
Advanes on Extremal Problems in Number Theoryand CombinatorisRudolf Ahlswede, Universit�at Bielefeld, GermanyIntrodutionTo keep an aeptable size referenes not listed at the end are given by the Bibliography of thereent book [N℄ and/or the page number of [N℄.1. Starting with solutions of extremal problems for �nite sets of numbers under divisibility on-straints [with L.H. Khahatrian, .f. [PS℄℄, then we desribe the disovery of orrelation inequali-ties implied by the AD{inequality [with L.H. Khahatrian, .f. [N℄ P.C. Fishburn, L. Shepp, TheAhlswede{Daykin Theorem, 501{516℄ and onlude this setion with results on extremal problemsonerning densities of primitive in�nite sets of numbers and related topis [with L.H. Khahatrianand A. S�ark�ozy℄.2. Divisibility properties for numbers naturally orrespond to intersetion properties for setsand thus there are also onnetions between methods. Espeially, a new pushing tehnique fornumbers lead to the disovery of the method of \generated sets", whih made it possible toestablish several Intersetion Theorems in Combinatoris, whih are highlighted by the CompleteIntersetion Theorem [ with L.H. Khahatrian; P. Frankl wrote in [F1℄, p. 142 \At present thisonjeture appears hopelessly diÆult in general"℄, whih, as a very speial ase, established the4m{Conjeture of Erd}os/Ko/Rado from 1938 [[En℄; [N℄ C. Bey, K. Engel, Old and New Resultsfor the Weighted t{intersetion Problem via AK{Methods, 45{74; [N℄ G.O.H. Katona, The CyleMethod and its Limits, 129{142; [CG℄; B. Bollob�as wrote in \Paul Erd}os | Life and Work" theforeword of [GN℄: \The third problem is from the 1961 paper of Erd}os, Ko and Rado; it is, in fat,the last unsolved problem of that paper." \It is widely known that vast amounts of thought andingenuity are required in order to earn $ 500 on an Erd}os problem; even so, this problem may befar harder than its prie{tag suggests."℄.3. We turn now to ombinatorial work, whih reeived its inentive from Information Theory andComputer Siene. We demonstrate this for the area of information storage for rewritable mem-ories, whih led over Sperner type questions for \louds" of antihains to Higher Level ExtremalProblems. These problems are of one degree more omplex than those usually onsidered: setstake the role of elements, families of sets (louds) take the role of sets, et. [[N℄ P.L. Erd}os, L.A.Sz�ekely, 117{124℄.4. It also led to several kinds of Vertex{Isodiametri Theorems in the Average [with I. Alth�ofer,N. Cai℄ and Edge Isoperimetri Theorems [with N. Cai℄ whih are rate{wise optimal and provedby novel information theoreti approahes.5. We ontinue with several basi topis (partitions, monohromati retangles, shadows andisoperimetry under sequene{subsequene relations, antihains: splitting, AZ{identities, dimen-sion onstraints) from Sequene Spaes, whih mostly were inuened by the analysis of Com-1



muniation Complexity and Unonventional Coding. The most frequent oauthors are N. Cai, Z.Zhang, L. Bassalygo and M. Pinsker.6. Finally, we onlude with ounterexamples to known onjetures and with a list of seeminglybasi open problems and new onjetures.1 Contributions to Combinatorial Number Theory1.1 Extremal Problems under Divisibility Constraints for Finite SetsErd}os onjetured in 1962: The set E(n; k) of integers not exeeding n, whih are divisible by oneof the �rst k primes, has maximal ardinality among the subsets of [n℄ = f1; 2; : : : ; ng withoutk + 1 elements, whih are pairwise relatively prime. He aught our interest in a leture deliveredin 1992.It stimulated us to make a systemati investigation of this and related number theoretial prob-lems. When viewed ombinatorially as an extremal problem for produts of hains (by the primedeomposition) with a trunation ondition (aused by the property \smaller than n") the issueis to understand whether the problem is just ombinatorial in nature or does depend on the primenumber distribution. The latter is the ase, the onjeture was disproved, but proved for large n,in joint work [85℄, [101℄ with L. Khahatrian. Thus began a very fruitful ooperation. Immediatesuesses were proofs of other well{known onjetures of Erd}os and Erd}os/Graham (all in [E1℄and [E2℄).More importantly we gained an understanding for the sensitivity towards the distribution of theprimes and thus our program was very rewarding. The analysis led to the disovery of a new\pushing" method with wide appliability also in Combinatoris, where it led to the solution ofseveral well{known problems like the 4m{onjeture, one of the oldest problems in ombinatorialextremal theory (see Setion 2) or the isodiametri problem in Hamming spaes (see Setion 4).Complete proofs an be found in [En℄. We desribe now the results and for this adopt the followingnotation. N denotes the set of positive integers and P = fp1; p2; : : : g = f2; 3; 5; : : :g denotes theset of all primes.For two numbers u; v 2 N we write ujv i� u divides v, (u; v) stands for the largest ommon divisorof u and v, [u; v℄ is the smallest ommon multiple of u and v. The numbers u and v are alledoprimes, if (u; v) = 1. We are partiularly interested in the setsNs = (u 2 N :  u; s�1Yi=1 pi! = 1) and Ns(n) = Ns \ [n℄: (1.1)Erd}os introdued f(n; k; s) as the largest integer r for whih an A � Ns(n); jAj = r, exists withno k + 1 numbers in A being oprimes. Certainly there are no k + 1 oprimes in the setE (n; k; s) = fu 2 Ns(n) : u = ps+iv for some i = 0; 1; : : : ; k � 1g: (1.2)The ase s = 1, in whih we have N1(n) = [n℄, gives the Conjeture 1 above.The papers [ESS2℄ and [ESS4℄ are entered around Conjeture 1. Whereas it is easy to show thatit is true for k = 1 and k = 2, it was proved for k = 3 by C. Szab�o and G. T�oth 1985 and fork = 4 by Motzkin 1988. The popularity of this problem is doumented by R. Freud in [Fr℄.2



General Conjeture (Erd}os 1980). f(n; k; s) = jE (n; k; s)j for all n; k; s 2 N .Theorem 1 (Ahlswede/Khahatrian [101℄). For every k; s 2 N there exists an n(k; s) suh thatfor all n � n(k; s) E (n; k; s) = f(n; k; s) and this optimal set is unique.Erd}os mentions that he did not sueed in settling even the speial ase.Conjeture 2. f(n; 1; s) = jE (n; 1; s)j for all n; s 2 N .Whereas in [85℄ Conjeture 1 was disproved for k = 212, surprisingly Conjeture 2 is true.Theorem 2 (Ahlswede/Khahatrian [104℄). For every s 2 N and n f(n; 1; s) = jE (n; 1; s)j andthe optimal on�guration is unique.Notie that E (n; 1; s) = fu 2 N1(n) : psju; p1; : : : ; ps�1 - ug.Studying square free numbers N� one is naturally led to sets E �(n; k; s) = E (n; k; s) \N� et andto the funtion f �(n; k; s). ThenTheorem 2*. For all s; n 2 N f �(n; 1; s) = jE �(n; 1; s)j.But even for squarefree numbers \Erd}os sets" are not always optimal, that is, f �(n; k; 1) 6=jE �(n; k; 1)j an our. Also f �(n; 2; s) 6= jE �(n; 2; s)j happens for ps = 101 and n 2 [109 �113; 101 � 127).We generalize and analyse Conjeture 2 �rst for quasi{primes in order to understand how itsvalidity depends on the distribution of the quasi{primes and primes. Our main result is a simplystrutured suÆient ondition on this distribution. Using sharp estimates on the prime numberdistribution by Rosser and Shoenfeld we show that this ondition holds for Q = fps; ps+1; : : : g,s � 1, as set of quasi{primes and thus Theorem 2 follows.Erd}os/Graham asked for the maximal value k = g(n) suh that there are numbers 1 < a1 < � � � <ak = n, (ai; aj) 6= 1. Let M(A) = N � A denote the set of multiples of A.Conjeture 3 (after a little orretion). Let n = q�11 : : : q�rr , �i � 1, �i 2 N and Q = fq1 < � � � <qrg � P, then g(n) = max1�j�r jM(2q1; : : : ; 2qj; q1 : : : qj) \ N(n)j = f(n;Q), say.We onsider a more general and seemingly more natural problem by looking at sets of integerswith pairwise ommon divisor and a fator from a spei�ed set of primes with growth ondition.Let Q = fq1; : : : ; qrg � P and letg(n;Q) = maxfjAj : A � N(n); (a; a0) 6= 1; a; rYi=1 qi! 6= 1(8a; a0 2 A)g: (1.3)Theorem 3. For every Q = fq1; : : : ; qrg � P and n �Qri=1 qi g(n;Q) = f(n;Q).Clearly, this implies the Conjeture of Erd}os/Graham. For n < Qq2Q q the onlusion ofTheorem 3 does not hold.Example 1: Let Q = fq1; q2; : : : ; qr�1; qrg = f5; 7; : : : ; pr+1; qrg that is qi = pi+2 for i = 1; : : : ; r�1. Further qr�1 = pr+1 > 1000, n = 2 � 3 � 11 �Qr�1i=1 qi and n1000 < qr < n1000 . With Bertrand'spostulate we establish the laim.1.2 Correlation Inequalities from the AD{InequalityNext we report on new density inequalities for sets of multiples. For in�nite sets A;B � N onsiderthe set of least ommon multiples [A;B℄ = f[a; b℄ : a 2 A; b 2 Bg, the set of largest ommondivisors (A;B) = f(a; b) : a 2 A; b 2 Bg, the set of produts A� B = fa � b : a 2 A; b 2 Bg, and3



the sets of their multiples M(A) = A � N ;M(B), M [A;B℄;M(A;B), and M(A � B), resp. Ourdisoveries are the inequalitiesdM(A;B)dM [A;B℄ � dM(A) � dM(B) � dM(A�B); (1.4)where d denotes the asymptoti density. The �rst inequality is by the fator dM(A;B) sharperthan Behrend's well{known inequality. This in turn is a generalisation of an earlier inequalityof Rohrbah and Heilbronn, whih settled a onjeture of Hasse onerning an identity due toDirihlet. Our seond inequality does not seem to have predeessors.Observing the similarity to the AD inequality led to our main disovery, the inequality (with L.H.Khahatrian [102℄) D(A;B)D[A;B℄ � DADB;where A;B are arbitrary sets of positive integers, (A;B) = f(a; b) : a 2 A; b 2 Bg is the set oflargest ommon divisors, [A;B℄ = f[a; b℄ : a 2 A; b 2 Bg is the set of least ommon multiples, andD denotes the lower Dirihlet density. It is muh more general than the previous inequality formultiples of sets.This is more than an analogy: AD implies this number theoretial Correlation inequality. Forreasons of saling it is important to work with Dirihlet density!Similarly, Behrend's inequality an be obtained as number theoretial form of FKG, but it atuallypreeded it. The seond inequality in (1.4) is the twin of the van der Berg/Kesten inequality et.Now AD has not only ombinatorial and probabilisti orrelation inequalities (see [N℄ Fish-burn/Shepp, 501{516) as onsequenes, but also those above in Number Theory! We onludewith an importantRemark 1: In the literature \AD{inequality" (\4{Funtion Theorem") refers to the inequalityof [30℄, whih holds for latties. We emphasize that the muh more general inequality of [33℄makes no referene to latties and should have a wider range of appliations.1.3 Densities for Primitive, Pre�x Free, Quotient, and Squarefree SetsIn this setion we report on reent work with L.H. Khahatrian and A. S�ark�ozy.We begin with [146℄ \On the ounting funtion of primitive sets of integers".After in 1934 Besiovith gave an example of a set of multiplesM(B) without a density, interestarose in primitive sets A � N : for a; a0 2 A; a 6= a0 always a - a0. Set F (n) , greatest ardinalityof primitive A in [n℄ and notie thatF (n) = n� ln2m �= �12 + 0(1)�n� (1.5)Besiovith and Erd}os 1935: 8 " > 0 9 primitive A � N with d(A) > 12 � ".Behrend 1935: For A � [n℄ primitivePa2A 1a < 1 log n(log log n)1=2 .Erd}os 1935: A primitive A � N (�nite or in�nite) satis�es Pa2A 1a log a < 2.Corollary 1. If A � N is primitive, then for the ounting funtion AA(x) < xlog log x log log log x for 1 many x: (1.6)4



How far is this upper bound from the best possible? This question is losely related to one of thefavourite problems of Erd}os (mentioned in numerous papers). Use here formulation of [ESS3℄:\The following problem seems diÆult: Let b1 < b2 < : : : be an in�nite sequene of integers. Whatis the neessary and suÆient ondition that there should exist a primitive sequene a1 < a2 < : : :satisfying an < bn for every n? We must have P1i=1 1bi log bi < 1 : : : . It is not lear whether asimple neessary and suÆient ondition exists." This is followed by a lengthy disussion of theproblem how large one an make Pa�x 1a uniformly in x for a primitive set fa1 < a2 < : : : g (seealso [ESS1℄).It seems to be a more natural (although more diÆult) problem to replae here the sum Pa�x 1aby the ounting funtion A(x) i.e. to study the problem how large one an make A(x) uniformlyin x for a primitive set A. We provide a quite satisfatory answer by proving that (1.6) is bestpossible apart from a fator (log log log x)":Theorem 4. For all " > 0 9 in�nite primitive set A � N suh that for x > x0(") we haveA(x) > xlog logx(log log log x)1+" :Our reent interest in primitive sets arose while we investigated two related new onepts \pre�x{free sets" and \suÆx{free sets", whih are of information theoretial bakground.For a; b 2 N� square free we write ajpb (a is pre�x of b) if for primesp1 < � � � < pr < pr+1 < � � � < pt a = p1 : : : pr, b = p1 : : : pr+1 : : : pt. Similarly,  = pr+1 : : : pt issuÆx of b and we write jsb.If for A � N� there are no a; b 2 A with ajpb (resp. ajsb) then A is said to be pre�x{free(resp. suÆx{free). (Both notions ould be extended to non{square{free ases). There is a loseonnetion between pre�x{freeness and primitivity: if a set A � N is primitive, then it is pre�x{free.We present �rst the \pre�x{free analog" of (1.5). Let G(n) denote the ardinality of the greatestpre�x{free set from N�(n), and let P+(a) denote the smallest prime greater than P (a).Theorem 5 ([N℄, 1{16). (i) The set B(n) = fb : b 2 N�(n); bP+(b) > ng is pre�x{free andG(n) = jB(n)j (ii) limn!1 G(n)jN�(n)j = 1(iii) For all " > 0 there is an in�nite pre�x{free set A � N� with d�(A) > 1� ".The \pre�x{free analog" to Behrend's result reets an interesting di�erene between primitivesets and pre�x{free sets. Indeed, onsider now instead ofG(n) E(n) = maxpre�x{free A�N�(n)Pa2A 1a :Theorem 6 ([N℄, 1{16). For every " > 0 and n > n2(y), suitable, 0; 2689 � " < E(n)Pb2N�(n) 1b <0; 7311+". Atually, we know for every n 2 N the unique optimal pre�x{free A � N�(n) for whihE(n) is assumed, but the value is hard to estimate.Sine Erd}os 1935 above uses in the proof only the pre�x property of a primitive sequene, obviouslyfor pre�x{free A � N Pa2A 1a log a < 2 and also (1.6) in Corollary 1 and Theorem 4 \primitive"an be replaed by \pre�x{free".While the behaviour of pre�x{free and primitive sets is similar as far as the maximal growth ofthe ounting funtion is onerned, the behaviour of the suÆx{free sets is very di�erent. Let H(n)denote the ardinality of the largest suÆx{free set seleted from N�(n).Theorem 7 ([N℄, 1{16). (i) The set C(n) = f 2 N�(n) : 2jg[fN�(n)\ �n2 ; n℄� is suÆx{free andjC(n)j = H(n). (ii) limn!1 H(n)jN�(n)j = 23 . (iii) For every " > 0 there exists a suÆx{free set C with5



d�C > 23 � ".Finally we onsider logarithmi densities of suÆx{free sets. LetK(n) = maxsuÆx{free A�N�(n)Pa2A 1a :In ontrast to the ase of pre�x{free sets here we have a simple desription of the optimal set,whih yieldsTheorem 8 ([N℄, 1{16). limn!1 K(n)Pa2N�(n) 1a = 3172 :On the quotient sequene of sequenes of integersFor A � N , a 2 A let QaA , set of integers q suh thataq 2 A a > 1 QA , [a2AQaA (1.7)So QA = set of integers q = a0a > 1 with a; a0 2 A. Called quotient set of A.By Behrend's and Erd}os' Theorem the quotient set of a dense set A is non{empty (obvious).The study of quotient sets of \dense" sets started withTheorem (Pomerane/S�ark�ozy 1988). There exist onstants 3, N0 suh that if N 2 N,N > N0, P is a set of primes not exeeding N and if A � f1; 2; : : : ; Ng withXp2P 1p > 3 and Xa2A 1a > 10 logN  Xp2P 1p!�1=2 (1.8)then there is a q 2 QA suh that qjQp2P p.Here we study density related properties of QA. Our �rst goal is to study onnetions betweenÆ(A) and Æ(QA). First we thought that for all A � NÆ(QA) � Æ(A): (1.9)Example 2: A = f2m; 3m or 5m with m 2 N ; (m; 30) = 1g. Then Æ(A) = Æ(A) = d(A) = 62225and Æ(QA) = Æ(QA) = d(QA) = 415 = 3031Æ(A).Still, there is a onnetion between these densities, but they an be far apart.Theorem 9. (i) If for A � N Æ(A) > 0, then Æ(QA) > 0.(ii) For all " > 0, Æ > 0 there is a set A � N suh that Æ(A) > 1� " however, Æ(QA) < Æ.Proof: (i) Erd}os/Davenport Theorem. (ii) Turan{Kubilius inequality.Remark 2: Studied also Q1A = T1n=1 �Sa�n;a2AQaA� =integers q > 1 with 1{many representa-tions q = a0a , a; a0 2 A.We onlude with [159℄ \On primitive sets of squarefree integers". For A � N let S(A) =Pa2A 1a .Erd}os/S�ark�ozy/Szemer�edi proved in 1967:maxA�[n℄ primitiveS(A) = �1 + o(1)� logn(2� log logn)1=2 as n!1: (1.10)Theorem 10. Let Q = fq1; q2; : : : g = fp�11 ; p�22 ; : : : g (with p1 < p2 < : : : ) be a set of powers ofdistint primes with S(Q) <1, then we havemaxA�[n℄ primitiveq-a for a2A;q2Q S(A) = �1 + o(1)�Yq2Q�1� 1q� logn(2� log logn)1=2 as n!1: (1.11)6



Note that here Q = ? is allowed and, indeed, in this speial ase we obtain the Theorem ofErd}os/S�ark�ozy/Szemer�edi. For Q = f22; 32; 52; : : : ; p2; : : : g, the result was onjetured by Pomer-ane/S�ark�ozy in 1988.Another important speial ase is when Q onsists of the primes not exeeding a �xed number K:Corollary 2. If K � 2, then we havemaxA�[n℄ primitive(a;Qp�K p)=1 for all a2A S(A) = �1 + o(1)� Yp�K�1� 1p� logn(2� log logn)1=2 as n!1:Moreover, we an prove that if Q is �nite, then Q need not onsist of prime powers, it suÆes toassume oprimality:Theorem 10'. Let Q = fq1; : : : ; qtg be a �nite set of pairwise oprime positive integers: (qi; qj) = 1for 1 � i < j � t. Then (1.14) holds.It omes perhaps as a surprise that the heuristis that the density 6�2 of the square free integersN� should extend to the maximal primitive set, whih would givemaxA�N�(n) primitive jAj = �1 + o(1)� 6�2 maxA2Pn jAj = �1 + o(1)� 3�2n as n!1; fails:We will prove that this maximum is muh greater, but an be estimated surprisingly well.Theorem 11. For N large we have 0:6362 6�2N < maxA�N�(N) jAj < 0:6366 6�2N .1.4 Cross{Primitive SequenesWith L.H. Khahatrian we introdued and analyzed the following onept. It is reported in [116℄\Classial results on primitive and reent results on ross{primitive sequenes", Paul Erd}os 80,Graham/Nesetril edit. (A;B), A;B � C � N is ross{primitive in C, if a - b; b - a for a 2 A; b 2B.Theorem 12. For Mn = max(A;B)ross{primitive in [n℄ jAjjBj (i) Mnn2 � 14 . (ii) limn!1 Mnn2 = 14 .Theorem 13. For C = N (i) max(A;B)ross{primitive d(A)d(B) = 14(ii) max(A;B)ross{primitive d(A) � d(B) = 116 = max(A;B)ross{primitive;d(A);d(B) exist d(A)d(B).2 Combinatorial Intersetion Theorems2.1 The Complete Intersetion Theorem and some ExtensionsIn the paper [122℄ together with L.H. Khahatrian we were onerned with one of the oldestproblems in ombinatorial extremal theory. A system of sets A � �[n℄k � is alled t{interseting, ifjA1\A2j � t for all A1; A2 2 A, and I(n; k; t) denotes the set of all suh systems. The investigationof the funtionM(n; k; t) = maxA2I(n;k;t) jAj, 1 � t � k � n, and the struture of maximal systemswas initiated by Erd}os, Ko and Rado. Already in 1938 they proved and in 1961 they publishedTheorem EKR. For 1 � t � k and n � n0(k; t) (suitable) M(n; k; t) = �n�tk�t�.7



This means that for large n the \naive" on�guration A = nA 2 �[n℄k � : [1; t℄ � Ao is optimal. Thesmallest n0(k; t) for whih this is the ase has been determined by Frankl 1978 for t � 15 in [F2℄and Wilson 1984 for all t in [W℄: n0(k; t) = (k � t + 1)(t+ 1). All ases are settled inComplete Intersetion Theorem 14 (Ahlswede/Khahatrian [122℄). For 1 � t � k � n with(k � t+ 1)�2 + t�1r+1� < n < (k � t + 1)�2 + t�1r � for some r 2 f0g [ N we haveM(n; k; t) = jFrj = �����F 2 �[n℄k � : jF \ [1; t+ 2r℄j � t+ r�����and Fr is | up to permutations | the unique optimum. (By onvention a0 =1.)For (k � t + 1)�2 + t�1r+1� = n for r 2 Nf0g we have M(n; k; t) = jFrj = jFr+1j and an optimalsystem equals | up to permutations | either Fr or Fr+1.In partiular, this Theorem shows the validity of the famous 4m{onjeture of Erd}os, Ko, Rado(1938), that is M(4m; 2m; 2) = jfF 2 �[4m℄2m � : jF \ [1; 2m℄j � m + 1gj.Remark 3: The EKR Theorem is the most frequently quoted result of Erd}os. In 1983 Deza andFrankl wrote a paper \The Erd}os/Ko/Rado Theorem | 22 years later".The Theorem presented and proved in [114℄ an be viewed as an extension or improvement ofthe Complete Intersetion Theorem, just mentioned above. It goes onsiderably beyond the well{known Hilton/Milner Theorem and ompletely answers the question of determination of non{trivial t{interseting families. (An A 2 I(n; k; t) is alled non{trivial if ��SA2AA�� < t.)In [137℄ together with H. Aydinian and L.H. Khahatrian the problem of maximal intersetingsystems for diret produts is onsidered. This problem was initiated by Frankl and arose inonnetion with a result of Sali. Let n = n1+ � � �+nm, k = k1+ � � �+km, [n℄ = [n1℄[ [n2℄ � � �[ [nm℄,H = nF 2 �[n℄k � : jF \ [ni℄j = ki for i = 1; : : : ; mo : For given integers ti, 1 � t � ti � ki, 1 � i �m, we may say that A � H is (t1; : : : ; tm){interseting, if for every A;B 2 A there exists an i,1 � i � m, suh that jA \ B \ 
ij � ti holds: Denote the set of suh systems by I(H; t1; : : : ; tm).The problem is to determine maxA2I(H;t1;:::;tm) jAj.The ase t1 = t2 = � � � = tm = 1 has been solved by Frankl. Here is the omplete solution.Theorem 15 (Ahlswede/Aydinian/Khahatrian [137℄). Let ni � ki � ti � 1 for i = 1; : : : ; m,then maxA2I(H;t1;:::;tm) = maxi M(ni;ki;ti)(niki) jHj:We emphasize that the ombination of this Theorem and Theorem 14 gives an expliit value. Theproof is heavily (but not only!) based on ideas and methods from [112℄, in partiular the methodof \generated sets" (.f. [N℄ Bey/Engel, \Old and New Results for the Weighted t{IntersetionProblem via AK{Methods", 45{74;) it takes a entral role in the reent book \Sperner Theory"by K. Engel.2.2 The Diametri Theorem in Hamming SpaesFor �[n℄ = f0; 1; : : : ; � � 1gn, endowed with the Hamming distane funtion dH A � �[n℄ has adiameter d, if diam(A) = maxan;bn2A dH(an; bn) = d.Given n, �; d �nd: N�(n; d) = maxA��[n℄;diam(A)=d jAj or equivalently \�nd optimal antiodes".Previously known were the ases with pairs (d; �) of the form (d; 2) [K℄, (n�1; �) [B℄, f(d; �) : n �d+��1g [FF℄, f(d; �) : n � (��1)d�1+dg [Ahlswede/Cai/Zhang [71℄℄. These authors onjeturedthe Theorem below. It was onjetured in an equivalent form by Frankl/F�uredi already in 1980.8



For 0 � i � d2 de�ne Ki = fan 2 �[n℄ : (a1; : : : ; an � d + 2i) has at least n � d + i zerosg. ClearlyKi has diameter d.Theorem 16 (Ahlswede/Khahatrian [132℄). Let r be the largest integer s.t.n� d+ 2r < min�n+ 1; n� d+ 2 � n�d+1��2 	, then N�(n; d) = jKrj.Moreover, up to permutation of (12 : : : n) and permutations of the alphabet in the omponents theoptimal on�guration is unique, unless n� d > 1, n� d+ 2n�d�1��2 � n and n�d�1��2 is integral,in whih ase we have two optimal on�gurations: Kn�d�1��2 and Kn�d�1��2 �1.The result is derived from the Complete Intersetion Theorem (whih an also be viewed as aDiametri Theorem for dH on the spae �[n℄k �) via a Comparison Lemma.2.3 A Pushing{Pulling MethodIt ame as a surprise to us that at �rst we did not sueed to derive Katona's Intersetion Theoremfor the unrestrited ase, that is in the spae 2[n℄, by the method of \generated sets". Thisled us to the disovery of another method, whih yields Theorem 14 and Katona's IntersetionTheorem. Subsequently we found a way to derive Katona's Theorem from Theorem 14 via anotherComparison Lemma. This is the most ompliated proof, where several simple proofs exist, butit teahes something about methods, whih made progress possible on the t{Intersetion Problemin the trunated Boolean Lattie overing the restrited and the unrestrited intersetion problemas speial ases (Ahlswede/Bey/Engel/Khahatrian [161℄). Whereas there are vertex{ and edge{isoperimetri theorems (see Setion 4) it went unsaid that diametri theorems are vertex{diametritheorems. We omplete the story by introduing edge{diametri theorems into ombinatorialextremal theory. Using again the pushing/pulling method we establish suh a result for V = f0; 1gnand E = f(an; bn) : an; bn 2 Vg. Results and Methods of this Setion are disussed in the survey[N℄, 45{74.2.4 Other Types of Intersetion ProblemsOne type onsists in looking at interseting hains in the Boolean Lattie. It is mentioned in theontext of Higher Level Extremal Problems in Setion 3. Another one, with origin in and interestto Computer Siene, was ommuniated to us by R.C. Mullin in 1990 in Oberwolfah.For a �nite alphabet [�℄ = f0; 1; : : : ; � � 1g we onsider the set �[n℄ of words of length n andalso its subsets W n� of words without repetition of letters, that is, W n� = fxn = (x1; xs; : : : ; xn) 2�[n℄ : xs 6= xt for s 6= tg: We write xn .& yn if for some s 6= t xs = yt. The set F � �[n℄is \good", if for all xn; yn 2 F xn .& yn. Denoting the family of all good sets in W n� by Fn�the quantity of interest is fn� = maxfjF j : F 2 Fn�g. Its determination onstitutes an extremalproblem in a (growing) lass of similar problems whose prototype or historially �rst andidate isthe intersetion problem of EKR.Clearly, it is ertainly also meaningful to study Gn�, the family of all good sets in �[n℄, and thequantity gn� = maxfjEj : E 2 Gn�g.The funtions fn� and gn� are rather omplex. We present here results for the �rst two non{trivialon�gurations of the parameters � and n, namely the ases n = �� 1 and n = 3. Also, we havea limit theorem for � tending to in�nity. Spei�ally, we have the following results.Theorem 17 (Ahlswede/Cai [91℄). (i) f��1� = 12 jW ��1� j = 12�!. Moreover, we determine all9



optimal on�gurations. (ii) f 3� = f 31 = f 34 = 12 for � � 4.Theorem 18 (Ahlswede/Cai [91℄). (i) g3� = 3�+ 7 for 3 � � <1.(ii) lim�!1 gn�(��1n�2) = �n2�(n� 2)! or, equivalently, gn� = �n�2(�n2�+ o(1)) as �!1.3 Higher Level Extremal Problems3.1 Coding for Write{EÆient Rewritable MemoriesImagine a tape with n ells into whih we an write letters from an alphabet X . A word xn =(x1; : : : ; xn) stores some messages. When we want to update this reord to a message representedby yn = (y1; : : : ; yn) the per letter osts '(xt; yt) add up to 'n(xn; yn) =Pnt=1 '(xt; yt). In orderto be able to update many messages under a ost onstraint D we ome to the diametri problemto haraterize M('n; D) = maxfjCj : 'n(xn; yn) � D for all xn; yn 2 Cg (3.1)for the \sum{type" ost 'n, whih also an be a distane funtion like the Hamming, Taxi or Leemetri, et. These problems are disussed in Setion 4.A simple, but basi, observation is that there is an advantage in having for every message i a setCi (alled \loud") � X n of possible representations suh that for any representation xn 2 Cithere exists a representation yn 2 Cj with 'n(xn; yn) � D,Example 3: For X = f0; 1g, n = 3, '3 = dH and D = 1 we have M(dH ; 1) = 2. On the otherhand there are 4 louds C1 = f000; 111g, C2 = f100; 011g, C3 = f010; 101g, C4 = f001; 110g,whih an be used for updating 4 messages at ost 1.More generally we introdued together with Z. Zhang [62℄ write{eÆient memories (WEM) asa new model for storing and updating information on a rewritable medium. There is a ost' : X � X ! R1 assigned to hanges of letters. A olletion of subsets C = fCi : 1 �i � Mg of X n is an (n;M;D) WEM ode, if Ci \ Dj = ? for all i 6= j and if Dmax =max1�i;j�M maxxn2Ci minyn2CjPnt=1 '(xt; yt) � D: Dmax is alled the maximal orretion ostwith respet to the given ost funtion. The performane of a ode C an also be measuredby two parameters, namely, the maximal ost per letter dC = n�1Dmax and the rate of the sizerC = n�1 logM . The rate ahievable with a maximal per letter ost d is thus R(d) = supC:dC�d rC.This is the most basi quantity (the updating apaity for maximal per letter ost d) of a WEM(X n; 'n)1n=1. We give a haraterization of this quantity. For this we need some de�nitions. For aset Z, P(Z) denotes the set of all probability distributions on Z. Let (X; Y ) be a pair of randomvariables with values in X �X and distribution PXY . We denote the (marginal) distributions of X(resp. Y ) by PX (resp. PY ) and H(XjY ) is the onditional entropy. Finally we need distributionsPd = fPXY 2 P(X � X ) : PX = PY ; E'(X; Y ) � dg: (3.2)with equal marginals and an expetation of osts not greater than d and the quantity �(d) =maxPXY 2Pd H(Y jX).Theorem 19. For any d � 0 and ' : X � X ! R+ R(d) = �(d).The Struture of Theorem 1 in the Hamming ase:Hypergraph (V; E) = (X n; (SnD(xn))xn2Xn , �(V; E) = maximal number of olors assigned to ver-ties, suh that every olor ours in every edge, that is ball SnD(xn) (General Ramsey Problem)Ci = f verties with olor ig. A key tool in the spirit of [35℄, [36℄ is10



Color Carrying Lemma. For every hypergraph H = (V; E) �(V; E) � (`njVj)�1minE2E jEj.Sine in our ase jVj = jX nj and jEj = jSnD(xn)j grow exponential in n, if D = dn, we getthe optimal rate R(d) = h(d), where h is the binary entropy funtion, | a very speial ase ofTheorem 19. It is remarkable that in sequene spaes with ardinality of exponential growth theseRamsey type problems an be solved at least rate{wise.There are still issues of ode onstrutions. Further, instead of worst ase osts one an onsideralso average osts, that is, diametri problems in the average. Several interesting questions arise,if several persons or devies use the same tape under various onditions: multi{user memories withonstraints on privay, hierarhy and tehnology [92℄.Notie that the two models mentioned above an be desribed by the side information aboutthe ontent of the tape available to the writer W , before he writes a new word. The reader Rremembers no previous word.Case (W�; R�) amounts to diametri problems. Case (W+; R�) gives our model with louds.Formally, for all (i; j): 8xn 2 Ci 9yn 2 Cj with 'n(xn; yn) � D.3.2 From here we pass to an independent Combinatorial InvestigationIn [119℄ we studied with N. Cai and Z. Zhang families of louds (Ai)Mi=1, Ai � 2[n℄ with(a) relations \�" (omparable), \�j�" (inomparable), \interseting", \disjoint"(b) properties (8; 9), (9; 8), (8; 8), (9; 9).() \Disjoint" louds, \distint" louds. (It is erroneously stated in [N℄ Erd}os/Sz�ekely on page118 that we always assume disjointness.)(d) \restrited" ase jAj = k 8A 2 SMi=1Ai and \unrestrited" ase.(e) For length M bound size max1�i�M jAij.We explain now our symboli notation in a partiular ase.Cloud antihainsClassial: fAigNi=1, Ai � (2[n℄) is an antihain, if Ai �j� Aj 8i 6= j. Now sets are replaed bylouds, that is, families of sets. (Ai)Ni=1 is oftype (8; 8), if for all i 6= j Ai �j� Aj 8Ai 2 Ai, 8Aj 2 Ajtype (9; 8), if for all i 6= j 9Ai 2 Ai with Ai �j� Aj 8Aj 2 Ajtype (8; 9), if for all i 6= j 8Ai 2 Ai 9Aj 2 Aj with Ai �j� Ajtype (9; 9), if for all i 6= j 9Ai 2 Ai, 9Aj 2 Aj with Ai �j� Aj.Maximal lengths Nn(8; 8), Nn(9; 8) for distint and Mn(8; 8);Mn(9; 8); : : : for disjoint louds.Convention: f � g i� limn!1 f(n)g(n)�1 = 1. Work with L.H. Khahatrian [86℄ isTheorem 20.Mn(9; 8) � 2n�1, Mn(8; 9) = (2 if n = 22n�1 � 1 if n � 3 , Mn(9; 9) = � nbn2 �+ �2n�2�( nbn2 )2 �.Theorem 21 (Double exponential growth).Nn(9; 8) = � kb k2� with k = � nbn2 �, Nn(8; 9) � 22n�2, Nn(9; 9) � 22n.The lassial Sperner result takes the forms Mn(8; 8) = Nn(8; 8) = � nbn2 �.For the maximal ardinality of families with the relations \omparable", \disjoint", and \inter-11



seting" we hoose the letters C;D, and I respetively. The types of problems suh as (8; 8) et.appear in the argument and n appears as index. In addition, in the restrited ase a k appears inthe argument.3.3 Cloud{Antihains (CAC) of Length 2Theorem 22 (Ahlswede/Zhang [68℄). A CAC fA;Bg in 2[n℄ satis�es(i) jAjjBj � 22n�4. Optimal on�gurations:1. A = fX 2 2[n℄ : 1 2 X; 2 =2 Xg, B = fX 2 2[n℄ : 1 =2 X; 2 2 Xg2. A = �X 2 2[n℄ : 1 2 X; jXj � �n�12 �+ 1	, B = �X 2 2[n℄ : 1 =2 X; jXj > �n�1n �	 n odd.(ii) minfjAj; jBjg � 2n�2.The proof uses AD{inequality. A sharper result isTheorem 23 (Ahlswede/Khahatrian [107℄). For 0 � � � 2n�1, if fn(�) , maxfjBj : 9A suhthat (A;B) CAC in 2[n℄ and jAj = �, then fn(�) = 2n�1 + 2f (�)n�2 � �.For multisets of multipliity k again AD and the arithmeti{geometri means inequality givejAj1=2 + jBj1=2 � kn=2 for (A;B) CAC in k[n℄.Using results of [DKW℄ we provide again with L.H. Khahatrian [107℄ partial results forQuestion I: For every k desribe all CAC (A;B) with equality in (3.6). In the terminology of[100℄ this is an equality haraterization problem.Question II: How does fn;k(�) = maxfjBj : 9(A;B) CAC in k[n℄, jAj = �g behave asymptotiallyin k; n, and �?In generalising statements (i), (ii) in Theorem 5 we ompletely answer for every kQuestion III: What is the growth of gn;k = max(A;B)minCAC in k[n℄(jAj; jBj)?Question IV: What is the growth of Sn;k = max(A;B) CAC in k[n℄ jAjjBj?Question V: What is the growth of an;k(�) = maxfjBj : 9A suh that (A;B) is CAC in k[n℄ andjAj = jBj+�g for �kn � � � kn?3.4 Intersetion, Clouds DisjointTheorem 24 (Ahlswede/Cai/Zhang [95℄). In the restrited ase k = 2In(9; 8; 2 = (n� 1 for n 2 N � f3; 5gn for n = 3; 5 ; In(8; 9; 2) = (n for n 2 N � f1; 2; 4gn� 1 for n = 1; 2; 4In(9; 9; 2) � n3=2; In(8; 8; 2) = (n� 1 for n 2 N � f3gn for n = 3 (very speial ase of EKR):Theorem 25 (Ahlswede/Cai/Zhang [119℄). In the unrestrited aseIn(8; 8) = In(9; 8) = In(8; 9) = 2n�1 In(9; 9) = 2n�1 + 2n�2 � 1.3.5 Disjoint, Clouds DisjointTheorem 26 (Ahlswede/Cai/Zhang [95℄). In the restrited ase k = 212



limn!1Dn(9; 8; 2)n�2 = 16 , limn!1Dn(8; 9; 2)n�2 = limn!1Dn(9; 9; 2)n�2 = 14 .Theorem (Alon/Sudakov (see [N℄, page 123)). In the restrited aselimn!1 Dn(9;8;k)(nk) = 1k+1 , limn!1 Dn(8;9;k)(nk) = limn!1 Dn(9;9;k)(nk) = 12 .Conjetured by Ahlswede/Cai/Zhang [119℄, who settled the ase k = 2.3.6 Key Tools are Results on Related Graph Coloring ProblemsThis and the next paragraph give results from [119℄. The study of loud families of the (9; 9){typenaturally leads to the following oloring onept. For any graph G = (V; E) a oloring of type(9; 9) is a map f : V !Mf = f1; 2; : : : ; mfg suh that for any two olors, say, i; j 2 Mf , an edge(a; b) 2 E exists with f(a) = i and f(b) = j.We are interested in the quantity m(G) = maxfmf : f is (9; 9){oloring of Gg.Theorem 27. For any graph G = (V; E) we have with N = 2jEj m(G) � N1=2 + 1.Moreover, if D , maxV 2V deg(x) � � Ne4 logN�1=2, then m(G) � � Ne4 logN�1=2.Cloud families of (8; 9){type lead to a oloring of (8; 9){type, whih is a map g : V ! Mg =f1; 2; : : : ; mgg suh that for any two olors, say, i; j 2 Mg and for any a 2 U with g(a) = i thereis an edge fa; bg 2 E with g(b) = j. We are interested in m�(g) = maxfmg : g is (8; 9){oloringof GgTheorem 28. For any graph G we have(i) (log jVj)�1(d+ 1) � m�(G) � d+ 1, where d , minx2V deg(x)(ii) m�0(G) , max jfm�(G 0) : G 0 is subgraph of Ggj � D + 1.We mention that a oloring of type (9; 8) is a map h : V !Mh = f1; 2 : : : ; mhg suh that for anytwo olors i; j 2 Mh an a 2 V exists with h(a) = i and h(b) = j for all b 2 N (a), b 6= a. Thequantity m��(G) = maxfmh : h is (9; 8){oloring of Gg is hard to analyse in general.3.7 Asymptoti Results via Graph ColoringTheorem 29.limn!1 1n logCn(9; 9) = limn!1 1n logDn(9; 9) = 12 log 3Theorem 30.limn!1 1n logDn(9; 9; "n) = 12 �h(") + (1� ")h � "1�"��, limn!1 1n log In(9; 9; "n) = h(").Theorem 31.limn!1 1n logDn(8; 9; "n) = (1� ")h � "1�"�, limn!1 1n log In(8; 9; "n) = h(").3.8 Hamming Distane 1, Clouds DisjointAn important relation is that of Hamming distane r for two words.Theorem 32 (Ahlswede/Cai/Zhang [119℄). In the unrestrited aselimn!1 1n logHn(8; 8; �n) = 12(1 + h(�)).Notie thatHn(9; 9; 1) equals the maximal number of sets into whih one an partition the n{ube,suh that two di�erent sets always have distane 1.13



Theorem 33 (R. Ahlswede, S.L. Bezrukov, A. Blokhuis, K. Metsh and G.E. Moorhouse [80℄).p22 pn2n � Hn(9; 9; 1) � pn2n + 1 for all n.3.9 Another DiretionLet In be the lattie of intervals in the Boolean lattie Ln. For A;B � In the pair of louds (A;B)is ross{disjoint, if I \ J = � for I 2 A, J 2 B. With N. Cai [109℄ we prove that for suh pairsjAjjBj � 32n�2 and that this bound is best possible.Optimal pairs are up to obvious isomorphisms unique. The proof is based on a new bound on rossinterseting families in Ln with a weight distribution. It implies also an Intersetion Theorem formultisets of Erd}os and Sh�onheim from 1969.Furthermore, in [115℄ in a anonial way we establish an AZ{identity and its onsequenes, theLYM{inequality and the Sperner{property. Further the Bollob�as{inequality for the Boolean in-terval lattie turns out to be just the LYM{inequality for the Boolean lattie. We also present anIntersetion Theorem for this lattie.Perhaps more surprising is that by our approah the onjeture of P.L. Erd}os, Seress, Sz�ekely[ErSS℄ and F�uredi onerning an Erd}os{Ko{Rado{type intersetion property for the poset ofBoolean hains ould also be established. Atually we give two seemingly elegant proofs.4 Diametri, Isoperimetri Theorems in Sequene Spaes4.1 IntrodutionMankind believes the Isoperimetri Theorem in Eulidean 3{spae \For given surfaes the ballhas maximal volumes" for more than 2000 years. The disovery of the 2{dimensional analog isoften attributed to Dido, the daughter of a Phoeniian King. Despite strong interest in extremalproblems and variational priniples in physis (and also philosophy: \Best of all worlds" forLeibnitz) in modern times after the invention of alulus a proof ame only in the 19{th enturyby Shwarz | after an inomplete geometrial proof by Steiner, showing the uniqueness but notthe existene of a solution.Replaing surfae by diameter leads to (iso){diametri Theorems. A lassi is Blashke's \Kreisand Kugel". In sequene spaes �[n℄ ardinalities take the role of volumes of subsets. For somedistane funtion d (like Hamming, Lee or Taxi metris) surfae �d(A) is the set of points in theomplement of A and with distanes 1 to A.Harper's solution of the isoperimetri problem in Hamming spae (2[n℄; dH) is mentioned in Setion5. The problem is open for � > 2. However, reently a \rate{wise" optimal solution was foundwith Z. Zhang for the r{th surfae �r�n(A) = fbn : bn =2 A, 'n(bn; an) � r for some an 2 Ag withr = �n, where 'n(bn; an) =Pt=1 '(bt; at), ' : [�℄�[�℄! R is any symmetri \sum{type" funtionand not just the Hamming distane: R(�; �) = limn!1 1n maxjAj�expf�ng log j��n'n(A)j.Exat solutions are not even known for the non{binary Hamming ase.In Setion 2 the Diametri Theorem in Hamming spae is mentioned. For � = 2 optimal areballs and for � > 2 optimal are ertain artesian produts of a ball and a suitable subube (orylinder set). Depending on the parameters this on�guration an degenerate to a ball and up toisometries (with one exeption of two solutions) there is only one solution.14



Notie that the Complete Intersetion Theorem for parameters (n; k; t) an be viewed as a Dia-metri Theorem on the restrited Hamming spae ��[n℄k �; dH� for diameter D = 2k � 2t. Anotherkind of diametri theorem is for an average diameter onstraint (in 4.2 below).We have now gained by example an understanding of the following lassi�ation:restrited ase | unrestrited ase, worst ase | average asevertex{isoperimetri | edge{isoperimetri, vertex{diametri | edge{diametriexat solution | rate{wise optimal solutionCoauthors in this work are I. Alth�ofer, S. Bezrukov, N. Cai, L.H. Khahatrian, E. Yang, Z. Zhang.4.2 Rate{Wise Optimal Solutions for the Average Case (Vertex){Diametri ProblemExat solutions for the worst ase vertex{diametri problem have been disussed in onnetionwith Intersetion Theorems in Setion 2 for the Hamming distane. An earlier result with Caiand Zhang [72℄ onerns the Taxi (or Manhattan) metri on �[n℄ and gives solutions for almostall parameters. Bollobas/Leader notied that the missing ases are overed by an earlier result ofKleitman/Fellow. A worst ase diametri theorem for edges was mentioned in Setion 2. The �rstdiametri theorem for the average was obtained with I. Alth�ofer with an rate{wise optimal solution:U � X n has an average diameter not exeeding D, if Dave , 1jUj2 Pxn2UPyn2U 'n(xn; yn) � D:With Katona [31℄ already in 1978 the restrited ase k = 2 was onsidered in the dual form, wherethe ardinality of U is spei�ed and Dave is minimized. An exat solution is given in the form thateither U in lexiographi or in bakwards lexiographi order is optimal. With I. Alth�ofer [87℄ weproved by entropy methodsDiametri Theorem in Average 34. For the Hamming spae (�[n℄; dH) and rate 0 � R � log�the smallest average diameter per letter 1ndn(R) , minAn��[n℄; 1n log jAnj�RDave(An); n 2 N, satis�esd(R) , limn!1 1ndn(R) = min h�Px;y dH(x; y)P (x)P (y) + (1� �)dH(x; y)P 0(x)P 0(y)i,where \min" is taken over � 2 [0; 1℄, and probability distributions on [�℄ with �H(P ) + (1 ��)H(P 0) � R. Here H stands for the entropy.Writing R = h(�) for � = 2 we get d(R) = 2�(1� �). For � = 3 alulation shows that P 6= P 0ours in the optimization.For general ost funtion the result holds with dH replaed by 'n as shown with Cai [127℄. Thereare also extensions to several sets with some pairwise mutual average distane (or osts) andsome internal average distanes all simultaneously valid are treated. These generalizations aremotivated by multiuser WEM (see Setion 3). The proofs use a tool from Information Theory tobound the ardinality of ranges of auxiliary random variables:Support Lemma (Ahlswede/K�orner [21℄). Let P(Z) = set of all PD's on �nite set Z, letfi(j = 1; : : : ; k) : P(Z) ! R be ontinuous funtions, and let � be a PD on P(Z) with Borel�{algebra, then there exist elements Pi 2 P(Z) and �1; : : : ; �k � 0, Pki=1 �i = 1 suh thatRP(Z) fj(P )�(dP ) =Pki=1 �ifi(Pi) for j = 1; 2; : : : ; k:
15



4.3 Edge{Isoperimetri Inequalities Ratewise Optimal	i : 2Xi ! R(i = 1; 2), 	1 �	2 : 2X1�X2 ! R de�ned by	1 � 	2(A) =Px2X2 	1(A1(x)) +Px2X1 	2(A2(x)) for A � X1 � X2	n = (((	� 	)� 	)� � � � � 	) ounts inner edges.A. (Nestedness):For X = f0; 1; : : : ; �� 1g, k 2 X , [k℄ = f0; 1; : : : ; kg, A � X , jAj = k + 1'(A) � '([k℄) (Satis�ed by dH ; dL; dM ; : : : ).B. (Submodularity): For A;B � X '(A) + '(B) � '(A [B) + '(A \B).C. '(?) = 0 and �'(k) = '([k℄)� '([k � 1℄).A pair (R; Æ) is ahievable, if for all "1; "2 > 0 there exists an n("1; "2) suh that for every n �n("1; "2) there is an An � X n with �� 1n log jAnj � R�� < "1 and 1njAnj'n(A) > Æ � "2. R' is the setof all ahievable pairs (R; Æ).Theorem 35 (Ahlswede/Cai [125℄, [126℄). R' = f(H(XjU); E�'(X)) : X; Y satisfy (a); (b); ()g(a) Random variable X takes values in X and random variable U takes values in U(b) jUj � jX j+ 1() Pr(X = 0jU = u) � Pr(X = 1jU = u) : : : � Pr(X = �� 1jU = u).Remark 4: Bollobas/Leader solved the ase P nk = powers of k{paths and Cnk = powers of k{yles, whih are equivalent via 	! All trees on k verties are equivalent.Loal{global priniple: Let 	 satisfy A;B;C. If the Lexiographi order is exatly opti-mal for edge{isoperimetry for n = 1; 2, then it is optimal for every n. There is related work withS.L. Bezrukov [98℄ and by him and his oauthors, surveyed in [N℄, p. 75{94.5 Combinatoris on Sequene Spaes: Partitions, Mono-hromati Retangles, Shadows and Isoperimetry underSequene{Subsequene Relation, Antihains Splitting,AZ{Identities, Dimension Constraints5.1 PartitionsConsider (V; E), where V is a �nite set and E is a system of subsets of V. For the artesianproduts Vn = Qn1 V and En = Qn1 E , let �(n) denote the minimal size of a partition of Vn intosets that are elements of En, if a partition exists at all, otherwise �(n) is not de�ned. This isobviously exatly the ase if it is so for n = 1.Whereas the paking number p(n), that is the maximal size of a system of disjoint sets from En,and the overing number (n), that is the minimal number of sets from En to over Vn, have beenstudied in the literature, this seems to be not the ase for the partition number �(n).Obviously, (n) � �(n) � p(n), if (n) and �(n) are well de�ned. The quantity limn!1 1n log p(n)is Shannon's zero error apaity. Although it is known only for very few ases, a nie formulaexists for limn!1(1=n) log (n) (see [73℄).The diÆulties in analyzing �(n) are similar to those for p(n). For the ase of graphs with edgeset E inluding all loops, we prove that �(n) = �(1)n ([83℄). This result is derived from the16



orresponding result for omplete graphs with the help of Gallai's Lemma in mathing theory.Another interesting quantity is �(n), the maximal size of a partition of Vn into sets that areelements of En (again only hypergraphs (V; E) with a partition are onsidered). We also all � themaximal partition number. It behaves more like the paking number. Clearly, �(n) � �(n) � p(n).It seems to us that an understanding of these partition problems would be a signi�ant ontributionto an understanding of the basi, and seemingly simple, notion of Cartesian produts.More generally, for hypergraphs Hi = (Vi; Ei) (1 � i � n), we de�ne the produt hypergraphHn = (Vn; En) = (Qni=1 Vi;Qni=1 Ei). Edges of ardinality 1 are alled loops. Speial hypergraphsare graphs G = (V; E) de�ned by the property jEj 2 f1; 2g for all E 2 E and, more generally,d{uniform hypergraphs (with or without loops) that satisfy jEj 2 f1; dg for all E 2 E .In partiular, there are d{uniform hypergraphs with all loops inluded, that is, ffvg : v 2 Vg � E .When the set �Vd� of all vertex sets of ardinality d is ontained in the edge set E , we speak of aomplete d{uniform hypergraph.We introdued the partition number �(H) as the minimal size of a partition of V into sets thatare members of E , if a partition exists, and 1 otherwise. When Gi = (Vi; Ei) (i = 1; 2; : : : ; n) arearbitrary �nite graphs with all loops inluded, then we obviously have �(Gi) = jVij � v(Gi) for thepartition number, where v(Gi) is the mathing number of Gi. A disovery of [83℄ is that for thehypergraph produt Hn = G1 � � � � � Gn �(Hn) =Qni=1 �(Gi).An important step in our proof is to show the above when all Gis are omplete. Here we establishthe following generalization.Theorem 36 (Ahlswede/Cai [94℄). For omplete d{uniform hypergraphs with all loops Hi =(Vi; Ei), that is, Ei = �Vid � [ ffvg : v 2 Vig (i = 1; 2; : : : ; n), write jVij = dqi + ri; 0 � ri < d. Thenfor Hn = Qni=1Hi satisfying d > Qi:ri 6=0 ri, we have �(Hn) = Qni=1 jVij+(d�1)rid = Qni=1(qi + ri) =Qni=1 �(Hi). (The result above is overed by the ase d = 2.)Even in the ase of non{idential fators Hi = (Vi; Ei), i 2 N, with maxi jEij <1, the asymptotisof (n) is known [73℄: limn!1 1n �log (n)�Pnt=1 log �maxq2Prob(Et)minv2EtPE2Et 1E(v)qE��1� =0, where Prob(Et) is the set of all probability distributions on E , qE is the indiator funtion ofthe set E.5.2 Bounds on Monohromati RetanglesFor a matrix onsider the area i � j of an i � j minor with onstant entries. This onept wasintrodued by Yao for estimating ommuniation omplexity. Some of our exat results andbounds, identities and inequalities, are reported by U. Tamm in [N℄, p. 589{602. Interativeommuniation [120℄, a similar model, has striking phenomena and open problems. Methods from[35, 36℄ �nd appliation.5.3 Shadows and Isoperimetry under the Sequene{Subsequene Re-lationIt has been suggested in 1988 on page 152 in projet B1 \Kombinatorik von Folgenr�aumen" ofthe SFB 343 \Diskrete Strukturen in der Mathematik" to study ombinatorial extremal problemsunder the sequene{subsequene relation | in partiular also shadow problems of the Kruskal{Katona type. 17



In Sept. 94 David Daykin wrote to us that he and Danh had a ounterexample to the optimalityof the optimality of the B{G order. He also mentioned that they had a solution in the binary asewith a very, very ompliated proof (whih we never have seen). Immediately thereafter a simpleproof for the binary ase (and also a simple ounterexample to the B{G order in the general ase)was given by Ahlswede/Cai [112℄. Subsequently, in Deember 94 the former author also gave anew shorter proof. (Also published in [112℄, see [N℄, p. 75{94.)A. Shadows of arbitrary sets under deletion of any letterFor X n = Qn1 X , the sequenes of length n over the alphabet X , we onsider for sets A � X ntheir shadow OA = fxn�1 2 X n�1 : xn�1 is subsequene of some an 2 Ag. The goal is to �nd forgiven ardinalities sets of minimal ardinality of the shadow.Reall the H{order of Harper: For any integer u 2 [0; 2n℄ the u{th initial segment onsists ofall xn 2 f0; 1gn with less than n � k ones and all remaining elements with n � k ones, whoseomplements are in the initial segment of the squashed order (used for instane in Kruskal{Katona).As in the vertex isoperimetri problem in binary Hamming spae it is optimal also for our shadowsof sets in f0; 1gn. We use the unique binomial representation of an integer uu = �nn�+ � � �+ � nk+1�+ ��kk �+ � � �+ ��tt �;n > �k > � � � > �t � 1,and observe that for an initial, H{order segment S with jSj = ujOSj = �n�1n�1�+ �n�1n�2�+ � � �+ �n�1k �+ ��k�1k�1 �+ � � �+ ��t�1t�1 � = OG(n; u), say.Theorem 37. For every A � f0; 1gn jOAj � OG(n; jAj) and the bound is ahieved by the u{thinitial segment in H{order.The proof is an immediate onsequene of our main disovery, theO{Inequality (Ahlswede/Cai [112℄): If w1 � w0 < OG(n; w) and w � w0 + w1, thenOG(n; w) � OG(n� 1; w0) + OG(n� 1; w1).In [128℄ Ahlswede/Cai established analogous results forB. Shadows for �xed level and spei� letterC. Shadows of arbitrary sets under insertion of any letterD. Two isoperimetri inequalitiesIt has been emphasized in [27℄ that isoperimetri inequalities in disrete metri spaes are funda-mental priniples in ombinatoris. The goal is to minimize the union of a spei�ed number ofballs of onstant radius. We speak of an isoperimetri inequality, if this minimum is assumed fora set of ball{enters, whih themselves form a ball (or quasi{ball, if numbers don't permit a ball).For any A � f0; 1g� and any distane d we de�ne (the union of balls of radius r)�rd(A) = fxn0 2 f0; 1g� : d(xn0; an) � r for some an 2 Ag.A prototype of a disrete isoperimetri inequality is the one disovered by Harper 1966, redisov-ered by Ahlswede/G�as/K�orner [23℄, and proved again by Katona for d = dH .The optimum is ahieved by the jAj{th initial segment IjAj in H{order (this is a ball of radius k,if jAj =Pnj=0 �nj�).Ahlswede/Cai [128℄ de�ne two distanes, � and Æ, in f0; 1g� = S1n=0X n. For xm; ym0 2 f0; 1g��(xm; xm0) ounts the minimal number of insertions and deletions whih transform one word intothe other. �(xm; xm0) ounts the minimal number of operations, if also exhanges of letters are18



allowed. Thus Æ(xm; xm0) � �(xm; xm0).Theorem 38. For all A � X n and r � 0 (i) j�r�Aj � j�r�IAj, (ii) j�rÆAj � j�rÆIAj.5.4 Antihains SplittingA novel type of result was found by Ahlswede/Erd}os/Graham [103℄: In any dense �nite poset P(e.g. in the Boolean lattie) every maximal antihain S an be partitioned into disjoint subsetsS1 and S2, suh that the union of the downset of S1 with the upset of S2 yields the entire posetD(S1) [ U(S2) = P: Here P is alled dense if every non{empty open interval fz 2 P : x < z < ygontains at least two elements z0; z00. It is alled strongly dense if there are inomparable z0; z00.For �nite posets the two onepts are equivalent, but for in�nite posets they do not neessarilyoinide. (For example the totally ordered hain of rational numbers is dense, but not stronglydense.)A onjeture of [103℄ that every ountable strongly dense poset has the splitting property wasdisproved by Ahlswede/Khahatrian with the poset of squarefree integers in [N℄, 29{44, where thereader �nds also several open questions.5.5 AZ{IdentitiesAhlswede and Zhang [64℄ found the following identity.Theorem 39 AZ{Identity. For every family A � 2
 of non{empty subsets of 
 = f1; 2; : : : ; ngPZ�
 WA(X)jXj( njXj) = 1; where WA(X) = ��SA�A2AA��.We assoiate with every E � 2
 the upset U(E) = fU � 
 : U � E for some E 2 Eg and thedownset D(E) = fD � 
 : D � E for some E 2 Eg. When A is an antihain in the poset (2
;�),then the identity beomes PX2A 1( xjXj) +PX2U(A)rA WA(X)jXj( njXj) = 1.The LYM inequality is obtained by omission of the seond summand, whih by de�nition of WAan also be written in the form PX=2D(A) WA(X)jXj( njXj) . We all this the de�ieny of the inequality.More generally, in [68℄ the Bollobas inequality was lifted to an identity.Theorem 40 AZ2. For two families A = fA1; : : : ; ANg and B = fB1; : : : ; BNg of subsets of 
with the properties(a) Ai � Bi for i = 1; 2; : : : ; N , (ii) Ai 6� Bj for i 6= j PNi=1 1(n�jBirAijjAij ) +PX=2D(B) WA(X)jXj( njXj) = 1.In [64℄ it was explained that Theorem AZ1 gives immediately, what LYM does not, namely theuniqueness part in Sperner's Theorem. In [68℄ the uniqueness of an optimal on�guration ofunrelated hains of subsets due to Griggs, Stahl and Trotter 1984 [GST℄ was proved with the helpof Theorem AZ2.K�orner and Simonyi 1990 observed the LYM{type inequality: For A = fA1; : : : ; ANg;B =fB1; : : : ; BNg � 2
 with Ai \Bi = ?; Ai 6� Aj [ Bj; Bi 6� Aj [Bj for i 6= jPNi=1 �n�jAijjBij ��1 + �n�jBijjAij ��1 � � njAij+jBij��1 � 1 and they asked \Is this inequality ever tight?".This rather modest question was a hallenging test of the power of the identities above or, morepreisely, of the proedure to produe new identities desribed in [64℄.The outome is an Ahlswede{Zhang type identity whih goes onsiderably beyond Theorem AZ2.19



From a speial ase of this identity we derive a full haraterization of the ases with equalityeven for a generalized version of the inequality above. In other words we haraterize the aseswith de�ieny zero.Theorem 41 (Ahlswede/Cai [79℄). Suppose that for a family B = fB1; : : : ; BNg of subsets of 
and a family A� = fA1; : : : ;ANg of subsets of 2
, where Ai = fAti : t 2 Tig for a �nite index setTi, we have (a) Ati � Bi for t 2 Ti and i = 1; 2; : : : ; N , (b) Ati 6� Bj for t 2 Ti and i 6= j. ThenPNi=1PjTijk=1(�1)k�1PS�Ti;jSj=k �n�jBi�St2S Ati jjSt2S Ati j ��1 +PX=2D(B) WA(X)jXj( njXj) = 1.The speialisation jTij = 1 for i = 1; : : : ; N gives Theorem AZ1. Daykin and Thu 1994 presented adual to the AZ{identity and for related identities see Thu, \Identities for Combinatorial ExtremalTheory" in [112℄.5.6 Extremal Sets of Vetors under Linear Dimension ConstraintsThe paper [158℄ \Maximal Number of Constant Weight Verties of the Unit n{Cube Containedin a k{Dimensional Subspae", together with H. Aydinian and L.H. Khahatrian, is the start ofa new diretion in Extremal Theory, whih is indiated in the title.We introdue and solve a seemingly basi geometrial extremal problem For the set E(n; w) =fxn 2 f0; 1gn : xn has w onesg of verties of weight w in the unit ube of Rn we determineM(n; k; w) , maxfjUnk \ E(n; w)j : Unk is a k{dimensional subspae of Rng. We also presentan extension to multi{sets and explain a onnetion to the (higher dimensional) Erd}os{Moserproblem.The set E(n; w) an also be viewed as the set in whih onstant weight odes are studied inInformation Theory. Another interest there is in linear odes. This was a motivation for studyingthe interplay between two properties: onstant weight and linearity. In partiular we wanted toknow M(n; k; w).Theorem 42 (Ahlswede/Aydinian/Khahatrian [158℄). For n; k; w 2 N(a) M(n; k; w) =M(n; k; n� w)(b) For w � n2 we have M(n; k; w) = 8><>:�kw�; if (i) 2w � k�2(k�w)k�w �22w�k; if (ii) k < 2w < 2(k � 1)2k�1; if (iii) k � 1 � w:The sets giving the laimed values of M(n; k; w) in the three ases are(i) S1 = E(k; w)� f0gn�k (ii) S2 = E(2(k � w); k � w)� f10; 01g2w�k � f0gn�2w(iii) S3 = f10; 01gk�1 � f1gw�k+1 � f0gn�k�w+1.A key tool in the proof is an extremal problem for families of w{element sets involvingantihain properties for ertain restritionsLemma. Let X = X1 :[ : : : :[Xs with jXij = ni for i = 1; : : : ; s and let A � �Xw� be a family withthe following property:(P) for any A;B 2 A and j = 1; : : : ; s E , A \ �Sji=1Xi� 6= B \ �Sji=1Xi� , F implies that Eand F are inomparable (form an antihain). Theng(n1; : : : ; ns; w) , max�jAj : A � �Xw�;A has property (P)	 = maxPsi=1 wi=wQsi=1 �niwi�.For s = 1 we get Sperner's result. Evaluation of the max gives the formulas in the Theorem.20



6 Counterexamples, Conjetures and Problems6.1 CounterexamplesFrankl/Pah Conjeture for Uniform, Dense Families.A family F � �[n℄` � is alled `{dense, if there exists an F 2 F , suh that jF \ F1 : F1 2 Fj = 2`.Frankl/Pah [FP℄ onjetured that every F � �[n℄` � with jFj > �n�1`�1� is `{dense.Ahlswede/Khahatrian [129℄ provide a ounterexample to this onjeture by the onstrution ofa set F � �[n℄` �, jFj = �n�1`�1�+ �n�4`�3�, whih is not `{dense.Kleitman's Conjeture.In [27℄ Ahlswede/Katona onsidered the following \Exess{problems": For A � �[n℄k � let I(A) =jf(A1; A2) 2 A2 : A1 \ A2 6= �gj; G(A) = jf(A1; A2) 2 A2 : jA1 \ A2j � k � 1gj. Determinef(M) = maxjAj=M I(A) or g(M) = maxjAj=M G(A).The problems are the same for k = 2 and here these authors desribed two on�gurations, quasi{ball and quasi{star, one of whih is always optimal. For k � 3 none of the problems is solved. Theseond has also been alled Kleitman{West Problem. Ahlswede/Cai [144℄ disproved a onjetureof Kleitman for this problem.Conjeture of R. Aharoni from 1991 onerning mathing theory for in�nite familiesof �nite sets.The onjeture states that in any suh family A there exists a subfamily B of disjoint sets (alledstrong maximal mathing) suh that no substitution of k of these sets by more than k sets fromA results again in a subfamily of disjoint sets.The ounterexample of Ahlswede/Khahatrian [105℄ is the family A of those subsets of N , whoseardinality equals its minimal element (in anonial order).Conjetured sharpening of EKR by Ahlswede/Cai/ZhangThe equation In(9; 8; k) = �n�1k�1�) for n � 3k was shown by Ahlswede/Alon/P.L. Erd}os/Ruszinko/Sz�ekely (see [N℄, page 117{124) to hold for k = 2; 3 and to be false for k � 8.6.2 Open ProblemsProblem 1: Prove or disprove Aharoni's Conjeture for families of sets of bounded ardinality k.For k = 2 it has been proved by Aharoni.Problem 2: Exat solutions of isodiametri problems for general sumtype funtions are hard toobtain. Solve the ase of the Lee{metri already mentioned in [72℄.Problem 3: Classi�ation of D{perfet odes. We learnt in Setion 4 that optimal antiodesneed not be balls. This led to the new onept of D{perfet odes. Continue the lassi�ation byAhlswede/Aydinian/Khahatrian [118℄.Problem 4: Optimal rate for odes with loalized errors. The optimal rate R of odesover the alphabet f0; 1; : : : ; q � 1g with loalized t = � � n errors does not exeed the Hammingbound 1� hq(�) � � logq(q � 1): In 1987 Bassalygo, Gelfand, Pinsker showed that for q = 2 thebound is optimal. A series of investigations [75℄, [77℄, [90℄, [96℄, [97℄ gave in partiular for q � 2Theorem 43 (Ahlswede/Bassalygo/Pinsker [149℄). Let 0 < � < 1=2� q�22q(2q�3) , then for any " > 0the Hamming bound an be ahieved in rate up to " with odes orreting �n loalized errors.21



Prove or disprove: Not only for q = 2, but for all q � 2 this is true for 0 < � < 1=2.Problem 5: Equality haraterisation for AD onstitutes by itself a rih area in ombinatorialextremal theory. Less demanding are equality haraterisation problems for the onsequenesof AD. Aharoni/Holzman did this for Maria{Sh�onheim and Bek for another speial ase ofAD (.f. [100℄). Already in 1979 Daykin/Kleitman/West investigated Kleitman's inequality.Ahlswede/Khahatrian [100℄ ompleted these investigations.Problem 6: Determine Hn(9; 9; k; r). We believe that limn!1Hn(9; 9; 3; 2)n�2 = 1p2 .Problem 7: Determine Hn(8; 9; k; r). We believe that limn!1Hn(8; 9; 3; 2) = 2.There are many problems in Ahlswede/Zhang [60℄ and Ahlswede/Ye/Zhang [63℄ on \Creatingorder". (See also P. Vanroose [N℄ 603{614 and in U. Tamm [N℄ 589{602.)6.3 ConjeturesConjeture 1 (Ahlswede/Khahatrian; also Erd}os). In Theorem 1 in Setion 1 one an hoosefor every k n(k) = p2k for suitable onstant . Presently we have only n(k) =Qp�(p1k) p2k.The theory of Communiation Complexity led via Yao's monohromati retangles for speialfuntions to the followingConjetures 2, 3. limn!1 In(8; 9; 3)�n2��1 = 54 , limn!1 In(9; 9; k)� nk�1��1 = 1 [119℄.Conjeture 4. For an = (a1; : : : ; an), bn = (b1; : : : ; bn) de�ne mn(an; bn) = Pnt=1 at ^ bt andM(Æ; n) = maxfjAjjBj : A;B � f0; 1gn;Mn(an; bn) = Æ, for all an 2 A; bn 2 Bg, Ahlswede [57℄guesses that M(Æ; n) = max0�m�n�Æ 2m�n�mÆ �.Conjeture 5. The pair (A;B) with A;B � f0; 1; : : : ; � � 1gn is an (n; Æ) onstant dis-tane ode pair, if dH d(a; b) = Æ for all a 2 A; b 2 B. Let S�(n; Æ) be the set of thoseode pairs, let M�(n; Æ) = maxfjAjjBj : (A;B) 2 S�(n; Æ)g, and let for � � 4 F�(n; Æ) =maxÆ1+Æ2=Æ � d�e2 �b2�Æ1 �n�ÆÆ2 �(�� 1)Æ2 :Theorem 44 (Ahlswede [57℄). For n 2 N, 0 � Æ � n M�(n; Æ) = F�(n; Æ) for � = 4; 5.Prove M�(n; Æ) = F�(n; Æ) for all � � 6 (300 US $ are o�ered for �rst solver).Conjeture 4. (34{Conjeture for �x{free odes by Ahlswede/Balkenhol/Khahatrian [118℄.) A(variable length) ode is �x{free if no odeword is a pre�x or a suÆx of any other. A databaseonstrution by a �x{free ode is instantaneously deodable from both sides. Prove or disprove:For numbers `1; : : : ; `N satisfying Pni=1 2�`i < 34 a �x{free ode of word lengths `1; : : : ; `N exists.If true, this bound is the best possible.Further Conjetures an be found in Ahlswede [56℄.Bibliography[N℄ \Numbers, Information and Complexity, Speial volume in honour of R. Ahlswede on theoasion of his 60th birthday"; I. Alth�ofer, N. Cai, G. Duek, L. Khahatrian, M.S. Pinsker, A.S�ark�ozy, I. Wegener, Z. Zhang editors. Kluwer Aad. Publ., Boston, Dordreht, London 2000.[B℄ C. B�erge, "Nombres de oloration de l'hypergraphe h-parti omplet", Hypergraph Seminar(Pro. First Working Sem., Ohio State Univ., Columbus, Ohio, 1972; dediated to Arnold Ross),pp. 13{20. Leture Notes in Math., Vol. 411,Springer, Berlin, 1974.[CG℄ F. Chung and R. Graham, \Erd�os on graphs. His legay of unsolved problems", A K Peters,Ltd., Wellesley, MA, 1998. 22
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