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Abstract. The concept of diameter perfect codes, which seems to be a natural generalization of perfect codes
(codes attaining the sphere—packing bound) is introduced. This was motivated by the “code—anticode” bound of
Delsarte in distance regular graphs. This bound in conjunction with the recent complete solutions of diametric
problems in the Hamming gragtig (n) and the Johnson graph(n, k) gives a sharpening of the sphere—packing
bound. Some necessary conditions for the existence of diameter perfect codes are given. In the Hamming graph
all diameter perfect codes over alphabets of prime power size are characterized. The problem of tiling of the
vertex set ofd (n, k) with caps (and maximal anticodes) is also examined.
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1. Introduction

Perfect codes are a fascinating structure in coding theory, which again and again attracted
attention. They have been studied for different metrics, especially, for the Hamming metric
(for a good survey see e.g. [5]). Generally we are given a distance regular [gnajth

vertex sef. A codeC in T is a nonempty subset 8f. I1ts minimum distance(C) is the
minimum distance of two distinct codewords, that is

d(C) = min{dist(x, y): X,y € C, X # Vy}. (1.1)
The set
Bi(u) = {x e V: dist(x,u) <i} 1.2)

is the ball of radius and center.
Now, a cod€’ is callede—perfecif the balls{Bc(u): u € C} partitionV, that is,

L.J Be(U) =V (1.3)

ueC

and consequently with the cardinality of these balls
ICl = [VIbg™. (1.4)
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Clearly, ane—perfect cod€ has minimum distance
d(C) =2e+ 1. (1.5)

Conversely, if a cod€ satisfies (1.4) and (1.5), then itésperfect.
Central in our investigations is a bound which was found by Delsarte in his study of the
Bose—Mesner algebra of association schemes:

THEOREMD [6] Let X and) be subsets of the vertex 3&bf a distance regular graph,
such that nonzero distances occuring between verticasdio not occur between vertices
of Y. Then

XY < V. (1.6)

In particularly, for a cod€ with minimum distancel(C) = D+1 and any balBe(u) C V
IClIBe(w)| < |V

and thus
_1 D
IC] < |VIb," for e= 2| a.7)

This is the well-known so—called “sphere” packing bound.

The present investigation started with the observation that the Diametric Theorems (stated
below) of [1] for the Johnson graph(n, k) and of [2] for the Hamming grapRq(n) yield
improvements of (1.7).

Indeed, letD (A) be the diameter of anyl C V of a distance regular graph.

D(A) = max{dist(x, y): x,y € A}. (1.8)

We also say thatl is ananticodewith diameterD (A).
Let A*(D) = max{|A|: D(A) < D}.
Then by Theorem D for any codec V with minimum distancel(C) = D + 1

IC| < [VIA*(D)™L. (1.9)

One can use this bound to introduce another and seemingly more natural concept of
perfect codes.

Definition. A codeC with d(C) = D + 1 is calledD—diameter perfect, if (1.9) holds with
equality. We use the word diameter perfect, if the parameter is unspecified.

Clearly, any perfect code is also diameter perfect. In this case an optimal anticode must
be a ball! However, in general that is not the case and we get improvements of the sphere
packing bound.

The diametric problems in Johnson and Hamming graphs are closely related to intersection
problems for systems of finite sets. Recently these two problems were completely solved
in [1], [2] by describing all maximal anticodes. We need some further notation:
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(1) denotes the set of a-element subsets of the sef = {1, ..., n}.
A system of subsetd C (I} is calledt—intersecting, if
[ArN Ay >t forall A, A, C A

Define the function
M(n, k,t) = max{|A|: A is at—intersecting systeny C <[E])} ,1<t<k=<n.

Note that in the language of-8 1 vectors of lengtm and weightk this is the maximal
size of an anticode of Hamming diametgk2- t). Define

F :{Ae<[E]>: |Aﬂ[1,t+2i]|2t—|—i}

foro<i < 2.

THEOREMAK 1[1] Forl <t <k < nwith

(i) k—t+1D(2+ %) <n<(k-t+1)(2+ ) for some re NU {0} we have

M(n, k,t) = | F|
andF; is—up to permutation—the unique optimum. By conver#ﬁbra: ooforr =0.
(i) (k—t+1)(2+ =5) =nforr e NU {0} we have

M,k t) = |F| = [Fral
and an optimal system equals up to permutations—eithar F; 1.

We denote the maximal cardinality of an anticodeliim, k) of diameterD by
A*(n, D,k) = M(n,k,t), if D=2k—2t. (1.10)

In the Hamming spac#(n, q) we have a second concept of intersection.
LetF ={0,1,...,9— 1} and letA c F" be a set of sequencés,, ..., a,), a € F.
We say thatA is t—intersecting if, for ang", b" € A

int@",b" £ |{i e[n]: & =b}|>t.
Equivalently we say thatl has a diameten — t. Define

Nq(n, t) £ max|A|: A is at-intersecting system iR"}.
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Denote now the maximal cardinality of an anticodé4p(n) of diameterD by

A;(n, D) = Ng(n,t), if D=n-—t. (1.11)

THEOREMAK 2 [2] Forqg > 2, D < n we have

Ai(n, D) = |BM P ()| - P77, (1.12)
where B-P+2 (u) is a ball inHq(n — D + 2r) of radius r and
- 2], i ((@+Dg=<2n w19
- h—gﬂj if (D+1)q> 2n. '

Remark 1. In [2] this Theorem is formulated in terms of intersection. It can be seen from
(1.11) that an optimal anticode is a Cartesian product of a ball and cube with parameters
determined by (1.13).

Obviously these theorems give a sharpening of the sphere packing bound in the Johnson
graph and the Hamming graph.

Besides improving the sphere packing bound we investiDatdiameter perfectness and
tiling with optimal anticodes.

But first we report classical results erperfectness for most familiar distance regular
graphs.

1. Hamming Graphs

The vertex set of the Hamming gragty(n) is the setv" = {0,1,...,q — 1}". The
distance for any two vertices is the Hamming distash¢écounting the number of different
components). Two vertices are adjacent, if their Hamming distance is 1.
Leontiev [18], that alle—perfect codes ift{4(n) (q is a prime power) must have the same
parameters as one of the Hamming or Golay codes.

However, the problem of existence @fperfect codes is still open, éfis not a power of
a prime. Another direction of research has been to find non—isomoepharfect codes
with the same parameters. A recent survey is [5, ch. 11].

2. Johnson Graphs

The vertex set of the Johnson graptn, k) is V! = {x € {0, 1}": x hask oneg. Two
verticesx, y are adjacent, if they hake-1 onesin common or, equivalentlydf; (x, y) = 2.
Thus the Johnson distance betweely € V! is defined to bel; (x, y) = %dH (X, ¥).

Delsarte [6] conjectured in 1973 that no nontrivdaperfect codes exist id(n, k). Until
now none has been found. However, Roos [15] established a necessary condition for their
existence.
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THEOREMR [15] If an e—perfect code in @, k), n > 2k exists then

k—12e+1
n< w. (1.14)
e
(The casen < 2k gives nothing new, because exchanging zeros and ones gives an
isometry.)
Another significant nonexistence result is due to Etzion [7] (see also [3], [9]).

THEOREME [7] There are no perfect codesinZzk+e+1,e+1), J(2k+ p, k), J(2k +
2p,k); p # 3, J(2k + 3p, k); p # 2, 3, 5where p is a prime.

3. Grassmann Graph

Among the distance regular graphs the Grassmann dgegjh, k) seems also to be inter-
esting to our direction of research. Its vertex set is the set éfalimensional subspaces
of GF(g)". Two such subspaces are adjacent iff they intersect(kn-a 1)—dimensional
subspace.

The diametric problem in the Grassman graph (in terms of intersections) is solved by
Frankl and Wilson in [8].

We mention now our main results.

In Section 2Theorem 1 generalizes Delsarte’s Theoremlfar, k) to a local inequality,
which in particular implies Johnson’s bound. A similar inequality holds7gi(n) and
Gq(n, k).

As an application of Theorem AK 1 we give a comparison of upper bounds obtained in
Theorem D for constant weight codes.

In Section 3 we give examples of diameter perfect codeslim, k). We also give
necessary conditions which include the known one stated above.

In Section 4we show that MDS codes are diameter perfedtif(n) and so are extended
Hamming codes and extended Golay codes. Recall that the perfect codes are automatically
diameter perfect. We prove that there are no others!

In Section 5we show that the problem of existence of diameter perfect cod&irk)
can be reduced in all cases to the problem of tiling of verteX/Sawith caps.

Finally, we prove that there are no tilings ¥f' with optimal anticodes, which are not
balls. (Compare Delsarte’s conjecture above.)

2. AlLocal Inequality

In standard notation am, 2§, k)—code inJ (n, k) has blocklengtim, constant weighk, and
minimum distancely = 2§ (ord; = §). The maximum size of such codes is denoted by
A(n, 28, k).

In Hq(n) the corresponding notions afe, d)q—codes and maximum sizégn, d)g.

The following statement is a generalization of Theorem D for the graphs mentioned above.
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THEOREM1 LetCp be acode il (I' = J(n, k), Hq(n) or G4(n, k)) with distances from
D ={dy,...,ds} C {1, 2,...,n}. Further letLp(B) be a maximal code in B- T" with
distances fronD. Then one has

Col _ 1£o(B)| 2.1)
Tl |BI
Proof. LetI" = J(n, k). Count in two ways the number of pais, =), wherea € Cp, 7
is a permutation ofl, 2, ..., n} with 7(a) € B. For a fixeda € Cp andb € B there are
exactlyk!(n — k)! choices forr; hence the number of such pairs equal||Blk! (n — k)!.
On the other hand no permutation can transfer elemerds dfito more than L (B)|
elements oB. Then we have

ICplIBIk!(n —K)! < [Lp(B)|n!
as desired.

In fact the following much more general statement is valid. ]
THEOREM 1’ With the conditions of Theorem 1 inequality (2.1) holds for any grBph
which admits a transitive group of automorphisms.

This can be easily proved using the same argument as in the proof above.

Remark 2. For the Hamming graph this extends the Elias—Bassalygo inequality (see [5,

ch. 12]). Such an extension for the Hamming graph was already observed (stated in an even
more general form) by Levenshtein [13].

Theorem D (forJ(n, k), Hq(n), Gq(n, k) follows from (2.1) by choosing foB a subset
with distances from1, ..., n}\D. Then clearlyi£p (B)| = 1 and we get (1.6).
In J(n, k) (2.1) implies

AN, 28, k) < <E> IL(B)[|B|™%, 2.2)

whereL (B) is a maximal code iB with minimum distance &

Inequality (2.2) can be very useful to get various kinds of upper and lower bounds for
constant weight codes by choosiBgn a suitable way. For example (2.2) can be viewed
as a generalization of the well known Johnson bound (see [14]).

COROLLARY 1

A(n, 28, k)

IA

LEA(n ~1,25,k—1)] 2.3)

AN, 28, K)

IA

n
{—n — kA(n — 1,25, k)J . (2.4)

Indeed take aB in (2.1) all vectors inv,! with a 1 (resp. 0) in a fixed component and get
(2.3) (resp. (2.4)).
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Another application of (2.2) gives the bound due to Zinoviev [19] (see also [12]).
THEOREMZ [19] If 0 < g < min{k, §} and0 < ¢ < n, then

A(n, 28, k) < LA(n—E,ZS—Zg,k—g). (2.5)

2o () (70

Proof. Take as & the set of all vectors iWv,! with weight at most in the first¢ positions.
Then by (2.2) we have

(MILB)] (MILB)]
A(n, 25, k) < = .

By (G

Note that|L(B)| < A(n — £, 25 — 2g, k — g). This follows from the easy observation,
that deletion of the first positions and change of arbitraryl’s to O’s in the lash — ¢
positions in every vector frorh (B) with weightk —g+i (i = 1, ..., g) (in the remaining
positions) gives aiin — ¢, 26 — 2g, k — g)—code.

Finally we get (2.5) using the following identity, which can be easily verified

®) )
- (2.6)

Lo (G XL (9N

forO <k, £ <n. [ |

Theorem 1 gives also the following necessary condition for existance of a diameter perfect
code inJ(n, k) (Hq(n), Gq(n, k)).

COROLLARY 2 A D—diameter perfect code in(d, k) with minimum distance d exists only
if for every BC V,' and every maximal code(B) < B with minimum distance d holds

A*(n,d — 2,k) > |B||IL(B)| ™.

The same holds if(q(n) and Gy(n, K).

Another condition, which easily can be derived with Theorem 1, is as follows.

CoROLLARY 3 C is a D—diameter perfect code in(d, k) (Hq(n), Gq(n, k)) with d(C) >
D + 1iff each maximal anticodel(D) contains a codeword.

The next result compares the upper bounds of Thed@dar constant weight codes (with
the same minimum distance), using Theorem AK 1.
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THEOREM?2 Letm k, D, n be integers witlzk < n,0 < m < k. Then

(&) (m) o
AN, D.K) _ A*n.D.m)’ '
Proof. Note first, that it suffices to prove the inequality
A*(n, D, k —-k+1
(n, D, k) n + . (2.8)

AMD.k—1 = Kk

Indeed applying (2.8 —mtimes we will get the desired relation. Lret- 0 be determined

from relation (i) of Theorem AK 1, where= —Zk;D_

Then by Theorem AK 1

. N t42r n—t—2r
A(n’D’k):Z<t+r+i>(k—t—r—i)'

Further, since

r

* t+2r -1 n—t—2r+4+1

A(n,D,k—l):M(n,k—l,t—1)32<t+t+._1>(k_t_r_+.),
j=0 J J

we have
A(.D.K Yiso (G (55)

OB T (R )

Set

() (@57) _t+2(n—k—r+i+1)

(B L) (Rt T t4r+in—t—2r +1)°
t4r+i—1/ \ k—t—r—i

From the relation
n<k-t+1 (2~|—t?—1>
with 2k < nwe gett + 2r < k. This implies
Nn—K—r+i+1>t+4+r+i.
Thus f (i) is monotone decreasing and it suffices to show that
t+2ry(n—k—r +1) n—k+1

<
t+rin—-t—2r +1 k

or equivalently
rk—t—r) k(t + 2r)

n—k—-r+1 - t+r

Ft4r—1 (2.9)
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Denote the LHS of (2.9) bg(n). The functiong(n) is increasing fom > n, =

Jr(k—t—r)+k+r —1. We have
t—1
k—t+D 24+ — )= .
( +)< +r+l) ng<n

One can check that, < n;. Hence itis sufficient to show the desired relationrfes n;.
That is, we have to verify the following inequality
t+2r +DHk—-t+1) rc +Dk—-t—r) k(t + 2r)
r+1 t+nk—-t—r)+20r+121 t+4r

—t—-r+1>0.
(2.10)

We distinguish two cases: ®>t+2r +1and (il)k =t + 2r.

Denote the LHS of (2.10) bja(k). One can check now thdit + 2r + 1) > 0 and
h(t+r) < 0.

Onthe other hand it can be easily seen that there existkD< t +r suchthah(kg) > O.
Henceh(k) monotonically increases whén>t + 2r + 1 i.e.h(k) > 0 as desired.

The case (iik =t + 2r needs slightly a more delicate estimation. In this case we have

t—1 t—1 t—1
= (k— H(I24+—)=4 ———=2k——— < 2k .
Mm < N1 = ( t+)(+r+1> S rr1 o= n
Hence for the case (ii) it suffices to show (2.9) foe= 2k = 2(t + 2r), which easily can
be verified.

Remark 3. The following example shows that in general (2.7) cannot be improved even
by a constant factor > 1 in the RHS. Leh = 2k, m = k — 1, D = 4 (in fact one can
take anyD). Then in view of Theorem AKZ, ik > 3 the maximal anticode of diameter 4

in J(2k, k) andJ(2k, k — 1) is a ball of Hamming radius 2. Hend& (2k, 4, k) = k? + 1,
A*(2k, 4,k — 1) = k2. By (2.7) we have

) &)

Kktr1 K

and clearly RH3LHS goesto 1 ak — oo.

3. Examples of D-Diameter Perfect Codes inJ(n, k)

We have from (2.2) and Theorem AK 1 in the Introduction that

n

k
r

withr € N U {0} as specified there.
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Example 1. Letk,n € N andk|n. Obviously there exists am, 2k, k)—codeC with
IC| = ¢. We have

aon_ B ® W
1= k Ar(n,2(k —1),k)  M(n k1) (rk]j)'

ThusC is a D—diameter perfect code with = Dy = 2(k — 1). This is alsce—perfect

(the trivial code) in the case = 2k, k odd,e = ";21

This example is a special case of a class of diameter perfect codes obtained from Steiner
systems.

A Steiner systentS(n, t, k) is a collection ofk—subsets (called blocks) taken from an
n—set such that for eadhsubset of th@—set there exists exactly one block containing this
t—subset. The numbérof blocks is

(/)

A necessary condition for a Steiner system to exists is that

(?:;)/(lt(:ii)eNforOgift. (3.3)

Representing blocks by-01—-vectors one sees that a Steiner sysérk, n) is equivalent
to a constant weight code with paramet(;msZ(k —t+ 1), k), because any two vectors
have at most — 1 ones in common.

LEMMA 1 Any Steiner system(Sk, n) forms a diameter perfect code.
Proof. LetC be an(n, 2k —t+1), k)—code corresponding to%(t, k, n). Then
(WA
= =y
G2

n
k

On the other han{| < m

and thereforeA*(n, 2(k — t), k) < (37}).

Since there exists an anticode of s(@g{) the statement follows. [ |

Next we return te—perfect codes id (n, k). Suppose that is an(n, 28, k)—code which
is e—perfect. Then clearly = 2e+ 1 and

=@ EO0)
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The parameters of a maximal anticode of diamé@er = 2(§ — 1) can be found (see
Theorem AK 1) from the relation

3<2+ ﬂ) §n<5(2+u>. (3.4)
r+1 r

We must havdk — § + 1+ 2r = k and therefore = 5;21 = e. Hence

n<@2e+Lk-1/e

which is Roos’s result reported in the Introduction.
The following necessary condition for the existence-gberfect codes [7] inspired us to
obtain a similar condition fobD—diameter perfect codes:

THEOREM3[7] If an e—perfect code inh, k) exists then Steiner system&$ 1, 2e+1, k)
and Se+ 1, 2e + 1, n — k) exist.

THEOREM4 Assume that there exists a diameter perfac®s, k)—codeC andr € NU{0} is
the parameter obtained from (3.4). Then Steiner systams IS, k) and Sr +1, §, n—Kk)
exist.

Proof. Let by be a codeword. Partition the set of coordingtes . ., n} into two partsN;
andNy, such thatN; is the position of 1's irby. We will say thatx is an(i, j)—vector, if it
has weight in partN; and weightj in No.

Consider now all codewords, which are at distange=22(k — t + 1) from by, and the
vectors of weight + 2r, which are at distande—t + 2 fromby. That is, we consider all
(t — 1, k—t+ 1)—code vector® and all(t +r — 1,r + 1)—vectors.

In view of Theorem AK 1 each maximal anticode (iin, k)) of diameterD = 2(§ — 1)
can be represented as a vector of wetght2r, wherer is obtained from (3.4). Moreover,
Corollary 3 implies that for any € /|, there exists a € C, such thatd(u, v) < k —t.
This means that for eaalh +r — 1,r + 1)—vectoru there exists precisely one codeword
v € B, such that is covered byu (is contained iru as a set) in paml; andv coversu in
partN,. Transform nowB into B’ by inverting 0's and 1's in vectors @, in partN;.

Clearly we obtaink —t + 1, k — t 4+ 1)—vectors. It is easily seen thBt forms a “two
part Steiner” system. Thatis atg —t —r + 1,r + 1)—vector is covered by exactly one
(k—t+1, k—t+ 1)—-vector fromB’, and nok — t + 2—vector is covered by two different
vectors fromB'.

Sinces = k — t + 1 this clearly enforces

Bl =|B| =

A Steiner systen®(§—r, 8, k) (S(r +1, §, n—Kk)) can be obtained frorB’ in partN; (resp.
N2) by taking all vectors ofB’ with fixed r + 1 1's in N, (resp.§ —r 1's
in Np). |
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Example 2. There exists a Steiner systes¢b, 8, 24), which is a diameter perfect (24,8,8)—
code. Sincgk —t + 1)(t + 1) = 4-6 = 24, by Theorem AK 1 we have two choices of
r:r =0,orr = 1. Therefore by Theorem 4 (with= 1) we obtain two Steiner systems,
S@3, 4, 8) andS(2, 4, 16).

COROLLARY 4 A diameter perfectn, 26, k)—code exists only if & (r + 1)(§ —r + 1).

Proof. This follows from the known fact that for any Steiner syst8&h k, n) necessarily
n > (k—t+ 1)(t +1). Note that this immediately follows from Theorem AK 1 using
Theorem D.

One can also obtain additional necessary conditions using divisibility conditions
(3.3). ]

4. Examples ofD—Diameter Perfect Codes irfHy(n)

An (n, d)q—codeC is called MDS—code (maximum distance separable code), if it meets the
Singleton bound, that is,

|C| — qn7d+1_
Reed-Solomon codes [14] are an example of MDS—codes.
LEMMA 2 Any MDS—code is diameter perfect.
Proof. The set of all vectors with fixed — d 4 1 coordinates forms an anticode of diameter
d — 1 and sizeg®~1. Thus|C|q9~! = g" and the result follows. [ ]
We say thaC’ is an extended code if it is obtained from a catiby adding an extra
symbol to every codeword, such tliC’) = d(C) + 1.

LEmMMA 3 If C is a diameter perfect code ifq(n), then the extended cod® is also
diameter perfect.

Proof. LetC be a diameter perfect code with minimum distad@nd letA be a maximal
anticode of diametett — 1. Set
A = {b““é @, a); a e A ac {0,1,...,q—1}}.

Clearly diam{A’) < d and|A'| = q|A|]. Then|A'||C'| = g™ and the statement
follows. [ |

COROLLARY 5 The extended Hamming and Golay codes are diameter perfect.

Remark 4. Using standard notation we denote byk, d], ag—ary linear code of length,
dimensionk and minimum distancd. It is known (see [14]), that there exist extended
Golay codes ([2412, 8]-code and [126, 6]s—code) and extended binary Hamming code
([2™m, 2™, —m — 1, 4]-code).
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There are alsg—ary extended Hamming [+ 2, g—1, 4];—codes in the case when= 2',
g > 2, which are also MDS codes. On the other hand one can show that there are no other
extended Hamming codes. (This follows e.g. from a result in [10] (Theorem 5.3).)
However we do not know whether there are extensions of nonlopesy perfect codes
(which have the same parameters as Hamming codes).

THEOREMS In Hq(n) (q is a prime power) there are no diameter perfect codes except for
the codes having the parameters of the Hamming and extended Hamming codes, Golay and
extended Golay codes, MDS codes.

Proof. Let C be aD—diameter perfectn, d),—code and let be the parameter obtained
from relation (1.13). Suppose also thag d—gl (i.e.C is not ane—perfect code) and > 0
(if r = 0 we have an MDS code).

We have

Cl=q"/A;(n.d = 1),
and in view of Theorem AK 2
A;(n’ d _ 1) — |Bpfd+2r+l(u)| . qdfszl.

Then puncturing some positiondhwe obtain anin— 1, d — 1)q—codeCy with |C1| = |C].

ClearlyC, is a(D — 1)—diameter perfect code, because there exists an anticolg (-
1)) of diameterd — 2 and of sizg B4+ +1(u)| - q4-% 2,

Repeating this procedure we will finally get a diameter perfect code with parameters
n“=n—-d+2r +1,d* =2r + 1 and this is a perfect code with parameters of Hamming
or Golay codes. Next clearly on the length+ 1 we have extended Golay codes or a code
with parameters of an extended Hamming code.

On the other hand one can easily show that there are no doubly extended Golay codes, or
codes with parmeters of possible doubly extended Hamming codes.

Namely(25, 9),—code with cardinalit = 212, (13, 7)3—code withM = 3° and(qqm—_‘l1 +

2, 5)q—code withM =qg"™™ (n = % m > 2). This completes the proof. ]

Remark 5. Note that MDS—codes include also trivial perfect codes. Thatjisaay code
containing just one codeworde Hq(n) (by convention herd = n+ 1), the whole space,
and an(n, n)q “repetition” code withg codewords.

5. Tiling in J(n, k) with Caps

Forn,m,k, ¢ € N, £ <k, m < nandE € (") define

fE:{Ac([E]>: IAN E|2£}. (5.1)



234 AHLSWEDE ET AL.

We say, tha3 C () forms a partition of[[)) if

()= Uz

Let B, (x) be the ball (in Hamming space) of radiusand centex and letS,(y) be a
“sphere” of radius, centered ay (the boundary points d&,(y)). Denote byC(x) the cap

Br.(X) N &,(Y)-

Clearly the characteristic vectors &k, defined above form a cap(x) C V,', where
wt(X) =m, wt(y) =0,r; = m+ Kk —2¢ andr, = k.
Further we will use the notatioB (x, £) to indicate the parametérin (5.1), that is

Cx,€) ={ueV: (x,u) > ¢},

where(x, y) is the number of common 1's iandu.
Thus we can speak about the problem of tiIing\d‘f by caps. The problem of tiling
of Hy(n) by different balls is considered in [11]. Remind that Theorem AK 1 says that
the maximal anticode id (n, k) of given diameter & — t) is always a cafC(x, t + r),
x € Vi, with parameter determined by the relation
t—1 t—1
k—t+1[24+——) <n k—t+D(2+——). 5.2
( +)(+r+1)_<( +)<+r) (5.2)
Later we will associate with afn, 2§, k)—code the parametersndr, wheret — 1 is the
“maximal intersection” (the number of common 1's) between codewords é=ek — 5 + 1)
andr is the parameter determined by relation (5.2).

THEOREM 6

(i) If C C V, is a D—diameter perfect code, then there exists a partitiondf, \by caps
Cx,t+r),xeC.

(i) if V0" is partitioned by caps C, ¢£), x € C C V,, thenC is a diameter perfect code
with minimum distanc8(m + k — 2¢ + 1).

Proof. The idea of proof for part (i) is clear and we already used itin the proof of Theorem 4.
However we give a formally complete proof. lietr be the parameters (defined above) of
a D—diameter perfect code We know that each anticode can be represented as vector of
weightt + 2r.

Consider now the set of anticodes (takem &s2r —vectors) containing a given codeword

x. Clearly thisis a caf (X, t +r) C V{},. We claim thatv",,, = U, CX, t41).
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Indeed, using a modification of identity (2.6) we get

S & )
AODM P ()2 Do) ()

)

TICx, t+n)|

ICl =

(if) Assume now that there exists a partition\gf by capsC(x, £), x € C C V5. One
readily veryfies that two caf3(x;, £) andC(xz, £) are disjointonly if Z > k. Moreover if
X1, X2 € C they must have less thai 2 k common 1’s. This means that for ary, x, € C

dn (X1, X2) > 2(M+k — 2¢ + 1).

By condition (ii) of the Theorem together with (2.6) we get

e
Yo () () I (50 ()

Consider now a cag(u, £), u € V. Clearly it is an anticode with dia@(u, £) =
2(m+ k — 2¢). Therefore by the code—anticode condition we have

(m) (m)

IC. ol 20 (50 (k)

IC] <

HenceC is a diameter perfect code a@du, ¢) is a maximal anticode.

The following question seems to be natural. Does the existenc®efitameter perfect
code in all cases imply a partition of the whole space by maximal anticodesaspfnfect
codes? The next theorem gives a negative answer. ]

THEOREM7 For givenn k, D there is no partition of Y by maximal anticodes of diameter
D, if the maximal anticode is not a ball in(d, k).

Proof. By Theorem AK 1 the maximal anticode is a c@gx,t +r), x € V., where
t = 25D and (by the condition of the Theoremy- 2r # k.
Assume to the opposite that there is a partition

W=JCcxt+r).ccVi,.

xeC

W.l.0.g. we can assume that Z n. This (with (5.2)) givek >t + 2r.
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Further by Theorem 8 is aD—diameter perfect code (with minimum distanck 2 t +
1)). Therefore

(c42) (&)

AMD.t+2r) |COLE+D)]

(E) (t+an)

_ _ , (5.3)
Yoo (2D (5) o () (77

Hence the maximal anticode W\, of diameterD is a capC(u,t +r), u € V. Thus
we havek = t’ 4+ 2r’, wheret’ = 2t + 2r — k and the parameter is obtained from the
relation

ICl =

/

/+1

t t'—1
(t+2r—t/+1)(2+r )gn<(t+2r—t/+1)<2+ = )

This impliest’ + 2r’ <t + 2r, which is a contradiction. ]

6. Open Problems

1. Of course one of the main problem left is to clarify, whether there exist diameter perfect
codes inJ(n, k) aside from Steiner systems.

More generally one can ask about the existence of perfect satirk). That is a
pair of setsX, Y C ;! satisfying the condition of Theorem D an¥||Y| = (}). The
analogous question can be askedin).

2. Arethere diameter perfect codes3g(n, k)? LetV be ann—dimensional vector space
overGF(q). Fork > 0 we denote b)[\,f]q the set of alk—dimensional subspace ot
A family F C [\,ﬁ]q is calledt—intersecting iff dingF, N F1) > t for all Fy, F, € F or,
equivalently, distF;, F,) £ dim(Fy) 4 dim(F,) — 2dim(Fy N F,) < 2(k — t). Frankl
and Wilson [8] proved:

For everyt—intersecting familyF c [\lf]q holds

n—t

k—t:|q’ if n > 2k

[Zkk‘t} Cif2k—t <n < 2.
q

This resulttogether with Theorem D implies thaGg(n, k) only “Steiner system type
diameter perfect codes can exist. H&re- [ \,f ]q is called a Steiner systeB8it, k, n)q
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if eacht—space fromV is contained in exactly onke-space fromF. We know only
(1, k, n)q (k dividesn) Steiner systems iGq (n, k), which are just partitiones &f \ {0}
into k—spaces (with excluded O-vector).

3. Insection 5 we have shown th4f cannot be partitioned into maximal anticodes, if the
maximal anticode is not a ball. Now, we ask whetk@rcan be nontrivially partitioned
into diameter perfect codes?

In one case it is possible, namely, by Baranyai's theok§(k dividesn) can be
partitioned into({~1) classes of5(1, k, n) Steiner systems (see [4]).
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