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Abstract. The concept of diameter perfect codes, which seems to be a natural generalization of perfect codes
(codes attaining the sphere–packing bound) is introduced. This was motivated by the “code–anticode” bound of
Delsarte in distance regular graphs. This bound in conjunction with the recent complete solutions of diametric
problems in the Hamming graphHq(n) and the Johnson graphJ(n, k) gives a sharpening of the sphere–packing
bound. Some necessary conditions for the existence of diameter perfect codes are given. In the Hamming graph
all diameter perfect codes over alphabets of prime power size are characterized. The problem of tiling of the
vertex set ofJ(n, k) with caps (and maximal anticodes) is also examined.
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1. Introduction

Perfect codes are a fascinating structure in coding theory, which again and again attracted
attention. They have been studied for different metrics, especially, for the Hamming metric
(for a good survey see e.g. [5]). Generally we are given a distance regular graph0 with
vertex setV. A codeC in 0 is a nonempty subset ofV. Its minimum distanced(C) is the
minimum distance of two distinct codewords, that is

d(C) = min {dist(x, y): x, y ∈ C, x 6= y} . (1.1)

The set

Bi (u) = {x ∈ V: dist(x,u) ≤ i } (1.2)

is the ball of radiusi and centeru.
Now, a codeC is callede–perfectif the balls{Be(u): u ∈ C} partitionV, that is,

•⋃
u∈C
Be(u) = V (1.3)

and consequently with the cardinalitybe of these balls

|C| = |V|b−1
e . (1.4)
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Clearly, ane–perfect codeC has minimum distance

d(C) = 2e+ 1. (1.5)

Conversely, if a codeC satisfies (1.4) and (1.5), then it ise–perfect.
Central in our investigations is a bound which was found by Delsarte in his study of the

Bose–Mesner algebra of association schemes:

THEOREMD [6] LetX andY be subsets of the vertex setV of a distance regular graph0,
such that nonzero distances occuring between vertices inX do not occur between vertices
ofY. Then

|X ||Y| ≤ |V|. (1.6)

In particularly, for a codeC with minimum distanced(C) = D+1 and any ballBe(u) ⊂ V
|C||Be(u)| ≤ |V|

and thus

|C| ≤ |V|b−1
e for e=

⌊
D

2

⌋
. (1.7)

This is the well–known so–called “sphere” packing bound.
The present investigation started with the observation that the Diametric Theorems (stated

below) of [1] for the Johnson graphJ(n, k) and of [2] for the Hamming graphHq(n) yield
improvements of (1.7).

Indeed, letD(A) be the diameter of anyA ⊂ V of a distance regular graph.

D(A) = max{dist(x, y): x, y ∈ A} . (1.8)

We also say thatA is ananticodewith diameterD(A).
Let A∗(D) = max{|A|: D(A) ≤ D}.
Then by Theorem D for any codeC ⊂ V with minimum distanced(C) = D + 1

|C| ≤ |V|A∗(D)−1. (1.9)

One can use this bound to introduce another and seemingly more natural concept of
perfect codes.

Definition. A codeC with d(C) = D + 1 is calledD–diameter perfect, if (1.9) holds with
equality. We use the word diameter perfect, if the parameter is unspecified.

Clearly, any perfect code is also diameter perfect. In this case an optimal anticode must
be a ball! However, in general that is not the case and we get improvements of the sphere
packing bound.

The diametric problems in Johnson and Hamming graphs are closely related to intersection
problems for systems of finite sets. Recently these two problems were completely solved
in [1], [2] by describing all maximal anticodes. We need some further notation:
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(
[n]
k

)
denotes the set of allk–element subsets of the set [n] , {1, . . . ,n}.

A system of subsetsA ⊂ ([n]
k

)
is calledt–intersecting, if

|A1 ∩ A2| ≥ t for all A1, A2 ⊂ A.
Define the function

M(n, k, t) = max

{
|A|: A is at–intersecting system,A ⊂

(
[n]
k

)}
,1≤ t ≤ k ≤ n.

Note that in the language of 0− 1 vectors of lengthn and weightk this is the maximal
size of an anticode of Hamming diameter 2(k− t). Define

Fi =
{

A ∈
(

[n]
k

)
: |A∩ [1, t + 2i ]| ≥ t + i

}
for o ≤ i ≤ n−t

2 .

THEOREMAK 1 [1] For 1≤ t ≤ k ≤ n with

(i) (k− t + 1)
(
2+ t−1

r+1

)
< n < (k− t + 1)

(
2+ t−1

r

)
for some r∈ N ∪ {0} we have

M(n, k, t) = |Fr |

andFr is—up to permutation—the unique optimum. By conventiont−1
r = ∞ for r = 0.

(ii) (k− t + 1)
(
2+ t−1

r+1

) = n for r ∈ N ∪ {0} we have

M(n, k, t) = |Fr | = |Fr+1|

and an optimal system equals up to permutations—eitherFr or Fr+1.

We denote the maximal cardinality of an anticode inJ(n, k) of diameterD by

A∗(n, D, k) = M(n, k, t), if D = 2k− 2t. (1.10)

In the Hamming spaceH(n,q) we have a second concept of intersection.
Let F = {0,1, . . . ,q − 1} and letA ⊂ Fn be a set of sequences(a1, . . . ,an), ai ∈ F .

We say thatA is t–intersecting if, for anyan,bn ∈ A
int(an,bn) , | {i ∈ [n]: ai = bi } | ≥ t.

Equivalently we say thatA has a diametern− t . Define

Nq(n, t) , max{|A|: A is at–intersecting system inFn}.
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Denote now the maximal cardinality of an anticode inHq(n) of diameterD by

A∗q(n, D) = Nq(n, t), if D = n− t. (1.11)

THEOREMAK 2 [2] For q ≥ 2, D < n we have

A∗q(n, D) = ∣∣Bn−D+2r
r (u)

∣∣ · qD−2r , (1.12)

where Bn−D+2r
r (u) is a ball inHq(n− D + 2r ) of radius r and

r =

⌊

D
2

⌋
, if (D + 1)q ≤ 2n⌊

n−D+1
q−2

⌋
, if (D + 1)q > 2n.

(1.13)

Remark 1. In [2] this Theorem is formulated in terms of intersection. It can be seen from
(1.11) that an optimal anticode is a Cartesian product of a ball and cube with parameters
determined by (1.13).

Obviously these theorems give a sharpening of the sphere packing bound in the Johnson
graph and the Hamming graph.

Besides improving the sphere packing bound we investigateD–diameter perfectness and
tiling with optimal anticodes.

But first we report classical results one–perfectness for most familiar distance regular
graphs.

1. Hamming Graphs

The vertex set of the Hamming graphHq(n) is the setVn = {0,1, . . . ,q − 1}n. The
distance for any two vertices is the Hamming distancedH (counting the number of different
components). Two vertices are adjacent, if their Hamming distance is 1.

It was proved by van Lint [16], Tiet¨aväinen [17], and independently by Zinoviev and
Leontiev [18], that alle–perfect codes inHq(n) (q is a prime power) must have the same
parameters as one of the Hamming or Golay codes.

However, the problem of existence ofe–perfect codes is still open, ifq is not a power of
a prime. Another direction of research has been to find non–isomorphice–perfect codes
with the same parameters. A recent survey is [5, ch. 11].

2. Johnson Graphs

The vertex set of the Johnson graphJ(n, k) is Vn
k = {x ∈ {0,1}n: x hask ones}. Two

verticesx, yare adjacent, if they havek−1 ones in common or, equivalently, ifdH (x, y) = 2.
Thus the Johnson distance betweenx, y ∈ Vn

k is defined to bedJ(x, y) = 1
2dH (x, y).

Delsarte [6] conjectured in 1973 that no nontriviale–perfect codes exist inJ(n, k). Until
now none has been found. However, Roos [15] established a necessary condition for their
existence.
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THEOREMR [15] If an e–perfect code in J(n, k),n ≥ 2k exists then

n ≤ (k− 1)(2e+ 1)

e
. (1.14)

(The casen < 2k gives nothing new, because exchanging zeros and ones gives an
isometry.)

Another significant nonexistence result is due to Etzion [7] (see also [3], [9]).

THEOREME [7] There are no perfect codes in J(2k+ e+ 1,e+ 1), J(2k+ p, k), J(2k+
2p, k); p 6= 3, J(2k+ 3p, k); p 6= 2,3,5 where p is a prime.

3. Grassmann Graph

Among the distance regular graphs the Grassmann graphGq(n, k) seems also to be inter-
esting to our direction of research. Its vertex set is the set of allk–dimensional subspaces
of GF(q)n. Two such subspaces are adjacent iff they intersect in a(k − 1)–dimensional
subspace.

The diametric problem in the Grassman graph (in terms of intersections) is solved by
Frankl and Wilson in [8].

We mention now our main results.
In Section 2Theorem 1 generalizes Delsarte’s Theorem forJ(n, k) to a local inequality,

which in particular implies Johnson’s bound. A similar inequality holds forHq(n) and
Gq(n, k).

As an application of Theorem AK 1 we give a comparison of upper bounds obtained in
Theorem D for constant weight codes.

In Section 3 we give examples of diameter perfect codes inJ(n, k). We also give
necessary conditions which include the known one stated above.

In Section 4we show that MDS codes are diameter perfect inHq(n) and so are extended
Hamming codes and extended Golay codes. Recall that the perfect codes are automatically
diameter perfect. We prove that there are no others!

In Section 5we show that the problem of existence of diameter perfect codes inJ(n, k)
can be reduced in all cases to the problem of tiling of vertex setVn

k with caps.
Finally, we prove that there are no tilings ofVn

k with optimal anticodes, which are not
balls. (Compare Delsarte’s conjecture above.)

2. A Local Inequality

In standard notation an(n,2δ, k)–code inJ(n, k) has blocklengthn, constant weightk, and
minimum distancedH = 2δ (or dJ = δ). The maximum size of such codes is denoted by
A(n,2δ, k).

InHq(n) the corresponding notions are(n,d)q–codes and maximum sizesA(n,d)q.
The following statement is a generalization of Theorem D for the graphs mentioned above.
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THEOREM1 LetCD be a code in0 (0 = J(n, k),Hq(n) or Gq(n, k)) with distances from
D = {d1, . . . ,ds} ⊂ {1,2, . . . ,n}. Further letLD(B) be a maximal code in B⊂ 0 with
distances fromD. Then one has

|CD|
|0| ≤

|LD(B)|
|B| . (2.1)

Proof. Let 0 = J(n, k). Count in two ways the number of pairs(a, π), wherea ∈ CD, π
is a permutation of{1,2, . . . ,n} with π(a) ∈ B. For a fixeda ∈ CD andb ∈ B there are
exactlyk!(n− k)! choices forπ ; hence the number of such pairs equal|CD||B|k!(n− k)!.

On the other hand no permutation can transfer elements ofCD into more than|LD(B)|
elements ofB. Then we have

|CD||B|k!(n− k)! ≤ |LD(B)|n!

as desired.
In fact the following much more general statement is valid.

THEOREM 1′ With the conditions of Theorem 1 inequality (2.1) holds for any graph0,
which admits a transitive group of automorphisms.

This can be easily proved using the same argument as in the proof above.

Remark 2. For the Hamming graph this extends the Elias–Bassalygo inequality (see [5,
ch. 12]). Such an extension for the Hamming graph was already observed (stated in an even
more general form) by Levenshtein [13].

Theorem D (forJ(n, k),Hq(n), Gq(n, k) follows from (2.1) by choosing forB a subset
with distances from{1, . . . ,n}\D. Then clearly|LD(B)| = 1 and we get (1.6).

In J(n, k) (2.1) implies

A(n,2δ, k) ≤
(

n
k

)
|L(B)||B|−1, (2.2)

whereL(B) is a maximal code inB with minimum distance 2δ.
Inequality (2.2) can be very useful to get various kinds of upper and lower bounds for

constant weight codes by choosingB in a suitable way. For example (2.2) can be viewed
as a generalization of the well known Johnson bound (see [14]).

COROLLARY 1

A(n,2δ, k) ≤
⌊n

k
A(n− 1,2δ, k− 1)

⌋
(2.3)

A(n,2δ, k) ≤
⌊

n

n− k
A(n− 1,2δ, k)

⌋
. (2.4)

Indeed take asB in (2.1) all vectors inVn
k with a 1 (resp. 0) in a fixed component and get

(2.3) (resp. (2.4)).
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Another application of (2.2) gives the bound due to Zinoviev [19] (see also [12]).

THEOREMZ [19] If 0≤ g ≤ min{k, δ} and0≤ ` < n, then

A(n,2δ, k) ≤
(

n
`

)
∑g

i=0

(
k
i

)(
n−k
`−i

) A(n− `,2δ − 2g, k− g). (2.5)

Proof. Take as aB the set of all vectors inVn
k with weight at mostg in the first` positions.

Then by (2.2) we have

A(n,2δ, k) ≤
(

n
k

)|L(B)|
|B| =

(
n
k

)|L(B)|∑g
i=0

(
`
i

)(
n−`
k−i

) .
Note that|L(B)| ≤ A(n− `,2δ − 2g, k − g). This follows from the easy observation,

that deletion of the first̀ positions and change of arbitraryi 1’s to 0’s in the lastn − `
positions in every vector fromL(B)with weightk−g+ i (i = 1, . . . , g) (in the remaining
positions) gives an(n− `,2δ − 2g, k− g)–code.

Finally we get (2.5) using the following identity, which can be easily verified

(
n
k

)
∑g

i=0

(
`
i

)(
n−`
k−i

) =
(

n
`

)
∑g

i=0

(
k
i

)(
n−k
`−i

) (2.6)

for 0< k, ` ≤ n.

Theorem 1 gives also the following necessary condition for existance of a diameter perfect
code inJ(n, k) (Hq(n),Gq(n, k)).

COROLLARY 2 A D–diameter perfect code in J(n, k) with minimum distance d exists only
if for every B⊂ Vn

k and every maximal code L(B) ⊆ B with minimum distance d holds

A∗(n,d − 2, k) ≥ |B||L(B)|−1.

The same holds inHq(n) and Gq(n, k).

Another condition, which easily can be derived with Theorem 1, is as follows.

COROLLARY 3 C is a D–diameter perfect code in J(n, k) (Hq(n),Gq(n, k)) with d(C) ≥
D + 1 iff each maximal anticodeA(D) contains a codeword.

The next result compares the upper bounds of TheoremD for constant weight codes (with
the same minimum distance), using Theorem AK 1.
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THEOREM2 Let m, k, D,n be integers with2k ≤ n, 0< m< k. Then(
n
k

)
A∗(n, D, k)

>

(
n
m

)
A∗(n, D,m)

. (2.7)

Proof. Note first, that it suffices to prove the inequality

A∗(n, D, k)

A∗(n, D, k− 1)
<

n− k+ 1

k
. (2.8)

Indeed applying (2.8)k−m times we will get the desired relation. Letr ≥ 0 be determined
from relation (i) of Theorem AK 1, wheret = 2k−D

2 .
Then by Theorem AK 1

A∗(n, D, k) =
r∑

i=0

(
t + 2r

t + r + i

)(
n− t − 2r

k− t − r − i

)
.

Further, since

A∗(n, D, k− 1) = M(n, k− 1, t − 1) ≥
r∑

j=0

(
t + 2r − 1

t + r + j − 1

)(
n− t − 2r + 1
k− t − r − j

)
,

we have

A∗(n, D, k)

A∗(n, D, k− 1)
≤

∑r
i=0

(
t+2r

t+r+i

)(
n−t−2r

k−t−r−i

)
∑r

j=0

(
t+2r−1

t+r+ j−1

)(
n−t−2r+1
k−t−r− j

) .
Set

f (i ) =
(

t+2r
t+r+i

)(
n−t−2r

k−t−r−i

)
(

t+2r−1
t+r+i−1

)(
n−t−2r+1
k−t−r−i

) = (t + 2r )(n− k− r + i + 1)

(t + r + i )(n− t − 2r + 1)
.

From the relation

n < (k− t + 1)

(
2+ t − 1

r

)
with 2k ≤ n we gett + 2r ≤ k. This implies

n− k− r + i + 1> t + r + i .

Thus f (i ) is monotone decreasing and it suffices to show that

(t + 2r )(n− k− r + 1)

(t + r )(n− t − 2r + 1)
<

n− k+ 1

k

or equivalently

n+ r (k− t − r )

n− k− r + 1
>

k(t + 2r )

t + r
+ t + r − 1. (2.9)
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Denote the LHS of (2.9) byg(n). The functiong(n) is increasing forn ≥ nm =√
r (k− t − r )+ k+ r − 1. We have

(k− t + 1)

(
2+ t − 1

r + 1

)
= n1 ≤ n.

One can check thatnm < n1. Hence it is sufficient to show the desired relation forn = n1.
That is, we have to verify the following inequality

(t + 2r + 1)(k− t + 1)

r + 1
+ r (r + 1)(k− t − r )

(t + r )(k− t − r )+ 2(r + 1)
− k(t + 2r )

t + r
− t − r + 1> 0.

(2.10)

We distinguish two cases: (i)k ≥ t + 2r + 1 and (ii)k = t + 2r .
Denote the LHS of (2.10) byh(k). One can check now thath(t + 2r + 1) > 0 and

h(t + r ) < 0.
On the other hand it can be easily seen that there exists 0≤ k0 < t+r such thath(k0) > 0.

Henceh(k) monotonically increases whenk ≥ t + 2r + 1 i.e.h(k) > 0 as desired.
The case (ii)k = t + 2r needs slightly a more delicate estimation. In this case we have

nm < n1 = (k− t + 1)

(
2+ t − 1

r + 1

)
= 4r + 2t − t − 1

r + 1
= 2k− t − 1

r + 1
< 2k ≤ n.

Hence for the case (ii) it suffices to show (2.9) forn = 2k = 2(t + 2r ), which easily can
be verified.

Remark 3. The following example shows that in general (2.7) cannot be improved even
by a constant factorc > 1 in the RHS. Letn = 2k, m = k − 1, D = 4 (in fact one can
take anyD). Then in view of Theorem AK1, ifk > 3 the maximal anticode of diameter 4
in J(2k, k) andJ(2k, k− 1) is a ball of Hamming radius 2. HenceA∗(2k,4, k) = k2+ 1,
A∗(2k,4, k− 1) = k2. By (2.7) we have(

2k
k

)
k2+ 1

>

(
2k

k−1

)
k2

and clearly RHS/LHS goes to 1 ask→∞.

3. Examples ofD–Diameter Perfect Codes inJ(n, k)

We have from (2.2) and Theorem AK 1 in the Introduction that

A(n,2δ, k) ≤
(

n
k

)
|Fr | , (3.1)

with r ∈ N ∪ {0} as specified there.
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Example 1. Let k,n ∈ N andk|n. Obviously there exists an(n,2k, k)–codeC with
|C| = n

k . We have

|C| = n

k
=

(
n
k

)
A∗
(
n,2(k− 1), k

) =
(

n
k

)
M(n, k,1)

=
(

n
k

)
(

n−1
k−1

) .
ThusC is a D–diameter perfect code withD = DH = 2(k − 1). This is alsoe–perfect

(the trivial code) in the casen = 2k, k odd,e= k−1
2 .

This example is a special case of a class of diameter perfect codes obtained from Steiner
systems.

A Steiner systemS(n, t, k) is a collection ofk–subsets (called blocks) taken from an
n–set such that for eacht–subset of then–set there exists exactly one block containing this
t–subset. The numberb of blocks is

b =
(

n
t

)/(
k
t

)
. (3.2)

A necessary condition for a Steiner system to exists is that(
n− i
t − i

)/(
k− i
t − i

)
∈ N for 0≤ i ≤ t. (3.3)

Representing blocks by 0−1–vectors one sees that a Steiner systemS(t, k,n) is equivalent
to a constant weight code with parameters

(
n,2(k − t + 1), k

)
, because any two vectors

have at mostt − 1 ones in common.

LEMMA 1 Any Steiner system S(t, k,n) forms a diameter perfect code.

Proof. Let C be an
(
n,2(k− t + 1), k

)
–code corresponding to aS(t, k,n). Then

|C| =
(

n
t

)
(

k
t

) =
(

n
k

)
(

n−t
k−t

) .

On the other hand|C| ≤
(

n
k

)
A∗
(

n,2(k−t),k
) and thereforeA∗

(
n,2(k− t), k

) ≤ (n−t
k−t

)
.

Since there exists an anticode of size
(

n−t
k−t

)
the statement follows.

Next we return toe–perfect codes inJ(n, k). Suppose thatC is an(n,2δ, k)–code which
is e–perfect. Then clearlyδ = 2e+ 1 and

|C| =
(

n
k

)( e∑
i=0

(
k
i

)(
n− k

i

))−1

.
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The parameters of a maximal anticode of diameterDH = 2(δ − 1) can be found (see
Theorem AK 1) from the relation

δ

(
2+ k− δ

r + 1

)
≤ n < δ

(
2+ k− δ

r

)
. (3.4)

We must havek− δ + 1+ 2r = k and thereforer = δ−1
2 = e. Hence

n ≤ (2e+ 1)(k− 1)/e,

which is Roos’s result reported in the Introduction.
The following necessary condition for the existence ofe–perfect codes [7] inspired us to

obtain a similar condition forD–diameter perfect codes:

THEOREM3 [7] If an e–perfect code in J(n, k)exists then Steiner systems S(e+1,2e+1, k)
and S(e+ 1,2e+ 1,n− k) exist.

THEOREM4 Assume that there exists a diameter perfect(n,2δ, k)–codeC and r ∈ N∪{0} is
the parameter obtained from (3.4). Then Steiner systems S(δ−r, δ, k) and S(r +1, δ,n−k)
exist.

Proof. Let b0 be a codeword. Partition the set of coordinates{1, . . . ,n} into two partsN1

andN2, such thatN1 is the position of 1’s inb0. We will say thatx is an(i, j )–vector, if it
has weighti in part N1 and weightj in N2.

Consider now all codewords, which are at distance 2δ = 2(k − t + 1) from b0, and the
vectors of weightt + 2r , which are at distancek− t + 2 fromb0. That is, we consider all
(t − 1, k− t + 1)–code vectorsB and all(t + r − 1, r + 1)–vectors.

In view of Theorem AK 1 each maximal anticode (inJ(n, k)) of diameterD = 2(δ− 1)
can be represented as a vector of weightt + 2r , wherer is obtained from (3.4). Moreover,
Corollary 3 implies that for anyu ∈ Vn

t+2r there exists av ∈ C, such thatd(u, v) ≤ k − t .
This means that for each(t + r − 1, r + 1)–vectoru there exists precisely one codeword
v ∈ B, such thatv is covered byu (is contained inu as a set) in partN1 andv coversu in
part N2. Transform nowB into B′ by inverting 0’s and 1’s in vectors ofB, in partN1.

Clearly we obtain(k − t + 1, k − t + 1)–vectors. It is easily seen thatB′ forms a “two
part Steiner” system. That is any(k − t − r + 1, r + 1)–vector is covered by exactly one
(k− t + 1, k− t + 1)–vector fromB′, and nok− t + 2–vector is covered by two different
vectors fromB′.

Sinceδ = k− t + 1 this clearly enforces

|B| = |B′| =
(

k
δ−r

)(
n−k
r+1

)
(
δ
δ−r

)(
δ

r+1

) .
A Steiner systemS(δ−r, δ, k) (S(r+1, δ,n−k)) can be obtained fromB′ in partN1 (resp.

N2) by taking all vectors of B′ with fixed r + 1 1’s in N2 (resp. δ − r 1’s
in N1).
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Example 2. There exists a Steiner systemS(5,8,24), which is a diameter perfect (24,8,8)–
code. Since(k − t + 1)(t + 1) = 4 · 6 = 24, by Theorem AK 1 we have two choices of
r : r = 0, orr = 1. Therefore by Theorem 4 (withr = 1) we obtain two Steiner systems,
S(3,4,8) andS(2,4,16).

COROLLARY 4 A diameter perfect(n,2δ, k)–code exists only if k≥ (r + 1)(δ − r + 1).

Proof. This follows from the known fact that for any Steiner systemS(t, k,n) necessarily
n ≥ (k − t + 1)(t + 1). Note that this immediately follows from Theorem AK 1 using
Theorem D.

One can also obtain additional necessary conditions using divisibility conditions
(3.3).

4. Examples ofD–Diameter Perfect Codes inHq(n)

An (n,d)q–codeC is called MDS–code (maximum distance separable code), if it meets the
Singleton bound, that is,

|C| = qn−d+1.

Reed–Solomon codes [14] are an example of MDS–codes.

LEMMA 2 Any MDS–code is diameter perfect.

Proof. The set of all vectors with fixedn−d+1 coordinates forms an anticode of diameter
d − 1 and sizeqd−1. Thus|C|qd−1 = qn and the result follows.

We say thatC ′ is an extended code if it is obtained from a codeC by adding an extra
symbol to every codeword, such thatd(C ′) = d(C)+ 1.

LEMMA 3 If C is a diameter perfect code inHq(n), then the extended codeC ′ is also
diameter perfect.

Proof. Let C be a diameter perfect code with minimum distanced and letA be a maximal
anticode of diameterd − 1. Set

A′ =
{
bn+1 , (an, α): an ∈ A, α ∈ {0,1, . . . ,q − 1}

}
.

Clearly diam(A′) ≤ d and |A′| = q|A|. Then |A′||C ′| = qn+1 and the statement
follows.

COROLLARY 5 The extended Hamming and Golay codes are diameter perfect.

Remark 4. Using standard notation we denote by [n, k,d]q aq–ary linear code of lengthn,
dimensionk and minimum distanced. It is known (see [14]), that there exist extended
Golay codes ([24,12,8]–code and [12,6,6]3–code) and extended binary Hamming code
([2m,2m,−m− 1,4]–code).
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There are alsoq–ary extended Hamming [q+2,q−1,4]q–codes in the case whenq = 2r ,
q ≥ 2, which are also MDS codes. On the other hand one can show that there are no other
extended Hamming codes. (This follows e.g. from a result in [10] (Theorem 5.3).)

However we do not know whether there are extensions of nonlinearq–ary perfect codes
(which have the same parameters as Hamming codes).

THEOREM5 InHq(n) (q is a prime power) there are no diameter perfect codes except for
the codes having the parameters of the Hamming and extended Hamming codes, Golay and
extended Golay codes, MDS codes.

Proof. Let C be a D–diameter perfect(n,d)q–code and letr be the parameter obtained
from relation (1.13). Suppose also thatr 6= d−1

2 (i.e.C is not ane–perfect code) andr > 0
(if r = 0 we have an MDS code).

We have

|C| = qn/A∗q(n,d − 1),

and in view of Theorem AK 2

A∗q(n,d − 1) = |Bn−d+2r+1
r (u)| · qd−2r−1.

Then puncturing some position inC we obtain an(n−1,d−1)q–codeC1 with |C1| = |C|.
ClearlyC1 is a(D−1)–diameter perfect code, because there exists an anticode (inHq(n−

1)) of diameterd − 2 and of size|Bn−d+2r+1
r (u)| · qd−2r−2.

Repeating this procedure we will finally get a diameter perfect code with parameters
n∗ = n− d+ 2r + 1, d∗ = 2r + 1 and this is a perfect code with parameters of Hamming
or Golay codes. Next clearly on the lengthn∗ + 1 we have extended Golay codes or a code
with parameters of an extended Hamming code.

On the other hand one can easily show that there are no doubly extended Golay codes, or
codes with parmeters of possible doubly extended Hamming codes.

Namely(25,9)2–code with cardinalityM = 212, (13,7)3–code withM = 36 and(qm−1
q−1 +

2,5)q–code withM = qn−m (n = qm−1
q−1 , m> 2). This completes the proof.

Remark 5. Note that MDS–codes include also trivial perfect codes. That is aq–ary code
containing just one codeworda ∈ Hq(n) (by convention hered = n+1), the whole space,
and an(n,n)q “repetition” code withq codewords.

5. Tiling in J(n, k) with Caps

For n,m, k, ` ∈ N, ` ≤ k,m< n andE ∈ ([n]
m

)
define

FE =
{

A ⊂
(

[n]
k

)
: |A∩ E| ≥ `

}
. (5.1)
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We say, thatB ⊂ ([n]
m

)
forms a partition of

(
[n]
k

)
if

(
[n]
k

)
=

•⋃
E∈B
FE.

Let Br1(x) be the ball (in Hamming space) of radiusr1 and centerx and letSr2(y) be a
“sphere” of radiusr2 centered aty (the boundary points ofBr2(y)). Denote byC(x) the cap

Br1(x) ∩ Sr2(y).

Clearly the characteristic vectors ofFE, defined above form a capC(x) ⊂ Vn
k , where

wt (x) = m, wt (y) = 0, r1 = m+ k− 2` andr2 = k.
Further we will use the notationC(x, `) to indicate the parameter` in (5.1), that is

C(x, `) = {u ∈ Vn
k : 〈x,u〉 ≥ `},

where〈x, y〉 is the number of common 1’s inx andu.
Thus we can speak about the problem of tiling ofVk

n by caps. The problem of tiling
of H2(n) by different balls is considered in [11]. Remind that Theorem AK 1 says that
the maximal anticode inJ(n, k) of given diameter 2(k − t) is always a capC(x, t + r ),
x ∈ Vn

t+2r , with parameterr determined by the relation

(k− t + 1)

(
2+ t − 1

r + 1

)
≤ n < (k− t + 1)

(
2+ t − 1

r

)
. (5.2)

Later we will associate with an(n,2δ, k)–code the parameterst andr , wheret − 1 is the
“maximal intersection” (the number of common 1’s) between codewords (i.e.t = k−δ+1)
andr is the parameter determined by relation (5.2).

THEOREM6

(i) If C ⊂ Vn
m is a D–diameter perfect code, then there exists a partition of Vn

t+2r by caps
C(x, t + r ), x ∈ C.

(ii) if V n
k is partitioned by caps C(x, `), x ∈ C ⊂ Vn

m, thenC is a diameter perfect code
with minimum distance2(m+ k− 2`+ 1).

Proof. The idea of proof for part (i) is clear and we already used it in the proof of Theorem 4.
However we give a formally complete proof. Lett, r be the parameters (defined above) of
a D–diameter perfect codeC. We know that each anticode can be represented as vector of
weightt + 2r .

Consider now the set of anticodes (taken ast + 2r –vectors) containing a given codeword

x. Clearly this is a capC(x, t + r ) ⊂ Vn
t+2r . We claim thatVn

t+2r =
•⋃
x∈C C(x, t + r ).
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Indeed, using a modification of identity (2.6) we get

|C| =
(

n
m

)
A∗(n, D,m)

=
(

n
m

)
∑m−t−r

i=0

(
t+2r

t+r+i

)(
n−t−2r

m−t−r−i

) =
(

n
t+2r

)
∑r

i=0

(
m

t+r+i

)(
n−m
r−i

)
=

(
n

r+2r

)
|C(x, t + r )| .

(ii) Assume now that there exists a partition ofVn
k by capsC(x, `), x ∈ C ⊂ Vn

m. One
readily veryfies that two capsC(x1, `) andC(x2, `) are disjoint only if 2̀ > k. Moreover if
x1, x2 ∈ C they must have less than 2`− k common 1’s. This means that for anyx1, x2 ∈ C

dH (x1, x2) ≥ 2(m+ k− 2`+ 1).

By condition (ii) of the Theorem together with (2.6) we get

|C| =
(

n
k

)
∑m−`

i=0

(
m
`+i

)(
n−m

k+`−i

) =
(

n
m

)
∑k−`

i=0

(
k
`+i

)(
n−k

m−`−i

) .
Consider now a capC(u, `), u ∈ Vn

k . Clearly it is an anticode with diamC(u, `) =
2(m+ k− 2`). Therefore by the code–anticode condition we have

|C| ≤
(

n
m

)
|C(u, `)| =

(
n
m

)
∑k−`

i=0

(
k
`+i

)(
n−k

m−`−i

) .
HenceC is a diameter perfect code andC(u, `) is a maximal anticode.
The following question seems to be natural. Does the existence of aD–diameter perfect

code in all cases imply a partition of the whole space by maximal anticodes as fore–perfect
codes? The next theorem gives a negative answer.

THEOREM7 For given n, k, D there is no partition of Vnk by maximal anticodes of diameter
D, if the maximal anticode is not a ball in J(n, k).

Proof. By Theorem AK 1 the maximal anticode is a capC(x, t + r ), x ∈ Vn
t+2r , where

t = 2k−D
2 , and (by the condition of the Theorem)t + 2r 6= k.

Assume to the opposite that there is a partition

Vn
k =

•⋃
x∈C

C(x, t + r ), C ⊂ Vn
t+2r .

W.l.o.g. we can assume that 2k ≤ n. This (with (5.2)) givesk > t + 2r .
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Further by Theorem 6C is aD–diameter perfect code (with minimum distance 2(k− t +
1)). Therefore

|C| =
(

n
t+2r

)
A∗(n, D, t + 2r )

=
(

n
k

)
|C(x, t + r )|

=
(

n
k

)
∑r

i=0

(
t+2r

t+r+i

)(
n−t−2r

k−t−r−i

) =
(

n
t+2r

)
∑k−t−r

i=0

(
k

t+r+i

)(
n−k
r+i

) . (5.3)

Hence the maximal anticode inVn
t+2r of diameterD is a capC(u, t + r ), u ∈ Vn

k . Thus
we havek = t ′ + 2r ′, wheret ′ = 2t + 2r − k and the parameterr ′ is obtained from the
relation

(t + 2r − t ′ + 1)

(
2+ t ′ − 1

r ′ + 1

)
≤ n < (t + 2r − t ′ + 1)

(
2+ t ′ − 1

r ′

)
.

This impliest ′ + 2r ′ ≤ t + 2r , which is a contradiction.

6. Open Problems

1. Of course one of the main problem left is to clarify, whether there exist diameter perfect
codes inJ(n, k) aside from Steiner systems.

More generally one can ask about the existence of perfect sets inJ(n, k). That is a

pair of setsX,Y ⊂ Vn
k satisfying the condition of Theorem D and|X||Y| = (nk). The

analogous question can be asked forHq(n).

2. Are there diameter perfect codes inGq(n, k)? LetV be ann–dimensional vector space

overGF(q). Fork ≥ 0 we denote by
[V

k

]
q

the set of allk–dimensional subspace ofV .

A family F ⊆ [Vk]q is calledt–intersecting iff dim(F1 ∩ F1) ≥ t for all F1, F2 ∈ F or,

equivalently, dist(F1, F2) , dim(F1)+ dim(F2)− 2 dim(F1 ∩ F2) ≤ 2(k− t). Frankl
and Wilson [8] proved:

For everyt–intersecting familyF ⊂ [Vk]q holds

|F | ≤


[
n− t
k− t

]
q

, if n ≥ 2k[
2k− t

k

]
q

, if 2k− t < n < 2k.

This result together with Theorem D implies that inGq(n, k) only “Steiner system type”

diameter perfect codes can exist. HereF ⊂ [ V
k

]
q

is called a Steiner systemS(t, k,n)q
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if each t–space fromV is contained in exactly onek–space fromF . We know only
S(1, k,n)q (k dividesn) Steiner systems inGq(n, k), which are just partitiones ofV\{0}
into k–spaces (with excluded 0–vector).

3. In section 5 we have shown thatVn
k cannot be partitioned into maximal anticodes, if the

maximal anticode is not a ball. Now, we ask whetherVn
k can be nontrivially partitioned

into diameter perfect codes?

In one case it is possible, namely, by Baranyai’s theoremVn
k (k divides n) can be

partitioned into
(

n−1
k−1

)
classes ofS(1, k,n) Steiner systems (see [4]).
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