′m2)|S
′m2 = sm2 , Y

′m1 ∈ Ω1(b
m2 , b

′m2)

≥
∑

sm2 :δ∗(bm2 ,sm2 )<ℓ2

Pr
(

S ′m2 = sm2 |Y m2 ∈ Ω1(b
m2 , b′m2)Pr

(

Y ′m2 ∈ L∗(b′m2)|S ′m2

= sm2 , Y ′m2 ∈ Ω1(b
m2 , b′m2)

)

= Pr
(

δ∗(b′m2 , S ′m2) < ℓ2|Y
′m2 ∈ Ω1(b

m2 , b′m2)
)

> wl2 .

Therefore, since Y n and Y
′n have the same distributions,

Pr(Y m2 ∈ L∗(b
′m2)|Y m1 ∈ Ω1(b

m2 , b
′m2)) ≥ wl2 . (6.36)
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Apply now (6.23) to L = L∗(b
′m2) for all b

′m2 . Thus

∑

sm2+1

Pr(Sm2+1 = sm2+1)Pr(Y m2 ∈ L∗(b
′m2)|Sm2+1 = sm2+1, Y m1 ∈ Ω1(b

m2 , b
′m2)) ≥ wl2−w

l1
8 .

(6.37)
Finally, by adding both sides of (6.37) over {0, 1}m2 and by using the fact that each

ym2 ∈ Y m2 is covered by at most
l2−1
∑

j=0

(

m2

j

)

2j sets L∗(b
′m2) in (6.34) we arrive at

l2−1
∑

j=0

(

m2

j

)

2j ≥

∑

sm2+1

Pr(Sm2+1 = sm2+1)
∑

b
′m2∈{0,1}m2

Pr(Y m2 ∈ L∗(b
′m2)|Sm2+1 = sm2+1, Y m1 ∈ Ω1(b

m2 , b
′m2))

≥ 2m2(wl2 − w
l1
8 ), (6.38)

which contradicts (6.6).

The idea behind the Crowd Lemma is that an encoding function with enough different
values has always ”a good” value against the jamming.

Now it’s time for the harvest.

Proof of Positivity Theorem: We use Lemmas 6-8 to obtain a contradiction to (6.4).
This is done in two cases.

Case 1 (6.21) holds: Then by Lemma 6 also (6.23) holds. We apply Lemma 8 (i) to
σ = PSm2 and obtain a bm2 such that (6.24) holds with E = Ym1 (i.e. unconditional
distribution). Fix this bm2 and apply Lemma 6 (ii) for E = Ym1 . Thus we obtain (6.25)
with E = Ym1 . Choose next L = Ω2(x, x′) × K in (6.23) and combine it with (6.25) for
E = Ym1 . Thus we get that for the fixed bm2 , all x, x′ ∈ X , all b

′m2 ∈ {0, 1}m2 , and all
K ⊂ X

|Pr(Y m2 ∈ Ω2(x, x′), Y ∈ K|Y m1 ∈ Ω1(b
m2 , b

′m2))

−
1

|X |2

∑

s

Pr(S = s)W (K|x, s)| < w
l1
8 + 2w

l2
4 + wl2 . (6.39)

On the other hand, since (6.23) holds, we can find a b
′m2 for the fixed bm2 so that (6.32)

holds by (ii) in Lemma 8. That is, after replacing (Sn, Y n) by (S ′n, Y ′n), (6.24) holds
for E = Ω1(b

m2 , b′m2) and therefore, by Lemma 6 (ii) again, but this time for (S
′n, Y

′n)
(instead of (Sn, Y n)) and E = Ω1(b

m2 , b
′m2) we obtain for the fixed bm2 , b

′m2 , all x, x′ ∈ X ,
and K ⊂ Y

|Pr(Y
′m2 ∈ Ω2(x, x′), Y ′ ∈ K|Y

′m1 ∈ Ω1(b
m2 , b

′m2))

−
1

|X |2

∑

s∈S

Pr(S ′ = s|Y
′m1 ∈ Ω1(b

m2 , b
′m2))W (K|x′, s)| < 2w

l2
4 + wl2 , (6.40)
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where we use the fact that

Pr(Y
′m2 ∈ Ω2(x, x′), Y ′ ∈ K|Y

′m1 ∈ Ω1(b
m2 , b

′m2))

=
∑

sm2+1

Pr(S
′m2+1 = sm2+1|Y

′m1 ∈ Ω1(b
m2 , b

′m2))

×Pr(Y
′m2 ∈ Ω2(x, x′), Y ′ ∈ K|S

′m2+1 = sm2+1, Y
′m1 ∈ Ω1(b

m2 , b
′m2)).

Finally, let l1 and l2 be sufficiently large, then from (6.39), (6.40), and the fact that Y n

and Y
′n have the same distributions we obtain that for θ in (6.4), all x, x′ ∈ X and K ⊂ Y ,

|
∑

s

Pr(S = s)W (K|x, s) −
∑

s

Pr(S ′ = s|Y
′m1 ∈ Ω1(b

m2 , b
′m2)) · W (K|x′, s)| ≤

θ

3
,

or, for all x, x′′ ∈ X and K ⊂ Y .

∣

∣

∣

∣

∣

∑

s

Pr(S = s)W (K|x, s) −
∑

s

Pr(S = s)W (K|x′′, s)

∣

∣

∣

∣

∣

<
2θ

3
(6.41)

which contradicts (6.4) (for K = {y}).

Case 2: (6.21) does not hold: Here by Lemma 7 we have (6.27) for an Am2 ∈ A. Fix
this Am2 by applying Lemma 8(i) for σ = Pr(·|Y ′m2 ∈ Am2), we obtain that for a (fixed)
b
′m2 Pr(δ∗(b

′m2 , S
′m2) < l2|Y

′m2 ∈ Am2) < wl2 , i.e. (6.24) in terms of the distribution
(S

′n, Y
′n) and with E = Am2 . Therefore we have (6.25) in terms of the distribution of

(S
′n, Y

′n) with E = Am2 and then an inequality in terms of the distribution of (S
′n, Y

′n),
analogous to (6.39), by combining (6.25) and (6.27). Next for the fixed b

′m2 (obtained
by applying Lemma 8 (i) in this case), we find a bm2 such that (6.33) holds. Now we set
E = Am1(bm2 , b

′m2) in Lemma 6 (ii) and obtain an inequality, analogous to (6.40), but in
terms of the distribution of (Sn, Y n). Finally, we get an inequality analogous to (6.41),
which contradicts (6.4).
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