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1 Introduction

The set of positive integers is denoted by N while the set of positive squarefree integers is
denoted by N∗. For A ⊂ N we write

S(A) =
∑

a∈A

1

a
.

A set A ⊂ N is said to be primitive, if there are no a ∈ A, a′ ∈ A with a 6= a′, a|a′.
The family of the primitive sets A ⊂ N is denoted by P, and P∗ denotes the family of the
primitive sets A consisting of squarefree integers, i.e., with A ∈ P, A ⊂ N∗. A subscript N
indicates if we restrict ourselves to integers not exceeding N , so that NN = {1, 2, . . . , N};
N∗

N denotes the set of the (positive) squarefree integers not exceeding N ; PN is the family of
the primitive subsets of {1, 2, . . . , N}; P∗

N denotes the family of the primitive sets selected
from the squarefree integers not exceeding N . The number of distinct prime factors of n is
denoted by w(n), while Ω(n) denotes the total number (counted with multiplicity) of prime
factors of n:

Ω(n) =
∑

pα‖n

α.

(Here pα‖n denotes that pα|n but pα+1 ∤ n.)

It is well–known and easy to prove (see, e.g., [8, p. 244]) that

max
A∈PN

|A| = N − [N/2]

(

=

(

1

2
+ o(1)

)

N

)

. (1.1)

Behrend [2] proved that

max
A∈PN

S(A) < c1
log N

(log log N)1/2

for some absolute constant c1 and all N ≥ 3 and Erdős, Sárközy and Szemerédi [6] determined
the value of the best possible constant in the following sense:

max
A∈PN

S(A) =
(

1 + o(1)
) log N

(2π log log N)1/2
as N → ∞. (1.2)

Erdős [3] proved that

∑

a∈A

1

a log a
< c2 for all A ∈ P with 1 /∈ A (1.3)

where c2 is an absolute constant, and he conjectured (see [13]) that the sum in (1.3) is
maximal if A is the set of the primes:

∑

a∈A

1

a log a
≤

∑

p

1

p log p
for all A ∈ P with 1 /∈ A. (1.4)
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This conjecture has not been proved yet; Erdős and Zhang have several partial results.

In this paper our goal is to study the squarefree analogs of the problems in (1.1) and (1.2),
i.e., to estimate

max
A∈P∗

N

|A| and max
A∈P∗

N

S(A). (1.5)

2 The results

Since

lim
N→∞

|N∗
N |/|NN | =

1

ζ(2)
=

6

π2
,

i.e., roughly speaking the proportion of integers being squarefree is 6
π2 , thus one expects that

the maxima in (1.5) are less than the ones in (1.1) and (1.2) by a factor 6
π2 + o(1). In case

of the second maximum these rough heuristics lead to the following conjecture:

Conjecture 1. We have

max
A∈P∗

N

S(A) =
(

1 + o(1)
) 6

π2

log N

(2π log log N)1/2
as N → ∞. (2.1)

This conjecture was raised by Pomerance and Sárközy in [10]. Indeed, we will prove this
conjecture in the following more general form:

Theorem 1. Let Q = {q1, q2, . . . } = {pα1

1 , pα2

2 , . . . } (with p1 < p2 < . . . ) be a set of powers
of distinct primes with

S(Q) < ∞. (2.2)

Then we have

max
A∈PN

q∤a for a∈A,q∈Q

S(A) =
(

1 + o(1)
)

∏

q∈Q

(

1 −
1

q

)

log N

(2π log log N)1/2
as N → ∞ (2.3)

Note that here Q = ∅ is allowed and, indeed, in this special case we obtain theorem (1.2)
of Erdős, Sárközy and Szemerédi.

Choosing
Q = {22, 32, 52, . . . , p2, . . . }, (2.4)

we obtain

Corollary 1. (2.1) holds, i.e., Conjecture 1 is true.

Another important special case is when Q consists of the primes not exceeding a fixed number
K:
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Corollary 2. If K ≥ 2, then we have

max
A∈PN

 

a,
Q

p≤K

p

!

=1 for all a∈A

S(A) =
(

1 + o(1)
)

∏

p≤K

(

1 −
1

p

)

log N

(2π log log N)1/2
as N → ∞.

Moreover, we can prove that if Q is finite, then Q need not consist of prime powers, it suffices
to assume coprimality:

Theorem 1’. Let Q = {q1, . . . , qt} be a finite set of pairwise coprime positive integers:
(qi, qj) = 1 for 1 ≤ i < j ≤ t. Then (2.3) holds.

Since the proof of Theorems 1 and 1’ are similar and, indeed, the proof of the latter is slightly
easier, we will prove only Theorem 1 here. (On the other hand, the proof of a general theorem,
which includes both theorems as special cases, could be more troublesome.)

It comes perhaps as a surprise that the heuristics at the beginning of Section 2 fails in case
of the first maximum in (1.5). Indeed, an integer m ∈ NN (resp. N∗

N) is called maximal in
NN (resp. N∗

N) if m ∤ m′ for all m 6= m′, m′ ∈ NN (resp. N∗
N). Let M(N) (resp. M∗(N))

denote the set of all maximal integers in NN (resp. N∗
N). Clearly

M(N) ∈ PN ,M∗(N) ∈ P∗
N and

M(N) =

{

n ∈ NN :
N

2
< n ≤ N

}

and

M∗(N) =

{

n ∈ N∗
N :

N

2
< n ≤ N

}

∪

{

n ∈ N∗
N : 2 | n and

N

3
< n ≤

N

2

}

∪

{

n ∈ N∗
N : 6 | n and

N

5
< n ≤

N

3

}

∪

{

n ∈ N∗
N : 2 · 3 · 5 . . . pk | n and

N

pk+1

< n ≤
N

pk

}

∪ . . .

(pk is the k–th prime).

Hence |M(N)| = N −
⌊

N
2

⌋

= maxA∈PN
|A| (by (1.1)) and simple calculation shows that

|M∗(N)| =

(

2

3
−

∑

k≥2

1

(p1 + 1)(p2 + 1) . . . (pk + 1)
+ o(1)

)

·N∗
N ∼ (0, 5676+o(1))·N∗

N ≤ max
A∈P∗

N

|A|.

We will prove that this maximum is much greater but can be estimated surprisingly well.

Theorem 2. For N > No we have

(i) max
A∈P∗

N

|A| > 0, 6328 6
π2 N .
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(ii) max
A∈P∗

N

|A| < 0, 6389 6
π2 N .

(Actually, we can show by the same method but with more computation that for large N
we have 0, 6362 6

π2 N < max
A∈P∗

N

|A| < 0, 6366 6
π2 N .)

More generally, one might like to count the elements a of A with certain weights f(a) where
f(x) is a “nice” function (we will return to this question in a subsequent paper). Theorem
1 corresponds to the weight f(a) = 1

a
, while in case of Theorem 2 the weighting is f(a) = 1

(for all a ∈ N). If Erdős’s conjecture (1.4) is right, then the heuristics above also fails in
case of the weighting f(a) = 1

a log a
, since then we have

max
A∈P
1/∈A

∑

a∈A

1

a log a
= max

A∈P∗

1/∈A

∑

a∈A

1

a log a
=

∑

p

1

p log p
.

One might like to study what happens for other weightings. Another important special case
is f(a) = 1

aσ with 0 < σ < 1 (σ = 0 and σ = 1 correspond to the special cases f(a) = 1,
resp. f(a) = 1

a
studied above).

We introduce for 0 ≤ σ ≤ 1

F (σ) = lim
N→∞

(

max
A∈P∗

N

∑

a∈A

1

aσ

)

/

(

max
A∈PN

∑

a∈A

1

aσ

)

,

if the limit exists and conjecture that this is the case for σ = 0. Then by Theorem 2
F (0) > 6

π2 . Moreover we have the following:

Conjecture 2.

(i) For all 0 < σ < 1 the limit F (σ) exists.

(ii) F (σ) > 6
π2 .

(iii) lim
σ→1−

F (σ) = 6
π2 .

(iv) F (σ) is decreasing in (0, 1).

Finally, we draw attention to our paper [1], where we studied normalized weights in the cases
σ = 0, 1 for prefix–free (and also suffix–free) sets of numbers rather than primitive sets and
obtained several conclusive results. In Theorem 2 there the function

E(N) =

(

max
prefix–free A⊂N∗

N

∑

a∈A

1

a

)

/





∑

a∈N∗
N

1

a





is bounded by constants from below and above for all large N . Here lim
N→∞

E(N) is also

conjectured to exist. If so, what is its value?
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3 Auxiliary results

In order to prove Theorem 1, we need several lemmas.

Lemma 1. For x → ∞ we have

∑

p≤x

1

p
= log log x + c3 + O

(

1

log x

)

and
∑

pα≤x

1

pα
= log log x + c4 + O

(

1

log x

)

.

(In the second sum the summation is over all prime powers not exceeding x.)

These two (equivalent) formulas can be found in any book on prime number theory (see,
e.g., [9, p. 20]).

Lemma 2. Write
P(x, k) =

{

n : n ≤ x, Ω(n) = k
}

. (3.1)

Then uniformly for x ≥ 3, k ∈ N we have

∑

n∈P(x,k)

1

n
< c5

log x

(log log x)1/2
.

Proof: This follows from [4] and [5] (see also [11] and [12]) and as pointed out by the referee

also directly from Lemma 1 and the inequality ak

k!
≪ ea

a1/2 , uniformly for all a > 1 and all
k ∈ N.

Lemma 3. For any f with f(x) > 0 for x > x0 and

lim
x→∞

f(x)(log log x)−1/2 = 0,

we have uniformly for k ∈ N, satisfying

log log x − f(x) < k < log log x + f(x), (3.2)

∑

n∈P(x,k)

1

n
=

(

1 + o(1)
) log x

(2π log log x)1/2
as x → ∞

(where P(x, k) is defined by (3.1)).

Proof: See [4].

Lemma 4. Define Q = {q1, q2, . . . } as in Theorem 1 (so that (2.2) holds), write

B(x, k,Q) =
{

n : n ∈ P(x, k), q ∤ n for q ∈ Q
}

, (3.3)
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and define f(x) as in Lemma 3. Then uniformly for k satisfying (3.2) we have

∑

n∈B(x,k,Q)

1

n
=

(

1 + o(1)
)

∏

q∈Q

(

1 −
1

q

)

log x

(2π log log x)1/2
as x → ∞. (3.4)

Proof: Fix an ε > 0, and let H be a positive integer with

∑

q∈Q
q>H

1

q
< ε; (3.5)

by (2.2), such a number H exists. Write

Q1 = {q : q ∈ Q, q ≤ H}

and

Q2 = {q : q ∈ Q,H < q ≤ x}.

Clearly we have
B(x, k,Q) ⊂ B(x, k,Q1),

and if n ∈ B(x, k,Q1) but n /∈ B(x, k,Q), then we have n ∈ P(x, k) and q|n for some q ∈ Q2.
It follows that

∣

∣

∣

∣

∣

∣

∑

n∈B(x,k,Q)

1

n
−

∑

n∈B(x,k,Q1)

1

n

∣

∣

∣

∣

∣

∣

≤
∑

q∈Q2

∑

n∈P(x,k)
q|n

1

n
. (3.6)

By the exclusion–inclusion principle we have

∑

n∈B(x,k,Q1)

1

n
=

∑

n∈P(x,k)

1

n
+

∑

j

(−1)j
∑

qi1
,...,qij

∈Q1

qi1
<···<qij

∑

n∈P(x,k)
qi1

...qij
|n

1

n

=
∑

n∈P(x,k)

1

n
+

∑

j

(−1)j
∑

qi1
<···<qij

≤H

1

qi1 . . . qij

∑

t∈P(x/qi1
...qij

,k−Ω(qi1
...qij

)

1

t
.

By Lemma 3, it follows that for x → ∞ we have

∑

n∈B(x,k,Q1)

1

n

=
(

1 + o(1)
)





log x

(2π log log x)1/2
+

∑

j

(−1)j
∑

qi1
<···<qij

≤H

1

qi1 . . . qij

log(x/qi1 . . . qij)

(2π log log(x/qi1 . . . qij))
1/2





=
(

1 + o(1)
)

∏

q∈Q
q≤H

(

1 −
1

q

)

log x

(2π log log x)1/2
. (3.7)
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By (3.5) here we have

∏

q∈Q

(

1 −
1

q

)

≤
∏

q∈Q
q≤H

(

1 −
1

q

)

=
∏

q∈Q

(

1 −
1

q

)

∏

q∈Q
q>H

(

1 −
1

q

)−1

<
∏

q∈Q

(

1 −
1

q

)

∏

q∈Q
q>H

(

1 +
2

q

)

<
∏

q∈Q

(

1 −
1

q

)

exp









∑

q∈Q
q>H

2

q









<
∏

q∈Q

(

1 −
1

q

)

exp(2ε). (3.8)

Moreover, by (3.5) and Lemma 2 we have

∑

q∈Q2

∑

n∈P(x,k)
q|n

1

n
=

∑

q∈Q2

∑

qt∈P(x,k)

1

qt
=

∑

q∈Q2

1

q

∑

t∈P(x/q,k−Ω(q))

1

t

<
∑

q∈Q2

1

q
c5

log x

(log log x)1/2
< c5 ε

log x

(log log x)1/2
. (3.9)

Since (3.6), (3.7), (3.8) and (3.9) hold for ε > 0 and x > x0(ε), thus (3.4) follows.

Lemma 5. Write
z = [log log N ]. (3.10)

Then we have

S
(

{n : n ≤ N, Ω(n) − ω(n) > 100 log z}
)

= o

(

log N

(log log N)1/2

)

.

Proof: This is the Lemma in [6].

Lemma 6. For n ≥ 30 we have

∑

p|n

1

p
< c6 log log log n. (3.11)

Proof: Clearly we have
∏

p|n

(

1 +
1

p

)

<
∏

p|n

1

1 − 1
p

=
n

ϕ(n)

whence, by the well–known inequality

ϕ(n) > c7
n

log log n
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(see, e.g. [9, p. 24]), it follows that

∏

p|n

(

1 +
1

p

)

< c8 log log n. (3.12)

On the other hand, we have

∏

p|n

(

1 +
1

p

)

= exp





∑

p|n

log

(

1 +
1

p

)





= exp





∑

p|n

1

p
+ O

(

∑

p

1

p2

)



 > exp





∑

p|n

1

p
+ c9



 . (3.13)

(3.11) follows from (3.12) and (3.13).

4 Completion of the proof of Theorem 1

The lower bound for the maximum in (2.3) is a straightforward consequence of Lemma 4.
Indeed, define again z by (3.10) and let A∗ = B(N, z,Q) (where B(N, z,Q) is defined by
(3.3)). Then clearly we have

A∗ ∈ PN , q ∤ a for a ∈ A∗, q ∈ Q

and, by Lemma 4,

S(A∗) =
∑

n∈B(N,z,Q)

1

n
=

(

1 + o(1)
)

∏

q∈Q

(

1 −
1

q

)

log N

(2π log log N)1/2
.

It follows that the maximum in (2.3) is

max
A∈PN

q∤a for a∈A,q∈Q

S(A) ≥ S(A∗) =
(

1 + o(1)
)

∏

q∈Q

(

1 −
1

q

)

log N

(2π log log N)1/2
. (4.1)

In order to prove that this bound is also an upper bound for maxS(A), we will adopt the
method of the proof in [6] (which is a method of combinatorial flavour and it reminds one
of the proof of Sperner’s theorem).

Consider an A with A ∈ PN and such that q ∤ a for a ∈ A, q ∈ Q. Define A′ by A′ =
{

a :
a ∈ A, Ω(a)− ω(a) ≤ 100 log z

}

where again, z is defined by (3.10). By (2.2) and Lemma 5,
it suffices to prove that

S(A′) ≤
(

1 + o(1)
)

∏

q∈Q

(

1 −
1

q

)

log N

(2π log log N)1/2
as N → ∞. (4.2)
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Following combinatorial terminology, we will refer to the integers n with Ω(n) = k as “inte-
gers on level k”. First we separate the a’s of different level, i.e., we write

Ak =
{

a : a ∈ A′, Ω(a) = k
}

.

Let r1 and r2 denote the occuring smallest, resp. greatest level, so that

A′ =

r2
⋃

k=r1

Ak

and

S(A′) =

r2
∑

k=r1

S(Ak).

Now we separate the contribution of the Ak’s with k > z (“high level a’s”; here again z is
defined by (3.10)), k = z, resp. k < z (“low level a’s“):

S(A′) =
∑

z<k≤r2

S(Ak) + S(Az) +
∑

r1≤k<z

S(Ak) = Σ1 + Σ2 + Σ3. (4.3)

We will compare Σ1 and Σ3 with the sum of the reciprocals of the numbers having z prime
factors which can be constructed from the “high level a’s” by dropping prime factors, resp.
from the “low level a’s” by adding prime factors (without producing a multiple of a q).
Indeed, let D denote the set of the integers d such that Ω(d) = z and there is an a ∈ Ak

with d|a, k > z, and let E denote the set of the integers e such that Ω(e) = z, there is no
q ∈ Q with q|e, and there is an a ∈ Ak with a|e, k < z. It follows from the primitivity of A′

that
D ∩ E = D ∩Az = E ∩ Az = ∅, (4.4)

and clearly we have

D ⊂ B(N, z,Q), E ⊂ B(N, z,Q) and Az ⊂ B(N, z,Q). (4.5)

By Lemma 4, it follows from (4.4) and (4.5) that

S(D) + S(E) + S(Az) ≤ S
(

B(N, z,Q)
)

=
(

1 + o(1)
)

∏

q∈Q

(

1 −
1

q

)

log N

(2π log log N)1/2
. (4.6)

We will show that

Σ1 ≤
(

1 + o(1)
)

S(D) (4.7)

and

Σ3 ≤
(

1 + o(1)
)

S(E) + o

(

log N

(log log N)1/2

)

. (4.8)
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(4.2) would follow from (4.3), (4.6), (4.7) and (4.8) and this, together with (4.1), would
complete the proof of the theorem. Thus it remains to prove (4.7) and (4.8).

First we will prove (4.7). For z ≤ k ≤ r2 define the sets Uk, Fk by the following recursion:
Let Ur2

= ∅ and Fr2
= Ar2

(= Ar2
∪ Ur2

). If z < k ≤ r2 and Uk, Fk have been defined, then
let

Uk−1 =
{

u : u ∈ N, Ω(u) = k − 1, there is f ∈ Fk with u|f
}

and
Fk−1 = Ak−1 ∪ Uk−1. (4.9)

Then clearly we have
D = Uz. (4.10)

Moreover, by the primitivity of A, for all z ≤ k ≤ r2 we have

Ak ∩ Uk = ∅. (4.11)

If z ≤ k < r2 and u ∈ Uk, then there is a number f with u|f , f ∈ Fk+1. Then we have
Ω(u) = k and Ω(f) = k + 1, so that f is of the form f = up. By f ∈ Fk+1 we have f |a for
some a ∈ A′ and thus Ω(f)− ω(f) ≤ Ω(a)− ω(a) ≤ 100 log z. Moreover, again by f ∈ Fk+1

we have Ω(f) = k + 1. It follows that f has at least

ω(f) ≥ Ω(f) − 100 log z = k + 1 − 100 log z

representations in form up so that

S(Uk)
∑

p≤N

1

p
=

∑

u∈Uk

∑

p≤N

1

up
≥ (k + 1 − 100 log z)

∑

f∈Fk+1

1

f
= (k + 1 − 100 log z)S(Fk+1).

By Lemma 1, (4.9) and (4.11), it follows that

S(Uk) >
k + 1 − 100 log z

z + c10

(

S(Ak+1) + S(Uk+1)
)

(4.12)

for z ≤ k < r2. For N large enough clearly we have

k + 1 − 100 log z

z + c10

>

{

1 if k > z + 200 log z

1 − 200 log z
z

for all k ≥ z.
(4.13)

It follows from (4.12) and (4.13) by a simple induction argument that

S(Uz) >

(

1 −
200 log z

z

)200 log z
∑

z<k≤r2

S(Ak) =
(

1 + o(1)
)

Σ1

which, by (4.10), proves (4.7).
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Now we will prove (4.8). The proof is similar to the proof of (4.7), but while there in each
step we moved one level lower by dropping a prime factor, here we move one level higher by
adding a prime. Moreover, here a little difficulty arises from the facts that, first, we have to
restrict ourselves to integers v with q ∤ v for q ∈ Q, and, secondly, also integers v slightly
greater than N appear.

For r1 ≤ k ≤ z define the sets Vk, Gk by the following recursion: Let Vr1
= ∅ and Gr1

= Ar1

(= Ar1
∪ Vr1

). If r1 ≤ k < z and Vk, Gk have been defined, then let Vk+1 denote the set of
the positive integers v that can be represented in the form v = pg with g ∈ Gk and a prime
p such that p ∤ g, p /∈ Q and p ≤ N1/z2

. Moreover, let

Gk+1 = Ak+1 ∪ Vk+1. (4.14)

By the primitivity of A, for all r1 ≤ k ≤ z we have

Ak ∩ Vk = ∅. (4.15)

Clearly, if r1 ≤ k ≤ z and g ∈ Gk, then we have Ω(g) = k, and if q ∈ Q, then q ∤ g. It
follows from these facts that if v ∈ Vz ⊂ Gz and v ≤ N , then we have v ∈ E . However, Vz

also contains numbers v greater than N . Such a v is the product of an a ∈ A and at most
z − r1 ≤ z primes, each of them ≤ N1/z2

. Thus we have

v ≤ N · (N1/z2

)z = N1+1/z. (4.16)

It follows that
Vz ⊂ E ∪ {n : N < n ≤ N1+1/z}

and whence

S(E) ≥ S(Vz) −
∑

N<n≤N1+1/z

1

n
. (4.17)

Here we have
∑

N<n≤N1+1/z

1

n
= O

(

log N

z

)

= o

(

log N

(log log N)1/2

)

. (4.18)

It remains to give a lower bound for S(Vz).

If r1 < k ≤ z and v ∈ Vk, then v is of the form v = pg with g ∈ Gk−1 and a prime p such
that

p ∤ g, p /∈ Q, p ≤ N1/z2

, (4.19)

and for all g ∈ Gk−1 and p satisfying (4.19), we have v = pg ∈ Vk. Since here Ω(v) = k, thus
v has at most k representations in this form. It follows that

S(Vk) =
∑

v∈Vk

1

v
≥

1

k

∑

g∈Gk−1

∑

p∤g,p/∈Q

p≤N1/z2

1

pg
=

1

k

∑

g∈Gk−1

1

g

∑

p∤g,p/∈Q

p≤N1/z2

1

p
. (4.20)
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By (2.2), (4.16) and Lemmas 1 and 6, here the innermost sum is

∑

p∤g,p/∈Q

p≤N1/z2

1

p
≥

∑

p≤N1/z2

1

p
−

∑

p|g

1

p
−

∑

q∈Q

1

q

= log log N − 2 log z + O(1) − c6 log log log N1+1/z + O(1) > z − c11 log z. (4.21)

It follows from (4.14), (4.15), (4.20) and (4.21) that

S(Vk) >
z − c11 log z

k
S(Gk−1) =

z − c11 log z

k

(

S(Ak−1) + S(Vk−1)
)

(4.22)

for r1 < k ≤ z. For N large enough clearly we have

z − c11 log z

k
≥

{

1 if k < z − c11 log z

1 − c11
log z

z
for all k ≤ z.

(4.23)

It follows from (4.22) and (4.23) by a simple induction argument that

S(Vz) >

(

1 − c11
log z

z

)c11 log z
∑

r1≤k<z

S(Ak) =
(

1 + o(1)
)

Σ3. (4.24)

(4.8) follows from (4.17), (4.18) and (4.24) and this completes the proof of Theorem 1.

5 Proof of Theorem 2

P = {p1, p2, p3, . . . } = {2, 3, 5, . . . } denotes the set of primes and pk is the k–th prime. For
given N and k consider the following sets:

TN(p1, . . . , pk) = {m ∈ N∗
N : m | p1 · ... · pk} and

RN(p1, . . . , pk) = {m ∈ N∗
N : (m, p1 · ... · pk) = 1}.

It is well–known and easy to check that

lim
N→∞

|RN(p1, . . . , pk)|

|N∗
N |

=
k

∏

i=1

(

1 −
1

pi + 1

)

. (5.1)

More generally, for 0 ≤ α < β we have

lim
N→∞

|αN ≤ m ≤ βN : m ∈ N∗, (m, p1 · ... · pk) = 1|

|αN ≤ n ≤ βN : n ∈ N∗|
=

k
∏

i=1

(

1 −
1

pi + 1

)

. (5.2)
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Clearly, every a ∈ N∗
N can be uniquely represented as a = a1 · a2, where

a1 ∈ TN(p1, . . . , pk), a2 ∈ RN(p1, . . . , pk).

For any primitive set A ∈ P∗
N and a2 ∈ RN(p1, . . . , pk) we set

F (a2) =
{

a ∈ A : a = a1 · a2, a1 ∈ TN(p1, . . . , pk)
}

.

Of course some of the F (a2) can be empty.

Then

A =
.

⋃

a2∈RN (p1,...,pk)

F (a2), |A| =
∑

a2∈RN (p1,...,pk)

|F (a2)|. (5.3)

For n ∈ N, let Lk(n) be a primitive set of Tn(p1, . . . , pk) with maximal cardinality. We
observe that in the case n < pk+1 the set Lk(n) is an optimal primitive squarefree set in N∗

n,
i.e.

max
B∈P∗

n

|B| = |Lk(n)|.

Since A is a primitive set then necessarily we have

|F (a2)| ≤

∣

∣

∣

∣

Lk

(⌊

N

a2

⌋)∣

∣

∣

∣

for every a2 ∈ RN(p1, . . . , pk).

Therefore by (5.3), for every primitive set A ∈ P∗
N

|A| ≤
∑

a2∈RN (p1,...,pk)

∣

∣

∣

∣

Lk

(⌊

N

a2

⌋)∣

∣

∣

∣

holds. (5.4)

Finding in general the value |Lk(n)| seems difficult. However, for small k and arbitrary n
this can easily be done. Take k = 3. We have

|L3(1)| = |L3(2)| = 1

|L3(3)| = |L3(4)| = 2,
(

L3(3) = L3(4) = {2, 3}
)

|L3(n)| = 3 for n ≥ 5,
(

L3(n) = {2, 3, 5} or {6.10, 15}
)

.

Consequently, for a2 ∈ RN(2, 3, 5) we obtain

L3

(⌊

N

a2

⌋)

= 1, if
N

3
< a2 ≤ N,

L3

(⌊

N

a2

⌋)

= 2, if
N

5
< a2 ≤

N

3
, and

L3

(⌊

N

a2

⌋)

= 3, if a2 ≤
N

5
.
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Hence by (5.4) we have

|A| ≤

∣

∣

∣

∣

N

3
< a2 ≤ N : (a2, 30) = 1, a2 ∈ N∗

∣

∣

∣

∣

· 1+

∣

∣

∣

∣

N

5
< a2 ≤

N

3
: (a2, 30) = 1, a2 ∈ N∗

∣

∣

∣

∣

· 2+

∣

∣

∣

∣

a2 ≤
N

5
: (a2, 30) = 1, a2 ∈ N∗

∣

∣

∣

∣

· 3.

Using (5.2) we get

|A| ≤

(

2

3
· 1 +

2

15
· 2 +

1

5
· 3

)

· |N∗
N | ·

(

1 −
1

3

) (

1 −
1

4

)(

1 −
1

6

)

+ o(N)

=
23

36
|N∗

N | + o(N) ∼ 0, 6389 · |N∗
N | + o(N).

Taking k = 5, by similar calculations (details are omitted) we obtain a slightly better bound:

|A| ≤ 0, 6366 · |N∗
N | + o(N).

This proves the upper bound (ii).

Proof of (i): Consider the following set

A =
.

⋃

a2∈RN (2,3,5)

G(a2),

where for every a2 ∈ RN(2, 3, 5) G(a2) is defined by

G(a2) =























































{a2}, if N
3

< a2 ≤ N

{2a2, 3a2}, if N
5

< a2 ≤
N
3

{2a2, 3a2, 5a2}, if N
21

< a2 ≤
N
5

{6a2, 10a2, 15a2}, if N
7·21

< a2 ≤
N
21

{30a2}, if N
72·21

< a2 ≤
N

7·21

∅, if a2 ≤
N

72·21

It can easily be verified that A ∈ P∗
N .

Simple calculations, using (5.2), yield

|A| ≥ 0, 6328 · |N∗
N | + o(N).

By considering the set RN(2, 3, 5, 7, 11), similarly one can construct a primitive set A′ with
a slightly better bound:

|A′| ≥ 0, 6362 · |N∗
N | + o(N).

15



References

[1 ] R. Ahlswede, L.H. Khachatrian and A. Sárközy, On prefix–free and suffix–free se-
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Acad. Publ. ...

[2 ] F. Behrend, On sequences of numbers not divisible one by another, J. London Math.
Soc. 10, 42–44, 1935.
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[4 ] P. Erdős, On the integers having exactly k prime factors, Ann. Math. 49, 53–66,
1948.
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[7 ] P. Erdős, A. Sárközy and E. Szemerédi, On divisibility properties of sequences of
integers, Coll. Math. Soc. J. Bolyai 2, 35–49, 1970.

[8 ] H. Halberstam and K.F. Roth, Sequences, Springer–Verlag, Berlin–Heidelberg–New
York, 1983.

[9 ] K. Prachar, Primzahlverteilung, Springer–Verlag, Berlin–Göttingen–Heidelberg, 1957.
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