
Advan
es on Extremal Problems in Number Theoryand Combinatori
sRudolf Ahlswede, Universit�at Bielefeld, GermanyIntrodu
tionTo keep an a

eptable size referen
es not listed at the end are given by the Bibliography of there
ent book [N℄ and/or the page number of [N℄.1. Starting with solutions of extremal problems for �nite sets of numbers under divisibility 
on-straints [with L.H. Kha
hatrian, 
.f. [PS℄℄, then we des
ribe the dis
overy of 
orrelation inequali-ties implied by the AD{inequality [with L.H. Kha
hatrian, 
.f. [N℄ P.C. Fishburn, L. Shepp, TheAhlswede{Daykin Theorem, 501{516℄ and 
on
lude this se
tion with results on extremal problems
on
erning densities of primitive in�nite sets of numbers and related topi
s [with L.H. Kha
hatrianand A. S�ark�ozy℄.2. Divisibility properties for numbers naturally 
orrespond to interse
tion properties for setsand thus there are also 
onne
tions between methods. Espe
ially, a new pushing te
hnique fornumbers lead to the dis
overy of the method of \generated sets", whi
h made it possible toestablish several Interse
tion Theorems in Combinatori
s, whi
h are highlighted by the CompleteInterse
tion Theorem [ with L.H. Kha
hatrian; P. Frankl wrote in [F1℄, p. 142 \At present this
onje
ture appears hopelessly diÆ
ult in general"℄, whi
h, as a very spe
ial 
ase, established the4m{Conje
ture of Erd}os/Ko/Rado from 1938 [[En℄; [N℄ C. Bey, K. Engel, Old and New Resultsfor the Weighted t{interse
tion Problem via AK{Methods, 45{74; [N℄ G.O.H. Katona, The Cy
leMethod and its Limits, 129{142; [CG℄; B. Bollob�as wrote in \Paul Erd}os | Life and Work" theforeword of [GN℄: \The third problem is from the 1961 paper of Erd}os, Ko and Rado; it is, in fa
t,the last unsolved problem of that paper." \It is widely known that vast amounts of thought andingenuity are required in order to earn $ 500 on an Erd}os problem; even so, this problem may befar harder than its pri
e{tag suggests."℄.3. We turn now to 
ombinatorial work, whi
h re
eived its in
entive from Information Theory andComputer S
ien
e. We demonstrate this for the area of information storage for rewritable mem-ories, whi
h led over Sperner type questions for \
louds" of anti
hains to Higher Level ExtremalProblems. These problems are of one degree more 
omplex than those usually 
onsidered: setstake the role of elements, families of sets (
louds) take the role of sets, et
. [[N℄ P.L. Erd}os, L.A.Sz�ekely, 117{124℄.4. It also led to several kinds of Vertex{Isodiametri
 Theorems in the Average [with I. Alth�ofer,N. Cai℄ and Edge Isoperimetri
 Theorems [with N. Cai℄ whi
h are rate{wise optimal and provedby novel information theoreti
 approa
hes.5. We 
ontinue with several basi
 topi
s (partitions, mono
hromati
 re
tangles, shadows andisoperimetry under sequen
e{subsequen
e relations, anti
hains: splitting, AZ{identities, dimen-sion 
onstraints) from Sequen
e Spa
es, whi
h mostly were in
uen
ed by the analysis of Com-1



muni
ation Complexity and Un
onventional Coding. The most frequent 
oauthors are N. Cai, Z.Zhang, L. Bassalygo and M. Pinsker.6. Finally, we 
on
lude with 
ounterexamples to known 
onje
tures and with a list of seeminglybasi
 open problems and new 
onje
tures.1 Contributions to Combinatorial Number Theory1.1 Extremal Problems under Divisibility Constraints for Finite SetsErd}os 
onje
tured in 1962: The set E(n; k) of integers not ex
eeding n, whi
h are divisible by oneof the �rst k primes, has maximal 
ardinality among the subsets of [n℄ = f1; 2; : : : ; ng withoutk + 1 elements, whi
h are pairwise relatively prime. He 
aught our interest in a le
ture deliveredin 1992.It stimulated us to make a systemati
 investigation of this and related number theoreti
al prob-lems. When viewed 
ombinatorially as an extremal problem for produ
ts of 
hains (by the primede
omposition) with a trun
ation 
ondition (
aused by the property \smaller than n") the issueis to understand whether the problem is just 
ombinatorial in nature or does depend on the primenumber distribution. The latter is the 
ase, the 
onje
ture was disproved, but proved for large n,in joint work [85℄, [101℄ with L. Kha
hatrian. Thus began a very fruitful 
ooperation. Immediatesu

esses were proofs of other well{known 
onje
tures of Erd}os and Erd}os/Graham (all in [E1℄and [E2℄).More importantly we gained an understanding for the sensitivity towards the distribution of theprimes and thus our program was very rewarding. The analysis led to the dis
overy of a new\pushing" method with wide appli
ability also in Combinatori
s, where it led to the solution ofseveral well{known problems like the 4m{
onje
ture, one of the oldest problems in 
ombinatorialextremal theory (see Se
tion 2) or the isodiametri
 problem in Hamming spa
es (see Se
tion 4).Complete proofs 
an be found in [En℄. We des
ribe now the results and for this adopt the followingnotation. N denotes the set of positive integers and P = fp1; p2; : : : g = f2; 3; 5; : : :g denotes theset of all primes.For two numbers u; v 2 N we write ujv i� u divides v, (u; v) stands for the largest 
ommon divisorof u and v, [u; v℄ is the smallest 
ommon multiple of u and v. The numbers u and v are 
alled
oprimes, if (u; v) = 1. We are parti
ularly interested in the setsNs = (u 2 N :  u; s�1Yi=1 pi! = 1) and Ns(n) = Ns \ [n℄: (1.1)Erd}os introdu
ed f(n; k; s) as the largest integer r for whi
h an A � Ns(n); jAj = r, exists withno k + 1 numbers in A being 
oprimes. Certainly there are no k + 1 
oprimes in the setE (n; k; s) = fu 2 Ns(n) : u = ps+iv for some i = 0; 1; : : : ; k � 1g: (1.2)The 
ase s = 1, in whi
h we have N1(n) = [n℄, gives the Conje
ture 1 above.The papers [ESS2℄ and [ESS4℄ are 
entered around Conje
ture 1. Whereas it is easy to show thatit is true for k = 1 and k = 2, it was proved for k = 3 by C. Szab�o and G. T�oth 1985 and fork = 4 by Motzkin 1988. The popularity of this problem is do
umented by R. Freud in [Fr℄.2



General Conje
ture (Erd}os 1980). f(n; k; s) = jE (n; k; s)j for all n; k; s 2 N .Theorem 1 (Ahlswede/Kha
hatrian [101℄). For every k; s 2 N there exists an n(k; s) su
h thatfor all n � n(k; s) E (n; k; s) = f(n; k; s) and this optimal set is unique.Erd}os mentions that he did not su

eed in settling even the spe
ial 
ase.Conje
ture 2. f(n; 1; s) = jE (n; 1; s)j for all n; s 2 N .Whereas in [85℄ Conje
ture 1 was disproved for k = 212, surprisingly Conje
ture 2 is true.Theorem 2 (Ahlswede/Kha
hatrian [104℄). For every s 2 N and n f(n; 1; s) = jE (n; 1; s)j andthe optimal 
on�guration is unique.Noti
e that E (n; 1; s) = fu 2 N1(n) : psju; p1; : : : ; ps�1 - ug.Studying square free numbers N� one is naturally led to sets E �(n; k; s) = E (n; k; s) \N� et
 andto the fun
tion f �(n; k; s). ThenTheorem 2*. For all s; n 2 N f �(n; 1; s) = jE �(n; 1; s)j.But even for squarefree numbers \Erd}os sets" are not always optimal, that is, f �(n; k; 1) 6=jE �(n; k; 1)j 
an o

ur. Also f �(n; 2; s) 6= jE �(n; 2; s)j happens for ps = 101 and n 2 [109 �113; 101 � 127).We generalize and analyse Conje
ture 2 �rst for quasi{primes in order to understand how itsvalidity depends on the distribution of the quasi{primes and primes. Our main result is a simplystru
tured suÆ
ient 
ondition on this distribution. Using sharp estimates on the prime numberdistribution by Rosser and S
hoenfeld we show that this 
ondition holds for Q = fps; ps+1; : : : g,s � 1, as set of quasi{primes and thus Theorem 2 follows.Erd}os/Graham asked for the maximal value k = g(n) su
h that there are numbers 1 < a1 < � � � <ak = n, (ai; aj) 6= 1. Let M(A) = N � A denote the set of multiples of A.Conje
ture 3 (after a little 
orre
tion). Let n = q�11 : : : q�rr , �i � 1, �i 2 N and Q = fq1 < � � � <qrg � P, then g(n) = max1�j�r jM(2q1; : : : ; 2qj; q1 : : : qj) \ N(n)j = f(n;Q), say.We 
onsider a more general and seemingly more natural problem by looking at sets of integerswith pairwise 
ommon divisor and a fa
tor from a spe
i�ed set of primes with growth 
ondition.Let Q = fq1; : : : ; qrg � P and letg(n;Q) = maxfjAj : A � N(n); (a; a0) 6= 1; a; rYi=1 qi! 6= 1(8a; a0 2 A)g: (1.3)Theorem 3. For every Q = fq1; : : : ; qrg � P and n �Qri=1 qi g(n;Q) = f(n;Q).Clearly, this implies the Conje
ture of Erd}os/Graham. For n < Qq2Q q the 
on
lusion ofTheorem 3 does not hold.Example 1: Let Q = fq1; q2; : : : ; qr�1; qrg = f5; 7; : : : ; pr+1; qrg that is qi = pi+2 for i = 1; : : : ; r�1. Further qr�1 = pr+1 > 1000, n = 2 � 3 � 11 �Qr�1i=1 qi and n1000 < qr < n1000 . With Bertrand'spostulate we establish the 
laim.1.2 Correlation Inequalities from the AD{InequalityNext we report on new density inequalities for sets of multiples. For in�nite sets A;B � N 
onsiderthe set of least 
ommon multiples [A;B℄ = f[a; b℄ : a 2 A; b 2 Bg, the set of largest 
ommondivisors (A;B) = f(a; b) : a 2 A; b 2 Bg, the set of produ
ts A� B = fa � b : a 2 A; b 2 Bg, and3



the sets of their multiples M(A) = A � N ;M(B), M [A;B℄;M(A;B), and M(A � B), resp. Ourdis
overies are the inequalitiesdM(A;B)dM [A;B℄ � dM(A) � dM(B) � dM(A�B); (1.4)where d denotes the asymptoti
 density. The �rst inequality is by the fa
tor dM(A;B) sharperthan Behrend's well{known inequality. This in turn is a generalisation of an earlier inequalityof Rohrba
h and Heilbronn, whi
h settled a 
onje
ture of Hasse 
on
erning an identity due toDiri
hlet. Our se
ond inequality does not seem to have prede
essors.Observing the similarity to the AD inequality led to our main dis
overy, the inequality (with L.H.Kha
hatrian [102℄) D(A;B)D[A;B℄ � DADB;where A;B are arbitrary sets of positive integers, (A;B) = f(a; b) : a 2 A; b 2 Bg is the set oflargest 
ommon divisors, [A;B℄ = f[a; b℄ : a 2 A; b 2 Bg is the set of least 
ommon multiples, andD denotes the lower Diri
hlet density. It is mu
h more general than the previous inequality formultiples of sets.This is more than an analogy: AD implies this number theoreti
al Correlation inequality. Forreasons of s
aling it is important to work with Diri
hlet density!Similarly, Behrend's inequality 
an be obtained as number theoreti
al form of FKG, but it a
tuallypre
eded it. The se
ond inequality in (1.4) is the twin of the van der Berg/Kesten inequality et
.Now AD has not only 
ombinatorial and probabilisti
 
orrelation inequalities (see [N℄ Fish-burn/Shepp, 501{516) as 
onsequen
es, but also those above in Number Theory! We 
on
ludewith an importantRemark 1: In the literature \AD{inequality" (\4{Fun
tion Theorem") refers to the inequalityof [30℄, whi
h holds for latti
es. We emphasize that the mu
h more general inequality of [33℄makes no referen
e to latti
es and should have a wider range of appli
ations.1.3 Densities for Primitive, Pre�x Free, Quotient, and Squarefree SetsIn this se
tion we report on re
ent work with L.H. Kha
hatrian and A. S�ark�ozy.We begin with [146℄ \On the 
ounting fun
tion of primitive sets of integers".After in 1934 Besi
ovit
h gave an example of a set of multiplesM(B) without a density, interestarose in primitive sets A � N : for a; a0 2 A; a 6= a0 always a - a0. Set F (n) , greatest 
ardinalityof primitive A in [n℄ and noti
e thatF (n) = n� ln2m �= �12 + 0(1)�n� (1.5)Besi
ovit
h and Erd}os 1935: 8 " > 0 9 primitive A � N with d(A) > 12 � ".Behrend 1935: For A � [n℄ primitivePa2A 1a < 
1 log n(log log n)1=2 .Erd}os 1935: A primitive A � N (�nite or in�nite) satis�es Pa2A 1a log a < 
2.Corollary 1. If A � N is primitive, then for the 
ounting fun
tion AA(x) < xlog log x log log log x for 1 many x: (1.6)4



How far is this upper bound from the best possible? This question is 
losely related to one of thefavourite problems of Erd}os (mentioned in numerous papers). Use here formulation of [ESS3℄:\The following problem seems diÆ
ult: Let b1 < b2 < : : : be an in�nite sequen
e of integers. Whatis the ne
essary and suÆ
ient 
ondition that there should exist a primitive sequen
e a1 < a2 < : : :satisfying an < bn for every n? We must have P1i=1 1bi log bi < 1 : : : . It is not 
lear whether asimple ne
essary and suÆ
ient 
ondition exists." This is followed by a lengthy dis
ussion of theproblem how large one 
an make Pa�x 1a uniformly in x for a primitive set fa1 < a2 < : : : g (seealso [ESS1℄).It seems to be a more natural (although more diÆ
ult) problem to repla
e here the sum Pa�x 1aby the 
ounting fun
tion A(x) i.e. to study the problem how large one 
an make A(x) uniformlyin x for a primitive set A. We provide a quite satisfa
tory answer by proving that (1.6) is bestpossible apart from a fa
tor (log log log x)":Theorem 4. For all " > 0 9 in�nite primitive set A � N su
h that for x > x0(") we haveA(x) > xlog logx(log log log x)1+" :Our re
ent interest in primitive sets arose while we investigated two related new 
on
epts \pre�x{free sets" and \suÆx{free sets", whi
h are of information theoreti
al ba
kground.For a; b 2 N� square free we write ajpb (a is pre�x of b) if for primesp1 < � � � < pr < pr+1 < � � � < pt a = p1 : : : pr, b = p1 : : : pr+1 : : : pt. Similarly, 
 = pr+1 : : : pt issuÆx of b and we write 
jsb.If for A � N� there are no a; b 2 A with ajpb (resp. ajsb) then A is said to be pre�x{free(resp. suÆx{free). (Both notions 
ould be extended to non{square{free 
ases). There is a 
lose
onne
tion between pre�x{freeness and primitivity: if a set A � N is primitive, then it is pre�x{free.We present �rst the \pre�x{free analog" of (1.5). Let G(n) denote the 
ardinality of the greatestpre�x{free set from N�(n), and let P+(a) denote the smallest prime greater than P (a).Theorem 5 ([N℄, 1{16). (i) The set B(n) = fb : b 2 N�(n); bP+(b) > ng is pre�x{free andG(n) = jB(n)j (ii) limn!1 G(n)jN�(n)j = 1(iii) For all " > 0 there is an in�nite pre�x{free set A � N� with d�(A) > 1� ".The \pre�x{free analog" to Behrend's result re
e
ts an interesting di�eren
e between primitivesets and pre�x{free sets. Indeed, 
onsider now instead ofG(n) E(n) = maxpre�x{free A�N�(n)Pa2A 1a :Theorem 6 ([N℄, 1{16). For every " > 0 and n > n2(y), suitable, 0; 2689 � " < E(n)Pb2N�(n) 1b <0; 7311+". A
tually, we know for every n 2 N the unique optimal pre�x{free A � N�(n) for whi
hE(n) is assumed, but the value is hard to estimate.Sin
e Erd}os 1935 above uses in the proof only the pre�x property of a primitive sequen
e, obviouslyfor pre�x{free A � N Pa2A 1a log a < 
2 and also (1.6) in Corollary 1 and Theorem 4 \primitive"
an be repla
ed by \pre�x{free".While the behaviour of pre�x{free and primitive sets is similar as far as the maximal growth ofthe 
ounting fun
tion is 
on
erned, the behaviour of the suÆx{free sets is very di�erent. Let H(n)denote the 
ardinality of the largest suÆx{free set sele
ted from N�(n).Theorem 7 ([N℄, 1{16). (i) The set C(n) = f
 2 N�(n) : 2j
g[fN�(n)\ �n2 ; n℄� is suÆx{free andjC(n)j = H(n). (ii) limn!1 H(n)jN�(n)j = 23 . (iii) For every " > 0 there exists a suÆx{free set C with5



d�C > 23 � ".Finally we 
onsider logarithmi
 densities of suÆx{free sets. LetK(n) = maxsuÆx{free A�N�(n)Pa2A 1a :In 
ontrast to the 
ase of pre�x{free sets here we have a simple des
ription of the optimal set,whi
h yieldsTheorem 8 ([N℄, 1{16). limn!1 K(n)Pa2N�(n) 1a = 3172 :On the quotient sequen
e of sequen
es of integersFor A � N , a 2 A let QaA , set of integers q su
h thataq 2 A a > 1 QA , [a2AQaA (1.7)So QA = set of integers q = a0a > 1 with a; a0 2 A. Called quotient set of A.By Behrend's and Erd}os' Theorem the quotient set of a dense set A is non{empty (obvious).The study of quotient sets of \dense" sets started withTheorem (Pomeran
e/S�ark�ozy 1988). There exist 
onstants 
3, N0 su
h that if N 2 N,N > N0, P is a set of primes not ex
eeding N and if A � f1; 2; : : : ; Ng withXp2P 1p > 
3 and Xa2A 1a > 10 logN  Xp2P 1p!�1=2 (1.8)then there is a q 2 QA su
h that qjQp2P p.Here we study density related properties of QA. Our �rst goal is to study 
onne
tions betweenÆ(A) and Æ(QA). First we thought that for all A � NÆ(QA) � Æ(A): (1.9)Example 2: A = f2m; 3m or 5m with m 2 N ; (m; 30) = 1g. Then Æ(A) = Æ(A) = d(A) = 62225and Æ(QA) = Æ(QA) = d(QA) = 415 = 3031Æ(A).Still, there is a 
onne
tion between these densities, but they 
an be far apart.Theorem 9. (i) If for A � N Æ(A) > 0, then Æ(QA) > 0.(ii) For all " > 0, Æ > 0 there is a set A � N su
h that Æ(A) > 1� " however, Æ(QA) < Æ.Proof: (i) Erd}os/Davenport Theorem. (ii) Turan{Kubilius inequality.Remark 2: Studied also Q1A = T1n=1 �Sa�n;a2AQaA� =integers q > 1 with 1{many representa-tions q = a0a , a; a0 2 A.We 
on
lude with [159℄ \On primitive sets of squarefree integers". For A � N let S(A) =Pa2A 1a .Erd}os/S�ark�ozy/Szemer�edi proved in 1967:maxA�[n℄ primitiveS(A) = �1 + o(1)� logn(2� log logn)1=2 as n!1: (1.10)Theorem 10. Let Q = fq1; q2; : : : g = fp�11 ; p�22 ; : : : g (with p1 < p2 < : : : ) be a set of powers ofdistin
t primes with S(Q) <1, then we havemaxA�[n℄ primitiveq-a for a2A;q2Q S(A) = �1 + o(1)�Yq2Q�1� 1q� logn(2� log logn)1=2 as n!1: (1.11)6



Note that here Q = ? is allowed and, indeed, in this spe
ial 
ase we obtain the Theorem ofErd}os/S�ark�ozy/Szemer�edi. For Q = f22; 32; 52; : : : ; p2; : : : g, the result was 
onje
tured by Pomer-an
e/S�ark�ozy in 1988.Another important spe
ial 
ase is when Q 
onsists of the primes not ex
eeding a �xed number K:Corollary 2. If K � 2, then we havemaxA�[n℄ primitive(a;Qp�K p)=1 for all a2A S(A) = �1 + o(1)� Yp�K�1� 1p� logn(2� log logn)1=2 as n!1:Moreover, we 
an prove that if Q is �nite, then Q need not 
onsist of prime powers, it suÆ
es toassume 
oprimality:Theorem 10'. Let Q = fq1; : : : ; qtg be a �nite set of pairwise 
oprime positive integers: (qi; qj) = 1for 1 � i < j � t. Then (1.14) holds.It 
omes perhaps as a surprise that the heuristi
s that the density 6�2 of the square free integersN� should extend to the maximal primitive set, whi
h would givemaxA�N�(n) primitive jAj = �1 + o(1)� 6�2 maxA2Pn jAj = �1 + o(1)� 3�2n as n!1; fails:We will prove that this maximum is mu
h greater, but 
an be estimated surprisingly well.Theorem 11. For N large we have 0:6362 6�2N < maxA�N�(N) jAj < 0:6366 6�2N .1.4 Cross{Primitive Sequen
esWith L.H. Kha
hatrian we introdu
ed and analyzed the following 
on
ept. It is reported in [116℄\Classi
al results on primitive and re
ent results on 
ross{primitive sequen
es", Paul Erd}os 80,Graham/Nesetril edit. (A;B), A;B � C � N is 
ross{primitive in C, if a - b; b - a for a 2 A; b 2B.Theorem 12. For Mn = max(A;B)
ross{primitive in [n℄ jAjjBj (i) Mnn2 � 14 . (ii) limn!1 Mnn2 = 14 .Theorem 13. For C = N (i) max(A;B)
ross{primitive d(A)d(B) = 14(ii) max(A;B)
ross{primitive d(A) � d(B) = 116 = max(A;B)
ross{primitive;d(A);d(B) exist d(A)d(B).2 Combinatorial Interse
tion Theorems2.1 The Complete Interse
tion Theorem and some ExtensionsIn the paper [122℄ together with L.H. Kha
hatrian we were 
on
erned with one of the oldestproblems in 
ombinatorial extremal theory. A system of sets A � �[n℄k � is 
alled t{interse
ting, ifjA1\A2j � t for all A1; A2 2 A, and I(n; k; t) denotes the set of all su
h systems. The investigationof the fun
tionM(n; k; t) = maxA2I(n;k;t) jAj, 1 � t � k � n, and the stru
ture of maximal systemswas initiated by Erd}os, Ko and Rado. Already in 1938 they proved and in 1961 they publishedTheorem EKR. For 1 � t � k and n � n0(k; t) (suitable) M(n; k; t) = �n�tk�t�.7



This means that for large n the \naive" 
on�guration A = nA 2 �[n℄k � : [1; t℄ � Ao is optimal. Thesmallest n0(k; t) for whi
h this is the 
ase has been determined by Frankl 1978 for t � 15 in [F2℄and Wilson 1984 for all t in [W℄: n0(k; t) = (k � t + 1)(t+ 1). All 
ases are settled inComplete Interse
tion Theorem 14 (Ahlswede/Kha
hatrian [122℄). For 1 � t � k � n with(k � t+ 1)�2 + t�1r+1� < n < (k � t + 1)�2 + t�1r � for some r 2 f0g [ N we haveM(n; k; t) = jFrj = �����F 2 �[n℄k � : jF \ [1; t+ 2r℄j � t+ r�����and Fr is | up to permutations | the unique optimum. (By 
onvention a0 =1.)For (k � t + 1)�2 + t�1r+1� = n for r 2 Nf0g we have M(n; k; t) = jFrj = jFr+1j and an optimalsystem equals | up to permutations | either Fr or Fr+1.In parti
ular, this Theorem shows the validity of the famous 4m{
onje
ture of Erd}os, Ko, Rado(1938), that is M(4m; 2m; 2) = jfF 2 �[4m℄2m � : jF \ [1; 2m℄j � m + 1gj.Remark 3: The EKR Theorem is the most frequently quoted result of Erd}os. In 1983 Deza andFrankl wrote a paper \The Erd}os/Ko/Rado Theorem | 22 years later".The Theorem presented and proved in [114℄ 
an be viewed as an extension or improvement ofthe Complete Interse
tion Theorem, just mentioned above. It goes 
onsiderably beyond the well{known Hilton/Milner Theorem and 
ompletely answers the question of determination of non{trivial t{interse
ting families. (An A 2 I(n; k; t) is 
alled non{trivial if ��SA2AA�� < t.)In [137℄ together with H. Aydinian and L.H. Kha
hatrian the problem of maximal interse
tingsystems for dire
t produ
ts is 
onsidered. This problem was initiated by Frankl and arose in
onne
tion with a result of Sali. Let n = n1+ � � �+nm, k = k1+ � � �+km, [n℄ = [n1℄[ [n2℄ � � �[ [nm℄,H = nF 2 �[n℄k � : jF \ [ni℄j = ki for i = 1; : : : ; mo : For given integers ti, 1 � t � ti � ki, 1 � i �m, we may say that A � H is (t1; : : : ; tm){interse
ting, if for every A;B 2 A there exists an i,1 � i � m, su
h that jA \ B \ 
ij � ti holds: Denote the set of su
h systems by I(H; t1; : : : ; tm).The problem is to determine maxA2I(H;t1;:::;tm) jAj.The 
ase t1 = t2 = � � � = tm = 1 has been solved by Frankl. Here is the 
omplete solution.Theorem 15 (Ahlswede/Aydinian/Kha
hatrian [137℄). Let ni � ki � ti � 1 for i = 1; : : : ; m,then maxA2I(H;t1;:::;tm) = maxi M(ni;ki;ti)(niki) jHj:We emphasize that the 
ombination of this Theorem and Theorem 14 gives an expli
it value. Theproof is heavily (but not only!) based on ideas and methods from [112℄, in parti
ular the methodof \generated sets" (
.f. [N℄ Bey/Engel, \Old and New Results for the Weighted t{Interse
tionProblem via AK{Methods", 45{74;) it takes a 
entral role in the re
ent book \Sperner Theory"by K. Engel.2.2 The Diametri
 Theorem in Hamming Spa
esFor �[n℄ = f0; 1; : : : ; � � 1gn, endowed with the Hamming distan
e fun
tion dH A � �[n℄ has adiameter d, if diam(A) = maxan;bn2A dH(an; bn) = d.Given n, �; d �nd: N�(n; d) = maxA��[n℄;diam(A)=d jAj or equivalently \�nd optimal anti
odes".Previously known were the 
ases with pairs (d; �) of the form (d; 2) [K℄, (n�1; �) [B℄, f(d; �) : n �d+��1g [FF℄, f(d; �) : n � (��1)d�1+dg [Ahlswede/Cai/Zhang [71℄℄. These authors 
onje
turedthe Theorem below. It was 
onje
tured in an equivalent form by Frankl/F�uredi already in 1980.8



For 0 � i � d2 de�ne Ki = fan 2 �[n℄ : (a1; : : : ; an � d + 2i) has at least n � d + i zerosg. ClearlyKi has diameter d.Theorem 16 (Ahlswede/Kha
hatrian [132℄). Let r be the largest integer s.t.n� d+ 2r < min�n+ 1; n� d+ 2 � n�d+1��2 	, then N�(n; d) = jKrj.Moreover, up to permutation of (12 : : : n) and permutations of the alphabet in the 
omponents theoptimal 
on�guration is unique, unless n� d > 1, n� d+ 2n�d�1��2 � n and n�d�1��2 is integral,in whi
h 
ase we have two optimal 
on�gurations: Kn�d�1��2 and Kn�d�1��2 �1.The result is derived from the Complete Interse
tion Theorem (whi
h 
an also be viewed as aDiametri
 Theorem for dH on the spa
e �[n℄k �) via a Comparison Lemma.2.3 A Pushing{Pulling MethodIt 
ame as a surprise to us that at �rst we did not su

eed to derive Katona's Interse
tion Theoremfor the unrestri
ted 
ase, that is in the spa
e 2[n℄, by the method of \generated sets". Thisled us to the dis
overy of another method, whi
h yields Theorem 14 and Katona's Interse
tionTheorem. Subsequently we found a way to derive Katona's Theorem from Theorem 14 via anotherComparison Lemma. This is the most 
ompli
ated proof, where several simple proofs exist, butit tea
hes something about methods, whi
h made progress possible on the t{Interse
tion Problemin the trun
ated Boolean Latti
e 
overing the restri
ted and the unrestri
ted interse
tion problemas spe
ial 
ases (Ahlswede/Bey/Engel/Kha
hatrian [161℄). Whereas there are vertex{ and edge{isoperimetri
 theorems (see Se
tion 4) it went unsaid that diametri
 theorems are vertex{diametri
theorems. We 
omplete the story by introdu
ing edge{diametri
 theorems into 
ombinatorialextremal theory. Using again the pushing/pulling method we establish su
h a result for V = f0; 1gnand E = f(an; bn) : an; bn 2 Vg. Results and Methods of this Se
tion are dis
ussed in the survey[N℄, 45{74.2.4 Other Types of Interse
tion ProblemsOne type 
onsists in looking at interse
ting 
hains in the Boolean Latti
e. It is mentioned in the
ontext of Higher Level Extremal Problems in Se
tion 3. Another one, with origin in and interestto Computer S
ien
e, was 
ommuni
ated to us by R.C. Mullin in 1990 in Oberwolfa
h.For a �nite alphabet [�℄ = f0; 1; : : : ; � � 1g we 
onsider the set �[n℄ of words of length n andalso its subsets W n� of words without repetition of letters, that is, W n� = fxn = (x1; xs; : : : ; xn) 2�[n℄ : xs 6= xt for s 6= tg: We write xn .& yn if for some s 6= t xs = yt. The set F � �[n℄is \good", if for all xn; yn 2 F xn .& yn. Denoting the family of all good sets in W n� by Fn�the quantity of interest is fn� = maxfjF j : F 2 Fn�g. Its determination 
onstitutes an extremalproblem in a (growing) 
lass of similar problems whose prototype or histori
ally �rst 
andidate isthe interse
tion problem of EKR.Clearly, it is 
ertainly also meaningful to study Gn�, the family of all good sets in �[n℄, and thequantity gn� = maxfjEj : E 2 Gn�g.The fun
tions fn� and gn� are rather 
omplex. We present here results for the �rst two non{trivial
on�gurations of the parameters � and n, namely the 
ases n = �� 1 and n = 3. Also, we havea limit theorem for � tending to in�nity. Spe
i�
ally, we have the following results.Theorem 17 (Ahlswede/Cai [91℄). (i) f��1� = 12 jW ��1� j = 12�!. Moreover, we determine all9



optimal 
on�gurations. (ii) f 3� = f 31 = f 34 = 12 for � � 4.Theorem 18 (Ahlswede/Cai [91℄). (i) g3� = 3�+ 7 for 3 � � <1.(ii) lim�!1 gn�(��1n�2) = �n2�(n� 2)! or, equivalently, gn� = �n�2(�n2�+ o(1)) as �!1.3 Higher Level Extremal Problems3.1 Coding for Write{EÆ
ient Rewritable MemoriesImagine a tape with n 
ells into whi
h we 
an write letters from an alphabet X . A word xn =(x1; : : : ; xn) stores some messages. When we want to update this re
ord to a message representedby yn = (y1; : : : ; yn) the per letter 
osts '(xt; yt) add up to 'n(xn; yn) =Pnt=1 '(xt; yt). In orderto be able to update many messages under a 
ost 
onstraint D we 
ome to the diametri
 problemto 
haraterize M('n; D) = maxfjCj : 'n(xn; yn) � D for all xn; yn 2 Cg (3.1)for the \sum{type" 
ost 'n, whi
h also 
an be a distan
e fun
tion like the Hamming, Taxi or Leemetri
, et
. These problems are dis
ussed in Se
tion 4.A simple, but basi
, observation is that there is an advantage in having for every message i a setCi (
alled \
loud") � X n of possible representations su
h that for any representation xn 2 Cithere exists a representation yn 2 Cj with 'n(xn; yn) � D,Example 3: For X = f0; 1g, n = 3, '3 = dH and D = 1 we have M(dH ; 1) = 2. On the otherhand there are 4 
louds C1 = f000; 111g, C2 = f100; 011g, C3 = f010; 101g, C4 = f001; 110g,whi
h 
an be used for updating 4 messages at 
ost 1.More generally we introdu
ed together with Z. Zhang [62℄ write{eÆ
ient memories (WEM) asa new model for storing and updating information on a rewritable medium. There is a 
ost' : X � X ! R1 assigned to 
hanges of letters. A 
olle
tion of subsets C = fCi : 1 �i � Mg of X n is an (n;M;D) WEM 
ode, if Ci \ Dj = ? for all i 6= j and if Dmax =max1�i;j�M maxxn2Ci minyn2CjPnt=1 '(xt; yt) � D: Dmax is 
alled the maximal 
orre
tion 
ostwith respe
t to the given 
ost fun
tion. The performan
e of a 
ode C 
an also be measuredby two parameters, namely, the maximal 
ost per letter dC = n�1Dmax and the rate of the sizerC = n�1 logM . The rate a
hievable with a maximal per letter 
ost d is thus R(d) = supC:dC�d rC.This is the most basi
 quantity (the updating 
apa
ity for maximal per letter 
ost d) of a WEM(X n; 'n)1n=1. We give a 
hara
terization of this quantity. For this we need some de�nitions. For aset Z, P(Z) denotes the set of all probability distributions on Z. Let (X; Y ) be a pair of randomvariables with values in X �X and distribution PXY . We denote the (marginal) distributions of X(resp. Y ) by PX (resp. PY ) and H(XjY ) is the 
onditional entropy. Finally we need distributionsPd = fPXY 2 P(X � X ) : PX = PY ; E'(X; Y ) � dg: (3.2)with equal marginals and an expe
tation of 
osts not greater than d and the quantity �(d) =maxPXY 2Pd H(Y jX).Theorem 19. For any d � 0 and ' : X � X ! R+ R(d) = �(d).The Stru
ture of Theorem 1 in the Hamming 
ase:Hypergraph (V; E) = (X n; (SnD(xn))xn2Xn , �(V; E) = maximal number of 
olors assigned to ver-ti
es, su
h that every 
olor o

urs in every edge, that is ball SnD(xn) (General Ramsey Problem)Ci = f verti
es with 
olor ig. A key tool in the spirit of [35℄, [36℄ is10



Color Carrying Lemma. For every hypergraph H = (V; E) �(V; E) � (`njVj)�1minE2E jEj.Sin
e in our 
ase jVj = jX nj and jEj = jSnD(xn)j grow exponential in n, if D = dn, we getthe optimal rate R(d) = h(d), where h is the binary entropy fun
tion, | a very spe
ial 
ase ofTheorem 19. It is remarkable that in sequen
e spa
es with 
ardinality of exponential growth theseRamsey type problems 
an be solved at least rate{wise.There are still issues of 
ode 
onstru
tions. Further, instead of worst 
ase 
osts one 
an 
onsideralso average 
osts, that is, diametri
 problems in the average. Several interesting questions arise,if several persons or devi
es use the same tape under various 
onditions: multi{user memories with
onstraints on priva
y, hierar
hy and te
hnology [92℄.Noti
e that the two models mentioned above 
an be des
ribed by the side information aboutthe 
ontent of the tape available to the writer W , before he writes a new word. The reader Rremembers no previous word.Case (W�; R�) amounts to diametri
 problems. Case (W+; R�) gives our model with 
louds.Formally, for all (i; j): 8xn 2 Ci 9yn 2 Cj with 'n(xn; yn) � D.3.2 From here we pass to an independent Combinatorial InvestigationIn [119℄ we studied with N. Cai and Z. Zhang families of 
louds (Ai)Mi=1, Ai � 2[n℄ with(a) relations \�" (
omparable), \�j�" (in
omparable), \interse
ting", \disjoint"(b) properties (8; 9), (9; 8), (8; 8), (9; 9).(
) \Disjoint" 
louds, \distin
t" 
louds. (It is erroneously stated in [N℄ Erd}os/Sz�ekely on page118 that we always assume disjointness.)(d) \restri
ted" 
ase jAj = k 8A 2 SMi=1Ai and \unrestri
ted" 
ase.(e) For length M bound size max1�i�M jAij.We explain now our symboli
 notation in a parti
ular 
ase.Cloud anti
hainsClassi
al: fAigNi=1, Ai � (2[n℄) is an anti
hain, if Ai �j� Aj 8i 6= j. Now sets are repla
ed by
louds, that is, families of sets. (Ai)Ni=1 is oftype (8; 8), if for all i 6= j Ai �j� Aj 8Ai 2 Ai, 8Aj 2 Ajtype (9; 8), if for all i 6= j 9Ai 2 Ai with Ai �j� Aj 8Aj 2 Ajtype (8; 9), if for all i 6= j 8Ai 2 Ai 9Aj 2 Aj with Ai �j� Ajtype (9; 9), if for all i 6= j 9Ai 2 Ai, 9Aj 2 Aj with Ai �j� Aj.Maximal lengths Nn(8; 8), Nn(9; 8) for distin
t and Mn(8; 8);Mn(9; 8); : : : for disjoint 
louds.Convention: f � g i� limn!1 f(n)g(n)�1 = 1. Work with L.H. Kha
hatrian [86℄ isTheorem 20.Mn(9; 8) � 2n�1, Mn(8; 9) = (2 if n = 22n�1 � 1 if n � 3 , Mn(9; 9) = � nbn2 
�+ �2n�2�( nbn2 
)2 �.Theorem 21 (Double exponential growth).Nn(9; 8) = � kb k2
� with k = � nbn2 
�, Nn(8; 9) � 22n�2, Nn(9; 9) � 22n.The 
lassi
al Sperner result takes the forms Mn(8; 8) = Nn(8; 8) = � nbn2 
�.For the maximal 
ardinality of families with the relations \
omparable", \disjoint", and \inter-11



se
ting" we 
hoose the letters C;D, and I respe
tively. The types of problems su
h as (8; 8) et
.appear in the argument and n appears as index. In addition, in the restri
ted 
ase a k appears inthe argument.3.3 Cloud{Anti
hains (CAC) of Length 2Theorem 22 (Ahlswede/Zhang [68℄). A CAC fA;Bg in 2[n℄ satis�es(i) jAjjBj � 22n�4. Optimal 
on�gurations:1. A = fX 2 2[n℄ : 1 2 X; 2 =2 Xg, B = fX 2 2[n℄ : 1 =2 X; 2 2 Xg2. A = �X 2 2[n℄ : 1 2 X; jXj � �n�12 �+ 1	, B = �X 2 2[n℄ : 1 =2 X; jXj > �n�1n �	 n odd.(ii) minfjAj; jBjg � 2n�2.The proof uses AD{inequality. A sharper result isTheorem 23 (Ahlswede/Kha
hatrian [107℄). For 0 � � � 2n�1, if fn(�) , maxfjBj : 9A su
hthat (A;B) CAC in 2[n℄ and jAj = �, then fn(�) = 2n�1 + 2f (�)n�2 � �.For multisets of multipli
ity k again AD and the arithmeti
{geometri
 means inequality givejAj1=2 + jBj1=2 � kn=2 for (A;B) CAC in k[n℄.Using results of [DKW℄ we provide again with L.H. Kha
hatrian [107℄ partial results forQuestion I: For every k des
ribe all CAC (A;B) with equality in (3.6). In the terminology of[100℄ this is an equality 
hara
terization problem.Question II: How does fn;k(�) = maxfjBj : 9(A;B) CAC in k[n℄, jAj = �g behave asymptoti
allyin k; n, and �?In generalising statements (i), (ii) in Theorem 5 we 
ompletely answer for every kQuestion III: What is the growth of gn;k = max(A;B)minCAC in k[n℄(jAj; jBj)?Question IV: What is the growth of Sn;k = max(A;B) CAC in k[n℄ jAjjBj?Question V: What is the growth of an;k(�) = maxfjBj : 9A su
h that (A;B) is CAC in k[n℄ andjAj = jBj+�g for �kn � � � kn?3.4 Interse
tion, Clouds DisjointTheorem 24 (Ahlswede/Cai/Zhang [95℄). In the restri
ted 
ase k = 2In(9; 8; 2 = (n� 1 for n 2 N � f3; 5gn for n = 3; 5 ; In(8; 9; 2) = (n for n 2 N � f1; 2; 4gn� 1 for n = 1; 2; 4In(9; 9; 2) � n3=2; In(8; 8; 2) = (n� 1 for n 2 N � f3gn for n = 3 (very spe
ial 
ase of EKR):Theorem 25 (Ahlswede/Cai/Zhang [119℄). In the unrestri
ted 
aseIn(8; 8) = In(9; 8) = In(8; 9) = 2n�1 In(9; 9) = 2n�1 + 2n�2 � 1.3.5 Disjoint, Clouds DisjointTheorem 26 (Ahlswede/Cai/Zhang [95℄). In the restri
ted 
ase k = 212



limn!1Dn(9; 8; 2)n�2 = 16 , limn!1Dn(8; 9; 2)n�2 = limn!1Dn(9; 9; 2)n�2 = 14 .Theorem (Alon/Sudakov (see [N℄, page 123)). In the restri
ted 
aselimn!1 Dn(9;8;k)(nk) = 1k+1 , limn!1 Dn(8;9;k)(nk) = limn!1 Dn(9;9;k)(nk) = 12 .Conje
tured by Ahlswede/Cai/Zhang [119℄, who settled the 
ase k = 2.3.6 Key Tools are Results on Related Graph Coloring ProblemsThis and the next paragraph give results from [119℄. The study of 
loud families of the (9; 9){typenaturally leads to the following 
oloring 
on
ept. For any graph G = (V; E) a 
oloring of type(9; 9) is a map f : V !Mf = f1; 2; : : : ; mfg su
h that for any two 
olors, say, i; j 2 Mf , an edge(a; b) 2 E exists with f(a) = i and f(b) = j.We are interested in the quantity m(G) = maxfmf : f is (9; 9){
oloring of Gg.Theorem 27. For any graph G = (V; E) we have with N = 2jEj m(G) � N1=2 + 1.Moreover, if D , maxV 2V deg(x) � � Ne4 logN�1=2, then m(G) � � Ne4 logN�1=2.Cloud families of (8; 9){type lead to a 
oloring of (8; 9){type, whi
h is a map g : V ! Mg =f1; 2; : : : ; mgg su
h that for any two 
olors, say, i; j 2 Mg and for any a 2 U with g(a) = i thereis an edge fa; bg 2 E with g(b) = j. We are interested in m�(g) = maxfmg : g is (8; 9){
oloringof GgTheorem 28. For any graph G we have(i) (log jVj)�1(d+ 1) � m�(G) � d+ 1, where d , minx2V deg(x)(ii) m�0(G) , max jfm�(G 0) : G 0 is subgraph of Ggj � D + 1.We mention that a 
oloring of type (9; 8) is a map h : V !Mh = f1; 2 : : : ; mhg su
h that for anytwo 
olors i; j 2 Mh an a 2 V exists with h(a) = i and h(b) = j for all b 2 N (a), b 6= a. Thequantity m��(G) = maxfmh : h is (9; 8){
oloring of Gg is hard to analyse in general.3.7 Asymptoti
 Results via Graph ColoringTheorem 29.limn!1 1n logCn(9; 9) = limn!1 1n logDn(9; 9) = 12 log 3Theorem 30.limn!1 1n logDn(9; 9; "n) = 12 �h(") + (1� ")h � "1�"��, limn!1 1n log In(9; 9; "n) = h(").Theorem 31.limn!1 1n logDn(8; 9; "n) = (1� ")h � "1�"�, limn!1 1n log In(8; 9; "n) = h(").3.8 Hamming Distan
e 1, Clouds DisjointAn important relation is that of Hamming distan
e r for two words.Theorem 32 (Ahlswede/Cai/Zhang [119℄). In the unrestri
ted 
aselimn!1 1n logHn(8; 8; �n) = 12(1 + h(�)).Noti
e thatHn(9; 9; 1) equals the maximal number of sets into whi
h one 
an partition the n{
ube,su
h that two di�erent sets always have distan
e 1.13



Theorem 33 (R. Ahlswede, S.L. Bezrukov, A. Blokhuis, K. Mets
h and G.E. Moorhouse [80℄).p22 pn2n � Hn(9; 9; 1) � pn2n + 1 for all n.3.9 Another Dire
tionLet In be the latti
e of intervals in the Boolean latti
e Ln. For A;B � In the pair of 
louds (A;B)is 
ross{disjoint, if I \ J = � for I 2 A, J 2 B. With N. Cai [109℄ we prove that for su
h pairsjAjjBj � 32n�2 and that this bound is best possible.Optimal pairs are up to obvious isomorphisms unique. The proof is based on a new bound on 
rossinterse
ting families in Ln with a weight distribution. It implies also an Interse
tion Theorem formultisets of Erd}os and S
h�onheim from 1969.Furthermore, in [115℄ in a 
anoni
al way we establish an AZ{identity and its 
onsequen
es, theLYM{inequality and the Sperner{property. Further the Bollob�as{inequality for the Boolean in-terval latti
e turns out to be just the LYM{inequality for the Boolean latti
e. We also present anInterse
tion Theorem for this latti
e.Perhaps more surprising is that by our approa
h the 
onje
ture of P.L. Erd}os, Seress, Sz�ekely[ErSS℄ and F�uredi 
on
erning an Erd}os{Ko{Rado{type interse
tion property for the poset ofBoolean 
hains 
ould also be established. A
tually we give two seemingly elegant proofs.4 Diametri
, Isoperimetri
 Theorems in Sequen
e Spa
es4.1 Introdu
tionMankind believes the Isoperimetri
 Theorem in Eu
lidean 3{spa
e \For given surfa
es the ballhas maximal volumes" for more than 2000 years. The dis
overy of the 2{dimensional analog isoften attributed to Dido, the daughter of a Phoeni
ian King. Despite strong interest in extremalproblems and variational prin
iples in physi
s (and also philosophy: \Best of all worlds" forLeibnitz) in modern times after the invention of 
al
ulus a proof 
ame only in the 19{th 
enturyby S
hwarz | after an in
omplete geometri
al proof by Steiner, showing the uniqueness but notthe existen
e of a solution.Repla
ing surfa
e by diameter leads to (iso){diametri
 Theorems. A 
lassi
 is Blas
hke's \Kreisand Kugel". In sequen
e spa
es �[n℄ 
ardinalities take the role of volumes of subsets. For somedistan
e fun
tion d (like Hamming, Lee or Taxi metri
s) surfa
e �d(A) is the set of points in the
omplement of A and with distan
es 1 to A.Harper's solution of the isoperimetri
 problem in Hamming spa
e (2[n℄; dH) is mentioned in Se
tion5. The problem is open for � > 2. However, re
ently a \rate{wise" optimal solution was foundwith Z. Zhang for the r{th surfa
e �r�n(A) = fbn : bn =2 A, 'n(bn; an) � r for some an 2 Ag withr = �n, where 'n(bn; an) =Pt=1 '(bt; at), ' : [�℄�[�℄! R is any symmetri
 \sum{type" fun
tionand not just the Hamming distan
e: R(�; �) = limn!1 1n maxjAj�expf�ng log j��n'n(A)j.Exa
t solutions are not even known for the non{binary Hamming 
ase.In Se
tion 2 the Diametri
 Theorem in Hamming spa
e is mentioned. For � = 2 optimal areballs and for � > 2 optimal are 
ertain 
artesian produ
ts of a ball and a suitable sub
ube (or
ylinder set). Depending on the parameters this 
on�guration 
an degenerate to a ball and up toisometries (with one ex
eption of two solutions) there is only one solution.14



Noti
e that the Complete Interse
tion Theorem for parameters (n; k; t) 
an be viewed as a Dia-metri
 Theorem on the restri
ted Hamming spa
e ��[n℄k �; dH� for diameter D = 2k � 2t. Anotherkind of diametri
 theorem is for an average diameter 
onstraint (in 4.2 below).We have now gained by example an understanding of the following 
lassi�
ation:restri
ted 
ase | unrestri
ted 
ase, worst 
ase | average 
asevertex{isoperimetri
 | edge{isoperimetri
, vertex{diametri
 | edge{diametri
exa
t solution | rate{wise optimal solutionCoauthors in this work are I. Alth�ofer, S. Bezrukov, N. Cai, L.H. Kha
hatrian, E. Yang, Z. Zhang.4.2 Rate{Wise Optimal Solutions for the Average Case (Vertex){Diametri
 ProblemExa
t solutions for the worst 
ase vertex{diametri
 problem have been dis
ussed in 
onne
tionwith Interse
tion Theorems in Se
tion 2 for the Hamming distan
e. An earlier result with Caiand Zhang [72℄ 
on
erns the Taxi (or Manhattan) metri
 on �[n℄ and gives solutions for almostall parameters. Bollobas/Leader noti
ed that the missing 
ases are 
overed by an earlier result ofKleitman/Fellow. A worst 
ase diametri
 theorem for edges was mentioned in Se
tion 2. The �rstdiametri
 theorem for the average was obtained with I. Alth�ofer with an rate{wise optimal solution:U � X n has an average diameter not ex
eeding D, if Dave , 1jUj2 Pxn2UPyn2U 'n(xn; yn) � D:With Katona [31℄ already in 1978 the restri
ted 
ase k = 2 was 
onsidered in the dual form, wherethe 
ardinality of U is spe
i�ed and Dave is minimized. An exa
t solution is given in the form thateither U in lexi
ographi
 or in ba
kwards lexi
ographi
 order is optimal. With I. Alth�ofer [87℄ weproved by entropy methodsDiametri
 Theorem in Average 34. For the Hamming spa
e (�[n℄; dH) and rate 0 � R � log�the smallest average diameter per letter 1ndn(R) , minAn��[n℄; 1n log jAnj�RDave(An); n 2 N, satis�esd(R) , limn!1 1ndn(R) = min h�Px;y dH(x; y)P (x)P (y) + (1� �)dH(x; y)P 0(x)P 0(y)i,where \min" is taken over � 2 [0; 1℄, and probability distributions on [�℄ with �H(P ) + (1 ��)H(P 0) � R. Here H stands for the entropy.Writing R = h(�) for � = 2 we get d(R) = 2�(1� �). For � = 3 
al
ulation shows that P 6= P 0o

urs in the optimization.For general 
ost fun
tion the result holds with dH repla
ed by 'n as shown with Cai [127℄. Thereare also extensions to several sets with some pairwise mutual average distan
e (or 
osts) andsome internal average distan
es all simultaneously valid are treated. These generalizations aremotivated by multiuser WEM (see Se
tion 3). The proofs use a tool from Information Theory tobound the 
ardinality of ranges of auxiliary random variables:Support Lemma (Ahlswede/K�orner [21℄). Let P(Z) = set of all PD's on �nite set Z, letfi(j = 1; : : : ; k) : P(Z) ! R be 
ontinuous fun
tions, and let � be a PD on P(Z) with Borel�{algebra, then there exist elements Pi 2 P(Z) and �1; : : : ; �k � 0, Pki=1 �i = 1 su
h thatRP(Z) fj(P )�(dP ) =Pki=1 �ifi(Pi) for j = 1; 2; : : : ; k:
15



4.3 Edge{Isoperimetri
 Inequalities Ratewise Optimal	i : 2Xi ! R(i = 1; 2), 	1 �	2 : 2X1�X2 ! R de�ned by	1 � 	2(A) =Px2X2 	1(A1(x)) +Px2X1 	2(A2(x)) for A � X1 � X2	n = (((	� 	)� 	)� � � � � 	) 
ounts inner edges.A. (Nestedness):For X = f0; 1; : : : ; �� 1g, k 2 X , [k℄ = f0; 1; : : : ; kg, A � X , jAj = k + 1'(A) � '([k℄) (Satis�ed by dH ; dL; dM ; : : : ).B. (Submodularity): For A;B � X '(A) + '(B) � '(A [B) + '(A \B).C. '(?) = 0 and �'(k) = '([k℄)� '([k � 1℄).A pair (R; Æ) is a
hievable, if for all "1; "2 > 0 there exists an n("1; "2) su
h that for every n �n("1; "2) there is an An � X n with �� 1n log jAnj � R�� < "1 and 1njAnj'n(A) > Æ � "2. R' is the setof all a
hievable pairs (R; Æ).Theorem 35 (Ahlswede/Cai [125℄, [126℄). R' = f(H(XjU); E�'(X)) : X; Y satisfy (a); (b); (
)g(a) Random variable X takes values in X and random variable U takes values in U(b) jUj � jX j+ 1(
) Pr(X = 0jU = u) � Pr(X = 1jU = u) : : : � Pr(X = �� 1jU = u).Remark 4: Bollobas/Leader solved the 
ase P nk = powers of k{paths and Cnk = powers of k{
y
les, whi
h are equivalent via 	! All trees on k verti
es are equivalent.Lo
al{global prin
iple: Let 	 satisfy A;B;C. If the Lexi
ographi
 order is exa
tly opti-mal for edge{isoperimetry for n = 1; 2, then it is optimal for every n. There is related work withS.L. Bezrukov [98℄ and by him and his 
oauthors, surveyed in [N℄, p. 75{94.5 Combinatori
s on Sequen
e Spa
es: Partitions, Mono-
hromati
 Re
tangles, Shadows and Isoperimetry underSequen
e{Subsequen
e Relation, Anti
hains Splitting,AZ{Identities, Dimension Constraints5.1 PartitionsConsider (V; E), where V is a �nite set and E is a system of subsets of V. For the 
artesianprodu
ts Vn = Qn1 V and En = Qn1 E , let �(n) denote the minimal size of a partition of Vn intosets that are elements of En, if a partition exists at all, otherwise �(n) is not de�ned. This isobviously exa
tly the 
ase if it is so for n = 1.Whereas the pa
king number p(n), that is the maximal size of a system of disjoint sets from En,and the 
overing number 
(n), that is the minimal number of sets from En to 
over Vn, have beenstudied in the literature, this seems to be not the 
ase for the partition number �(n).Obviously, 
(n) � �(n) � p(n), if 
(n) and �(n) are well de�ned. The quantity limn!1 1n log p(n)is Shannon's zero error 
apa
ity. Although it is known only for very few 
ases, a ni
e formulaexists for limn!1(1=n) log 
(n) (see [73℄).The diÆ
ulties in analyzing �(n) are similar to those for p(n). For the 
ase of graphs with edgeset E in
luding all loops, we prove that �(n) = �(1)n ([83℄). This result is derived from the16




orresponding result for 
omplete graphs with the help of Gallai's Lemma in mat
hing theory.Another interesting quantity is �(n), the maximal size of a partition of Vn into sets that areelements of En (again only hypergraphs (V; E) with a partition are 
onsidered). We also 
all � themaximal partition number. It behaves more like the pa
king number. Clearly, �(n) � �(n) � p(n).It seems to us that an understanding of these partition problems would be a signi�
ant 
ontributionto an understanding of the basi
, and seemingly simple, notion of Cartesian produ
ts.More generally, for hypergraphs Hi = (Vi; Ei) (1 � i � n), we de�ne the produ
t hypergraphHn = (Vn; En) = (Qni=1 Vi;Qni=1 Ei). Edges of 
ardinality 1 are 
alled loops. Spe
ial hypergraphsare graphs G = (V; E) de�ned by the property jEj 2 f1; 2g for all E 2 E and, more generally,d{uniform hypergraphs (with or without loops) that satisfy jEj 2 f1; dg for all E 2 E .In parti
ular, there are d{uniform hypergraphs with all loops in
luded, that is, ffvg : v 2 Vg � E .When the set �Vd� of all vertex sets of 
ardinality d is 
ontained in the edge set E , we speak of a
omplete d{uniform hypergraph.We introdu
ed the partition number �(H) as the minimal size of a partition of V into sets thatare members of E , if a partition exists, and 1 otherwise. When Gi = (Vi; Ei) (i = 1; 2; : : : ; n) arearbitrary �nite graphs with all loops in
luded, then we obviously have �(Gi) = jVij � v(Gi) for thepartition number, where v(Gi) is the mat
hing number of Gi. A dis
overy of [83℄ is that for thehypergraph produ
t Hn = G1 � � � � � Gn �(Hn) =Qni=1 �(Gi).An important step in our proof is to show the above when all Gis are 
omplete. Here we establishthe following generalization.Theorem 36 (Ahlswede/Cai [94℄). For 
omplete d{uniform hypergraphs with all loops Hi =(Vi; Ei), that is, Ei = �Vid � [ ffvg : v 2 Vig (i = 1; 2; : : : ; n), write jVij = dqi + ri; 0 � ri < d. Thenfor Hn = Qni=1Hi satisfying d > Qi:ri 6=0 ri, we have �(Hn) = Qni=1 jVij+(d�1)rid = Qni=1(qi + ri) =Qni=1 �(Hi). (The result above is 
overed by the 
ase d = 2.)Even in the 
ase of non{identi
al fa
tors Hi = (Vi; Ei), i 2 N, with maxi jEij <1, the asymptoti
sof 
(n) is known [73℄: limn!1 1n �log 
(n)�Pnt=1 log �maxq2Prob(Et)minv2EtPE2Et 1E(v)qE��1� =0, where Prob(Et) is the set of all probability distributions on E , qE is the indi
ator fun
tion ofthe set E.5.2 Bounds on Mono
hromati
 Re
tanglesFor a matrix 
onsider the area i � j of an i � j minor with 
onstant entries. This 
on
ept wasintrodu
ed by Yao for estimating 
ommuni
ation 
omplexity. Some of our exa
t results andbounds, identities and inequalities, are reported by U. Tamm in [N℄, p. 589{602. Intera
tive
ommuni
ation [120℄, a similar model, has striking phenomena and open problems. Methods from[35, 36℄ �nd appli
ation.5.3 Shadows and Isoperimetry under the Sequen
e{Subsequen
e Re-lationIt has been suggested in 1988 on page 152 in proje
t B1 \Kombinatorik von Folgenr�aumen" ofthe SFB 343 \Diskrete Strukturen in der Mathematik" to study 
ombinatorial extremal problemsunder the sequen
e{subsequen
e relation | in parti
ular also shadow problems of the Kruskal{Katona type. 17



In Sept. 94 David Daykin wrote to us that he and Danh had a 
ounterexample to the optimalityof the optimality of the B{G order. He also mentioned that they had a solution in the binary 
asewith a very, very 
ompli
ated proof (whi
h we never have seen). Immediately thereafter a simpleproof for the binary 
ase (and also a simple 
ounterexample to the B{G order in the general 
ase)was given by Ahlswede/Cai [112℄. Subsequently, in De
ember 94 the former author also gave anew shorter proof. (Also published in [112℄, see [N℄, p. 75{94.)A. Shadows of arbitrary sets under deletion of any letterFor X n = Qn1 X , the sequen
es of length n over the alphabet X , we 
onsider for sets A � X ntheir shadow OA = fxn�1 2 X n�1 : xn�1 is subsequen
e of some an 2 Ag. The goal is to �nd forgiven 
ardinalities sets of minimal 
ardinality of the shadow.Re
all the H{order of Harper: For any integer u 2 [0; 2n℄ the u{th initial segment 
onsists ofall xn 2 f0; 1gn with less than n � k ones and all remaining elements with n � k ones, whose
omplements are in the initial segment of the squashed order (used for instan
e in Kruskal{Katona).As in the vertex isoperimetri
 problem in binary Hamming spa
e it is optimal also for our shadowsof sets in f0; 1gn. We use the unique binomial representation of an integer uu = �nn�+ � � �+ � nk+1�+ ��kk �+ � � �+ ��tt �;n > �k > � � � > �t � 1,and observe that for an initial, H{order segment S with jSj = ujOSj = �n�1n�1�+ �n�1n�2�+ � � �+ �n�1k �+ ��k�1k�1 �+ � � �+ ��t�1t�1 � = OG(n; u), say.Theorem 37. For every A � f0; 1gn jOAj � OG(n; jAj) and the bound is a
hieved by the u{thinitial segment in H{order.The proof is an immediate 
onsequen
e of our main dis
overy, theO{Inequality (Ahlswede/Cai [112℄): If w1 � w0 < OG(n; w) and w � w0 + w1, thenOG(n; w) � OG(n� 1; w0) + OG(n� 1; w1).In [128℄ Ahlswede/Cai established analogous results forB. Shadows for �xed level and spe
i�
 letterC. Shadows of arbitrary sets under insertion of any letterD. Two isoperimetri
 inequalitiesIt has been emphasized in [27℄ that isoperimetri
 inequalities in dis
rete metri
 spa
es are funda-mental prin
iples in 
ombinatori
s. The goal is to minimize the union of a spe
i�ed number ofballs of 
onstant radius. We speak of an isoperimetri
 inequality, if this minimum is assumed fora set of ball{
enters, whi
h themselves form a ball (or quasi{ball, if numbers don't permit a ball).For any A � f0; 1g� and any distan
e d we de�ne (the union of balls of radius r)�rd(A) = fxn0 2 f0; 1g� : d(xn0; an) � r for some an 2 Ag.A prototype of a dis
rete isoperimetri
 inequality is the one dis
overed by Harper 1966, redis
ov-ered by Ahlswede/G�a
s/K�orner [23℄, and proved again by Katona for d = dH .The optimum is a
hieved by the jAj{th initial segment IjAj in H{order (this is a ball of radius k,if jAj =Pnj=0 �nj�).Ahlswede/Cai [128℄ de�ne two distan
es, � and Æ, in f0; 1g� = S1n=0X n. For xm; ym0 2 f0; 1g��(xm; xm0) 
ounts the minimal number of insertions and deletions whi
h transform one word intothe other. �(xm; xm0) 
ounts the minimal number of operations, if also ex
hanges of letters are18



allowed. Thus Æ(xm; xm0) � �(xm; xm0).Theorem 38. For all A � X n and r � 0 (i) j�r�Aj � j�r�IAj, (ii) j�rÆAj � j�rÆIAj.5.4 Anti
hains SplittingA novel type of result was found by Ahlswede/Erd}os/Graham [103℄: In any dense �nite poset P(e.g. in the Boolean latti
e) every maximal anti
hain S 
an be partitioned into disjoint subsetsS1 and S2, su
h that the union of the downset of S1 with the upset of S2 yields the entire posetD(S1) [ U(S2) = P: Here P is 
alled dense if every non{empty open interval fz 2 P : x < z < yg
ontains at least two elements z0; z00. It is 
alled strongly dense if there are in
omparable z0; z00.For �nite posets the two 
on
epts are equivalent, but for in�nite posets they do not ne
essarily
oin
ide. (For example the totally ordered 
hain of rational numbers is dense, but not stronglydense.)A 
onje
ture of [103℄ that every 
ountable strongly dense poset has the splitting property wasdisproved by Ahlswede/Kha
hatrian with the poset of squarefree integers in [N℄, 29{44, where thereader �nds also several open questions.5.5 AZ{IdentitiesAhlswede and Zhang [64℄ found the following identity.Theorem 39 AZ{Identity. For every family A � 2
 of non{empty subsets of 
 = f1; 2; : : : ; ngPZ�
 WA(X)jXj( njXj) = 1; where WA(X) = ��SA�A2AA��.We asso
iate with every E � 2
 the upset U(E) = fU � 
 : U � E for some E 2 Eg and thedownset D(E) = fD � 
 : D � E for some E 2 Eg. When A is an anti
hain in the poset (2
;�),then the identity be
omes PX2A 1( xjXj) +PX2U(A)rA WA(X)jXj( njXj) = 1.The LYM inequality is obtained by omission of the se
ond summand, whi
h by de�nition of WA
an also be written in the form PX=2D(A) WA(X)jXj( njXj) . We 
all this the de�
ien
y of the inequality.More generally, in [68℄ the Bollobas inequality was lifted to an identity.Theorem 40 AZ2. For two families A = fA1; : : : ; ANg and B = fB1; : : : ; BNg of subsets of 
with the properties(a) Ai � Bi for i = 1; 2; : : : ; N , (ii) Ai 6� Bj for i 6= j PNi=1 1(n�jBirAijjAij ) +PX=2D(B) WA(X)jXj( njXj) = 1.In [64℄ it was explained that Theorem AZ1 gives immediately, what LYM does not, namely theuniqueness part in Sperner's Theorem. In [68℄ the uniqueness of an optimal 
on�guration ofunrelated 
hains of subsets due to Griggs, Stahl and Trotter 1984 [GST℄ was proved with the helpof Theorem AZ2.K�orner and Simonyi 1990 observed the LYM{type inequality: For A = fA1; : : : ; ANg;B =fB1; : : : ; BNg � 2
 with Ai \Bi = ?; Ai 6� Aj [ Bj; Bi 6� Aj [Bj for i 6= jPNi=1 �n�jAijjBij ��1 + �n�jBijjAij ��1 � � njAij+jBij��1 � 1 and they asked \Is this inequality ever tight?".This rather modest question was a 
hallenging test of the power of the identities above or, morepre
isely, of the pro
edure to produ
e new identities des
ribed in [64℄.The out
ome is an Ahlswede{Zhang type identity whi
h goes 
onsiderably beyond Theorem AZ2.19



From a spe
ial 
ase of this identity we derive a full 
hara
terization of the 
ases with equalityeven for a generalized version of the inequality above. In other words we 
hara
terize the 
aseswith de�
ien
y zero.Theorem 41 (Ahlswede/Cai [79℄). Suppose that for a family B = fB1; : : : ; BNg of subsets of 
and a family A� = fA1; : : : ;ANg of subsets of 2
, where Ai = fAti : t 2 Tig for a �nite index setTi, we have (a) Ati � Bi for t 2 Ti and i = 1; 2; : : : ; N , (b) Ati 6� Bj for t 2 Ti and i 6= j. ThenPNi=1PjTijk=1(�1)k�1PS�Ti;jSj=k �n�jBi�St2S Ati jjSt2S Ati j ��1 +PX=2D(B) WA(X)jXj( njXj) = 1.The spe
ialisation jTij = 1 for i = 1; : : : ; N gives Theorem AZ1. Daykin and Thu 1994 presented adual to the AZ{identity and for related identities see Thu, \Identities for Combinatorial ExtremalTheory" in [112℄.5.6 Extremal Sets of Ve
tors under Linear Dimension ConstraintsThe paper [158℄ \Maximal Number of Constant Weight Verti
es of the Unit n{Cube Containedin a k{Dimensional Subspa
e", together with H. Aydinian and L.H. Kha
hatrian, is the start ofa new dire
tion in Extremal Theory, whi
h is indi
ated in the title.We introdu
e and solve a seemingly basi
 geometri
al extremal problem For the set E(n; w) =fxn 2 f0; 1gn : xn has w onesg of verti
es of weight w in the unit 
ube of Rn we determineM(n; k; w) , maxfjUnk \ E(n; w)j : Unk is a k{dimensional subspa
e of Rng. We also presentan extension to multi{sets and explain a 
onne
tion to the (higher dimensional) Erd}os{Moserproblem.The set E(n; w) 
an also be viewed as the set in whi
h 
onstant weight 
odes are studied inInformation Theory. Another interest there is in linear 
odes. This was a motivation for studyingthe interplay between two properties: 
onstant weight and linearity. In parti
ular we wanted toknow M(n; k; w).Theorem 42 (Ahlswede/Aydinian/Kha
hatrian [158℄). For n; k; w 2 N(a) M(n; k; w) =M(n; k; n� w)(b) For w � n2 we have M(n; k; w) = 8><>:�kw�; if (i) 2w � k�2(k�w)k�w �22w�k; if (ii) k < 2w < 2(k � 1)2k�1; if (iii) k � 1 � w:The sets giving the 
laimed values of M(n; k; w) in the three 
ases are(i) S1 = E(k; w)� f0gn�k (ii) S2 = E(2(k � w); k � w)� f10; 01g2w�k � f0gn�2w(iii) S3 = f10; 01gk�1 � f1gw�k+1 � f0gn�k�w+1.A key tool in the proof is an extremal problem for families of w{element sets involvinganti
hain properties for 
ertain restri
tionsLemma. Let X = X1 :[ : : : :[Xs with jXij = ni for i = 1; : : : ; s and let A � �Xw� be a family withthe following property:(P) for any A;B 2 A and j = 1; : : : ; s E , A \ �Sji=1Xi� 6= B \ �Sji=1Xi� , F implies that Eand F are in
omparable (form an anti
hain). Theng(n1; : : : ; ns; w) , max�jAj : A � �Xw�;A has property (P)	 = maxPsi=1 wi=wQsi=1 �niwi�.For s = 1 we get Sperner's result. Evaluation of the max gives the formulas in the Theorem.20



6 Counterexamples, Conje
tures and Problems6.1 CounterexamplesFrankl/Pa
h Conje
ture for Uniform, Dense Families.A family F � �[n℄` � is 
alled `{dense, if there exists an F 2 F , su
h that jF \ F1 : F1 2 Fj = 2`.Frankl/Pa
h [FP℄ 
onje
tured that every F � �[n℄` � with jFj > �n�1`�1� is `{dense.Ahlswede/Kha
hatrian [129℄ provide a 
ounterexample to this 
onje
ture by the 
onstru
tion ofa set F � �[n℄` �, jFj = �n�1`�1�+ �n�4`�3�, whi
h is not `{dense.Kleitman's Conje
ture.In [27℄ Ahlswede/Katona 
onsidered the following \Ex
ess{problems": For A � �[n℄k � let I(A) =jf(A1; A2) 2 A2 : A1 \ A2 6= �gj; G(A) = jf(A1; A2) 2 A2 : jA1 \ A2j � k � 1gj. Determinef(M) = maxjAj=M I(A) or g(M) = maxjAj=M G(A).The problems are the same for k = 2 and here these authors des
ribed two 
on�gurations, quasi{ball and quasi{star, one of whi
h is always optimal. For k � 3 none of the problems is solved. These
ond has also been 
alled Kleitman{West Problem. Ahlswede/Cai [144℄ disproved a 
onje
tureof Kleitman for this problem.Conje
ture of R. Aharoni from 1991 
on
erning mat
hing theory for in�nite familiesof �nite sets.The 
onje
ture states that in any su
h family A there exists a subfamily B of disjoint sets (
alledstrong maximal mat
hing) su
h that no substitution of k of these sets by more than k sets fromA results again in a subfamily of disjoint sets.The 
ounterexample of Ahlswede/Kha
hatrian [105℄ is the family A of those subsets of N , whose
ardinality equals its minimal element (in 
anoni
al order).Conje
tured sharpening of EKR by Ahlswede/Cai/ZhangThe equation In(9; 8; k) = �n�1k�1�) for n � 3k was shown by Ahlswede/Alon/P.L. Erd}os/Ruszinko/Sz�ekely (see [N℄, page 117{124) to hold for k = 2; 3 and to be false for k � 8.6.2 Open ProblemsProblem 1: Prove or disprove Aharoni's Conje
ture for families of sets of bounded 
ardinality k.For k = 2 it has been proved by Aharoni.Problem 2: Exa
t solutions of isodiametri
 problems for general sumtype fun
tions are hard toobtain. Solve the 
ase of the Lee{metri
 already mentioned in [72℄.Problem 3: Classi�
ation of D{perfe
t 
odes. We learnt in Se
tion 4 that optimal anti
odesneed not be balls. This led to the new 
on
ept of D{perfe
t 
odes. Continue the 
lassi�
ation byAhlswede/Aydinian/Kha
hatrian [118℄.Problem 4: Optimal rate for 
odes with lo
alized errors. The optimal rate R of 
odesover the alphabet f0; 1; : : : ; q � 1g with lo
alized t = � � n errors does not ex
eed the Hammingbound 1� hq(�) � � logq(q � 1): In 1987 Bassalygo, Gelfand, Pinsker showed that for q = 2 thebound is optimal. A series of investigations [75℄, [77℄, [90℄, [96℄, [97℄ gave in parti
ular for q � 2Theorem 43 (Ahlswede/Bassalygo/Pinsker [149℄). Let 0 < � < 1=2� q�22q(2q�3) , then for any " > 0the Hamming bound 
an be a
hieved in rate up to " with 
odes 
orre
ting �n lo
alized errors.21



Prove or disprove: Not only for q = 2, but for all q � 2 this is true for 0 < � < 1=2.Problem 5: Equality 
hara
terisation for AD 
onstitutes by itself a ri
h area in 
ombinatorialextremal theory. Less demanding are equality 
hara
terisation problems for the 
onsequen
esof AD. Aharoni/Holzman did this for Mari
a{S
h�onheim and Be
k for another spe
ial 
ase ofAD (
.f. [100℄). Already in 1979 Daykin/Kleitman/West investigated Kleitman's inequality.Ahlswede/Kha
hatrian [100℄ 
ompleted these investigations.Problem 6: Determine Hn(9; 9; k; r). We believe that limn!1Hn(9; 9; 3; 2)n�2 = 1p2 .Problem 7: Determine Hn(8; 9; k; r). We believe that limn!1Hn(8; 9; 3; 2) = 2.There are many problems in Ahlswede/Zhang [60℄ and Ahlswede/Ye/Zhang [63℄ on \Creatingorder". (See also P. Vanroose [N℄ 603{614 and in U. Tamm [N℄ 589{602.)6.3 Conje
turesConje
ture 1 (Ahlswede/Kha
hatrian; also Erd}os). In Theorem 1 in Se
tion 1 one 
an 
hoosefor every k n(k) = 
p2k for suitable 
onstant 
. Presently we have only n(k) =Qp�(p
1k) p
2k.The theory of Communi
ation Complexity led via Yao's mono
hromati
 re
tangles for spe
ialfun
tions to the followingConje
tures 2, 3. limn!1 In(8; 9; 3)�n2��1 = 54 , limn!1 In(9; 9; k)� nk�1��1 = 1 [119℄.Conje
ture 4. For an = (a1; : : : ; an), bn = (b1; : : : ; bn) de�ne mn(an; bn) = Pnt=1 at ^ bt andM(Æ; n) = maxfjAjjBj : A;B � f0; 1gn;Mn(an; bn) = Æ, for all an 2 A; bn 2 Bg, Ahlswede [57℄guesses that M(Æ; n) = max0�m�n�Æ 2m�n�mÆ �.Conje
ture 5. The pair (A;B) with A;B � f0; 1; : : : ; � � 1gn is an (n; Æ) 
onstant dis-tan
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