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1 Introduction and Notation

Let N be the set of natural numbers, [n] := {1,...,n}, and for i,j € N,
i < g, let [i,7]:= {i,i+1,...,5}. Let 2[" be the family of all subsets of [n].
Also, let

(V) = cmbsixi = (1) = 0r cpns 3 <,

k <k
() = ercsx=m,

A family F C 2 is called t-intersecting (vesp. s—cointersecting) if, for all
X, Y eF, | XNY|>t(resp. | XUY|<n-—s). Let I(n,t) (resp. C(n,t))
be the class of all t—intersecting (resp. s—cointersecting) families of subsets
of [n]. Furthermore, let

L(n,t) = I(n,1) N 2(¥), Tep(n, 1) = I(n, 1) 0 2(&0),

i.e. the class of t—intersecting families whose members have size equal to k
resp. not greater than k, and let I>4(n,t), C<x(n,s), Csk(n,s) be defined
analogously.

For a class IC of families, let

M(K) := max{|F|: F € K}.

More generally, if there is given a weight function w : 2" — R, (the set of
all nonnegative reals), let for F C 2"

w(F) =) w(X)

XeF

and
M(K,w) := max{w(F) : F € K}.
In this paper we study the numbers M (K) for
K e {I<k(n,t), Isk(n,t),Ccr(n, s), Csk(n, s),I(n,t) N C(n,s)}.

2 Results

First of all, by considering complements

M(Csi(n, s)) = M(I<p—k(n,5)),
M(C<k(n,s)) = M(I>nk(n,s)),



so that only three of the five numbers are of interest.

Let, forrzO,...,{"T_tJ,

S(n,t,r):={X €2l | X[t +2r] >t +7r},

Se(n,t.7) == S(n,t,r) N <[Z]>,
Sep(n,t,r) = S(n,t,7) N < n] )

<k

and let Ssi(n,t,7) be defined analogously. By construction, these families
are t-intersecting.
The following results are fundamental:

Theorem 1 (Katona [13]). We have
M(I(n,t)) =S (n.t,[%51])].
Theorem 2 (Ahlswede, Khachatrian [1]). We have
M (Ii(n,t)) = max {|Sk(n,t,7)| : 7 =0,..., [ %] }.
Moreover, for n > 2k —t, the optimal r is given by

(k_t+1)(t_1)—1<r< (k—t+1)(t—1)_
n—2k+2t—2 - T n—2k+2t—-2

An easy consequence of Theorem 1 is the following (cf. [8, 6]):

Theorem 3. Let w(X) = w(Y) for all X,Y C [n] with | X| = |Y| and let
w) <wY)if | X|+|Y]=n+t—-1, |X|<|Y|. Then
M(I(n,t),w)=w (S(n,t, [%1])).

2

Setting

(X) 1 if | X| >k
w =
0 otherwise

we obtain immediately from Theorem 3:

Corollary 4. We have

M(Lg(n. 1) = |Sor (n 1, [554]) ]



The determination of M (I<4(n,t)) is more difficult and, up to now, we
can provide only partial results.

Proposition 5. We have
M([Sk(na 1)) = ‘Szk(n: t, 0)|

Indeed, this follows easily using complements and the Erdos-Ko-Rado
Theorem [9]. Hence we suppose throughout ¢ > 2 when studying I<j(n,t).
The following question was the starting point of our investigations:

Problem 6. For which numbers k do we have
M(I<(n,t)) = [S<p(n,t, [ %52])]? (1)

Concerning this question we may clearly suppose that k > | 2| because
otherwise S<;(n,t, {”T’tj) = (). Problem 6 is answered essentially by the
following results:

Theorem 7. Let ¢ and ¢ be fized constants and let k < “H + ¢\/n. Then
(1) does not hold if n is large enough.

Theorem 8. Let t be fized and k > " + \/logny/n. Then (1) holds if n is
large enough.

Theorem 9. Let ¢ be a fized constant and let k < "T” +c. Then there exists
d > 0 such that for t < dn and n sufficiently large (1) does not hold.

Theorem 10. Let § > 0 be a fixed constant and let t > dn. Then there
exists ¢ > 0 such that for k > "TH + ¢ and n sufficiently large (1) holds.

Concerning the complete determination of M (I<(n,t)) we have the fol-
lowing conjecture:

Conjecture 11. If k < ™, then
M(I<k(n,t)) = max{\SSk(n,t, r):r=0,..., L"T*tj } ) (2)
This conjecture is supported by the following results.

Theorem 12. Let t and 0 < € < 1 be fired constants and k < (1 — e)n.

Then (2) holds for sufficiently large n.

Theorem 13. Let t = n+ o(n) and k = kn + o(n) with 0 < 7 < k < £T.
Then, as n — oo,

M(I<x(n.t)) ~ max {|S<x(n,t,r)| ;7 =0,...,[ %] }.



Studying M (I(n,t) N C(n,s)) one can clearly suppose throughout that

t+s<mn.Givenn,t,s and r € {0,..., |2==2]}, let always

q:= L"’Qt’sj —T.

Note that

n if2|n—s—t
(t+2r)+ (s+2q) = _
n—1 otherwise .

Let, for r =0,..., | 2==¢],

S(n,t,s,r) = {XEQ["}:\Xﬁ[t+2r]\Zt+r and [X N[n—s—2¢+1,n]| <q}.

Obviously, these families are ¢-intersecting and s—cointersecting. Verifying a
conjecture of Katona, Frankl [10] proved:

Theorem 14. We have
M (I(n,1)NnC(n,s)) =|S(n,1,s,0)|.
Moreover, Frankl [11] and Bang, Sharp and Winkler [4] propose:
Conjecture 15. We have
M (I(n,t)NC(n,s)) = max {|S(n,t,s,7)| : 7 =0,...,|2==]}.

In [4] this conjecture is proved for n —t — s < 3.
. From Theorem 1 one easily obtains that for fixed ¢

M(I(n,t)) ~ 2" " as n — oo.
This gives, applying in a standard way Kleitman’s inequality (cf. [7, p.266]):
Proposition 16. Let t and s be fized and let n — oc. Then
M (I(n,t)NC(n,s)) ~ 2" ~max {|S(n,t,s,r)| :r=0,..., |2==]}.
In addition, we have the following result:

Theorem 17. Let t = tn+o(n), s = on+o(n), 7,0 >0, 7+ 0 < 1 and
n — oc. Then

M (I(n,t)NnC(n,s)) ~max {|S(n,t,s,r)|:r=0,..., [2==]}.

Thus Conjecture 15 is supported by Proposition 16 and Theorem 17.
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3 Short proofs for results concerning /-;(n,1t)

Proof of Theorem 7. It is easy to see that (1) holds for some & if it holds
for some k' with &' < k (see Lemma 19). Hence it is sufficient to prove the

assertion for

b [n+t+ f}

We use the well-known fact that for constants a,b (with a < b) and for

n— oo

> (1) ~ @) - s

5+ vnato(yvn)<j< G+ 5 v/nb+o(v/n)

uniformly in a,b € R, where ® is the Gaussian distribution. Since
k k
n . n
> () <isate=)< 2 (0)

we have

S<i (n,t, [%51])| ~ (®(20) — B(0)) 2" = <CI>(2c) — —> 2",

Now choose 7 := |n1|. From (3) it follows that
k—

l —t—2
(n T) ~ @(26)271—15—27'
=0

uniformly in i € [t + r,t + 2r] and that

J

t+2r
t+2
) ( y T) ~ B(0)2
i=t+r t
Consequently,
t+2r k—i
t+2r n—t—2r
S t =
st = 30 ()2 (M)

1
~ ®(0)2"P(2c)2" T = 5<I>(20)2“.

Since ®(2¢) — 3 < 3P(2¢) we have by (4) and (5) for sufficiently large n

‘Sgk (n,t, L"T_tj)‘ < |[S<k(n,t,r)]|.

(3)



Proof of Theorem 9. Analogously to the proof of Theorem 7 we prove the
assertion only for

k:[%ﬂ+c—‘.

W.l.0o.g. we may assume that c¢ is an integer. Moreover, we suppose that
2 | n+t. If 24 n+t the proof can be modified in a straightforward way. We
have k = 2t + ¢ and put d := 3(c + 2)?. Note that for constant integers a
and b

~ (1= €/n)" <1 f/g/n>b. (6)

(%)

Let 7 := L. We take r := - —d and compare |S<;(n, t,7)| with |S<; (n, ¢, | %5%]) .
We have (with ¢t +r+c+d=k)

c+d ctd—i
n—2d 3 2d
|S<k(natar)_z<t+r+i> , (])
1=0 j=0
Using (6) we obtain

Si(k(z’t’;) N <1;7’>2d§ (1_,__:>d—i0+2d—i <2d>

n+t)/2

Analogously,
‘Sgk (nati L%J)‘:;<(n+t)/2+j>,
‘Sgk(n,t, LnT_tJ)‘ ~ - L+7 N
(( n ) Z(l—T) ‘

n-+t)/2

For the proof it is enough to show that there are ¢, 6 > 0 such that for 7 < o,
independently of n,

() SE) S s ) o

i=0 §=0

since then for sufficiently large n and ¢ < mn
|S§k(n7 t, T)‘ > ‘Sﬁk (n7 2 VLT%J)‘ :
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Both sides of (7) are continuous functions of 7. Hence it is enough to consider
7 =0 and to prove

ct+d c+d—1i 2 oy
L:=) Y ; > (c+1)2% = R, (8)
i=0 j=0

Let a € {0,...,c— 1} and consider on the LHS of (8) the terms with i = a
and ¢ = 2¢ — a. We have

c+d—a 9d ct+d—(2c—a) 92d ctd—a 24 d—c+a 9
2 <j>+ 2 (j)z 2 <j>+ 2 <2d—j>

=0 =0 =0 7=0
ct+d—a 2 2d 2
Y
=0 \J jmctd—a N7
> 2%,
For i = ¢,

i 2\ _ 1,0, 1(2
i) 2 2\ d )

§=0
Consequently, we have the following estimation for the LHS of (8):

O RS I 58 >l v I

i=2c+1 =0

For i > 2c+1,
i <2d> . zd: <2d> - zd: <2d>
J J j=crdiv1 N
1/2d (i o) 2d
2\a) VN
1 1 2d
— _22d - s )
= (2) ()
Considering in (8) only the terms with i = 2¢+ 1, 2¢ + 2, 2¢ + 3 gives

2d
L> (c+1)22d+22d—(36+4)<d>.



Accordingly, L > R (i.e. (7) holds) if

?d><3§cm+4y (10)
It is well-known (cf. [12, p.283]) that
<2d> < i
d) = VBd+1
Hence (10) holds if v/3d + 1 > 3c+4. Indeed (using d = 3(c+2)?), v/3d + 1 >
V(e +2)2=3(c+2) > 3c+4. O
4 Asymptotic estimates of M (I<;(n,t)) and
M(I(n,t)NC(n,s))
Proof of Theorem 13. For any family F we use the notation
Fn:={X e F:|X|=h}
Let F € I<x(n,t). Clearly,

Fl=)_|Fal. (11)

First we estimate each |Fy|. In the following the maximum is always exten-
dend over r € {0,..., |%*|}. By Theorem 2,

i <mtsiocot -mse [ (7))

1=0

t+2r\ (n—1t—2r\ — r h—t—r '
<
_max{( r ><h—t—r>;<t+r+ln—h—r+l>}

t+2r\ (n—1t—2r k—t—r kh 1
< max k k 1 r k—t—r '
r —t=r n—k—r+ 1 - tHr+ln—k—r+1

(12)

We will see that almost all numbers |F;,| can be neglected. Only the values
| Fr| with h near to k give an essential contribution. Clearly, it is enough to
extend the maximum only over r € {0,... ,k —t}. Then

T k—1 T
< =1—-— 1).
trr+l k1 o)
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Moreover, for large n, k —t —r <n —k —r + 1, hence
k—t—r k—t K—T
< = 1) <1.
n—k—r+1 " n—-—k+1 1—/-c+0()
Choose a such that 1= < a < 1. Then, for any ¢ > 0 and any h with
h <k —en,

A< e () (500)

) | Vg | B

h<k—en

and

We put € := n=3. Now let h be near to k,ie. k—h < en. By Theorem 2,
max{|S(n,t,r)|} is attained at some r = r(k) with
(k —T1)Tn

<r < ——— .
o(n) <r< 1_2%4_27_—1-0(70

(k—e—T)tn
1 —2Kk+2e+ 27
Then, uniformly for £ —en < h <k,

r K—T

= 1
o Sl gy SAC
k—t—r K—T +o(1)
= 0
n—k—r+1 1—(k—7)
Let w:= 7= From (12) we obtain

asmae{ () (L) o ey

and, consequently,

> Al o 0(”)ma"{<tt2r> @_—tt_—QTT) }

k—en<h<k
(14)

Since na™ = o(1), we finally get from (11), (13) and (14)

] < o (14 o{1)) max { (t t”) (’2__2__2[) } - (1)

On the other hand, using more or less the same estimations, one can derive

max {[S<i(m, 1)/} 2 T (14 o(1)) mas { (t * 27") @‘_tt—_?:) }

T

which proves together with (15) the assertion. O
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Proof of Theorem 17. Let F € I(n,t)NC(n,s). First let 2 | n+t+ s and
let k := 2=2 We divide F into two subfamilies

k n
F=JR F'=] A
h=0 h=k-+1
and put
F"={n]\ X : X € F'}.

Obviously, F' € I<x(n,t), F" € I<,_k_1(n,s). Using the notations from
Theorem 13 we have (for F' and F")

l1—-7—0
w=-—
l1+7+0

and get the estimations

71 g aroma (7))
< o o { () (M )

= 1fw1%ﬂ(”°(”)max{<s+q2q> <(nft_—85_)/22q— q>}

and, with r := 2=1=2 — ¢,

7 < T (o) mas { <t +7«2T> <(n Py 7“) } |

Consequently,
o e () (1)

Again, in a similar way, one can derive that

Fl=[F+[F"] <

max {|S(n,t,s,7)[:r=0,... ===}

> ﬁ (1 + o(1)) max { (t t%) <(n f;js_)/er— 7“) }

which proves the assertion.
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Now let 24 n+t+ s. Here we put k := %’H With the same approach
we get

s e () ()

S ”“”max{(st}zq) ((n—: e q>}
_ 1iwﬁ (4 o(l))max{<t+ 2: + 1) <(n ft__ls__tl_)/er— r) }

It is not difficult to verify that the maximum on both RHS is attained at
some r with

Tl—7T—-0
T
2 T7+4+o0

This easily implies

Fl=|F |+ |F"| < ﬁ (1+0(1)) max { <t —tﬂ%) <(n _nt__ls_—tl_)/QZT— 7“) } '

But the RHS is obviously also a lower bound for
maX{|5(n,t,5,r)| r=20,... ,%H}

O

5 Comparison methods and proofs of Theo-
rems 8 and 10

In this section we work with size—dependent weight functions, i.e. functions
w: 2" — R, for which there are numbers wy, ... ,w, such that w(X) = w;
for all X C [n] with | X| =14,i=0,...,n. We call w := (wy,...,w,) the
weight vector.

A corollary of the Comparison Lemma [2] is the following result proved
in [6]:

Theorem 18. Let w be size—dependent. Then
M(I(n,t),w) =w (S(n,t, |%L]))

Wj . t—1
max i=t...,n—1p <1+ —7r.
Wit1 |25

11



Remark. Using a continuity argument it is easy to see that the relation “<”
in the above condition can be replaced by “<”.

In the next lemmas we present conditions how the weight function can
be changed without changing the optimal solution.

Lemma 19. Let w be size-dependent and suppose that M (I(n,t),w) is al-

tained at S(n,t, [”T’tj) Let W' be a new size—dependent weight defined by

either one of the following assignments:
w; — A ifi=u
w; = wi—i-)\% ifi =1 (16)
l

w; otherwise,

where 0 < A < wy and, 2 <l<u<nor0<l<u< %,

Wl {wi—i-(s ifi =1/ (17)

w; otherwise,
where § > 0 and " < ( < n.
Then M(I(n,t),w') is also attained at S (n,t,|["5*]).
Proof. Let w' be given by (16). Note that
WS (mot [25])) = w (S (not, [ %)) -
Let F be an optimal family for w’. W.l.o.g. we may assume that F is a filter

(or upset), ie. X € F, X CY imply Y € F. By the normalized matching
property of the Boolean lattice (cf. [7, p.149]) we have

|-,F£‘ < ‘fu‘

@~ C)

It follows

HF) =) 08 5 A = P (") (ﬂ - 'f“)
(?) u ()
Sw(F) <w(S(nit, [5])) =" (S (nt, [57])) -
Now let w' be given by (17) and let F be an optimal family for w’. Then

W(F) = w(F) + 6| F| < w(F) +5<Z>

<w (s (e, 1252)) +6(}) = (5 (ot 1252)).

12



Lemma 20. Let w be size—dependent and suppose that M (I(n,t),w) is at-
tained at S(n,t, L”T_tj) Let A > 0,0 < /(< L”THJ and let ' be a new
size—dependent weight defined by

w; + A ifi =1/
wi=Qwi+ A ifi=n4t—(—1
w; otherwise.

Then M(I(n,t),w') is also attained at S(n,t, |"5t]).
Proof. Obviously,
(—t+1

(S (o) = 8 (252 ) A ().

Let F be an optimal family for w’. From Katona’s theorem concerning shad-
ows of t—intersecting families (cf. [7, p.301]) follows

n l
e < - |F
E”tl”—<n+t—£—1> —ir1”

Accordingly,

{—t+1
w'(]:) = W(}—) + )‘|-7:£‘ + )‘T|fn+t—£—l‘

(—t+1 0 n ¢
< - -
Sw(F)+r— <£—t+1fﬂ+<n+t—é—l> é—t+1U%>
n—t
2

ML) = S )

O

§w(5(n,t,{

Proof of Theorem 8. Obviously, it is enough to prove the assertion for

kn:[lgf+vﬁﬁﬁ¢ﬂ

(e.g. apply Lemma 19 with (17)). Let
t—1
el

We consider the size-dependent weight w defined by

1 if < 2t

qg:=1+

if § > mi,

13



By Theorem 18 (and the succeeding remark), we know that M(I(n,t),w) is
attained at S (n,t, | 25]).

Now we apply Lemma 19 with (16) for £ = [2] and w = k+ 1,k +

2,...,n. This gives the new weight vector w':
(1 if i < 2H
i+ ———=>n ) if § = [
wpi=1¢ 9 ( (renstrron) Dz () el
L if [2H] <i<k
0 if o > k.

It is known (cf. [12, p.284]) that, as n — oo,

([(n +nt)/2w> - 22—:71 (19)

. 1
and, with x = o(n%), x — oc,

. <n>~ L wgn,
e \U V2

n vn
u>2+x 3

The last formula with z = 2/logn implies

n

> ()< v @
S \u) ™ oy /rlogn

By (19) and (20) we have for sufficiently large n

1 i<n><t—1_q_l
(((n—IZ)/Ql) u=Fk+1 u LnT_tJ

which implies that w, < 1 for i = ’—"T”-‘ ,...,k. Hence, by applying again
Lemma 8 with (17) we obtain that for large n

M (I<k(n: 1) = |S<x (m . [%54])]
0

Proof of Theorem 10. We use the same method as in the proof of Theo-

rem 8, but here we put
n-+t
k.= |——
[ 5 —‘+c,

14



where ¢ is an integer. Recalling (18) we have to show that there exists ¢ such

that for large n
1 1 =
- (1+T > <n>> =1
q ([(n+t)/2]) uekr1 \U

i <Z> == 1)(f(n +nt)/2}>' (21)

or, equivalently,

u=k+1
We have
1o (f(n+tZ/21+1) o e (g)
q [(n4t)/2] (")

and consequently

n

3, ) = G o) ;ﬂq D < (g

u=k+1
Therefore,
har

or, equivalently,

> (22)

(g —1)

is sufficient for (21). Using

¢ =clg—1)
we see that

c> L

“(g—1)

is sufficent for (22). However, for ¢ > dn, the last condition certainly holds

(for large n) if
_(1=9 ’
““\w

15



6 Proof of Theorem 12

Lemma 21. Let
1 n
%=—Z()
) =\
Then ayp, is increasing in k (for k=0,...,n).

Proof. For fixed n we have ay, < agqq1, iff

However, this inequality is true since the LHS is not less than
k

> ((H6H)-61)0)

= k) \j+1 kE+1)\J

and each term of the last sum is nonnegative by the log—concavity of the
binomial coefficients. 0

Lemma 22. Let k < "T*t Then the sequence

|S<k(n,t.0)],[S<k(n,t.1)],...,

S (n:t, [%54])]

18 unimodal.

Proof. By considering [S<x(n,t,7) \ S<x(n,t,r + 1) and |S<x(n, t,7+ 1)\
S<i(n,t,7)| we see that

‘Sék(n: i T)| < |S§k(n7 tr+ 1)|
is equivalent to

(tﬂ)(n—kt_—tz_r;2>S(t_l)’“ztf(n—t—iw—z)_ (23)

1=0

We will show that |S<;(n,t,r)| < |S<k(n,t,r+1)| implies |S<x(n,t,r—1)| <
|S<k(n,t,r)|. It suffices to prove that for all r with 0 < r < | %]

2
n—t—2r \ "< n—t—2r—2
<
L) e ()
n—t—2r—2 k_t_ZH_l n—t—2r
k—t—r P i ’

16



or, (substituting a = n—t—2r —2, b = k —t — r) that for all a, b with

2b < a+2
b b+1
a—+2 a a a+2
)2 ()=0)2(7)
a\ <= (a
2
()% ()
=0
from the last inequality gives

() (ED)EO=CEO-E0) o

1=

IN

Subtracting

Using 2b < a + 1 one verifies easily that for s =0,1,...,b

G+ 65D Gf)+ G
G0

from which (24) follows. O

Proof of Theorem 12.
Step 1:
Let the weight vector w be defined by

1 ifi <k
Ww; =
0 ifi>k.

Let r* = r*(n, k) be the least r such that

w(S(n,t,r))| > |w(S(n,t,r+1)) > .... (25)
By Lemma 22 we know that |S<j(n, t,7*)| = max{|S<x(n,t,7)| : 7 =0,..., 2] }.
In addition, we have
t
wi:Oifz'Zn;_ . (26)

Given an arbitrary weight vector satisfying (25) and (26) it follows by the
method of generating sets [1] that

M(I(n,t),w) = M(I(t+2r*t),w'),

17



where the weight vector w’ is given by

n—t—2r*
, n—1t—2r
w; 1= E Wit j .

=0 J
for i =0,...,t+ 2r* (cf. [6, Theorem 15 and Example 4]). Hence, in our
case, we have
M(Iﬁk(na t)) = M(I(t + 2T*7 t)a wl)a

where

fore=0,...,t+2r"
Step 2:

;From Step 1 we know that there is an optimal family F (i.e. F €
I<(n,t), |F| = M (I<g(n,t))) which has the following property:

X € Fimplies Y € F forall Y € (Ln]k> with Y N[t +2r"] = X N[t + 2r7].
) (27)
W.lo.g. we assume that F is left-compressed, i.e. (X \ {i})U {j} € F for
all i,j € [n] with i > j, i € X, j ¢ X. We will prove by pushing—pulling [3]
that F is invariant in [t +2r*], i.e. (X \{i})U{j} € Fforalli,j € [t+2r*],
i€ X, j¢ X. Assume the contrary. Let
¢ = max{i : F is invariant in [i]}

L={XeF:l+1¢X (X\{i})U{+1} ¢ F for someiec XN}

L={XN[{+2,n]:XeL}
Furthermore, let £; = {X € L: | XN[{] =i}, LI ={XN[{+2,n]: X € L;}.
By our assumption we have ¢ < t 4 2r*. The following facts follow from the
pushing—pulling method (cf. [6]):

(i) £ is nonempty and invariant in [£].

(i) £>¢ 2]+t L;=0forie[f\ {5}

(iii) For all intersecting subfamilies 7* of £},
2

ZXGT* WX |4 Lt C—t+2
< .

L+t
2
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It is easy to see that £ = ¢ + 2r* — 2 is impossible (e.g., since £ # 0 we
have ¢ + 2r* ¢ X for some X € L},, which implies F = Scj(n,t,7* — 1) in
contradiction to the choice of F and r*). Hence ¢ < t+2r* —4. We show that
the family 7* = {X € £}, : n € X} contradicts fact (iii). Indeed, recalling
2
(27), this will follow from the next inequality (we classify the members X of
4t and T* with respect to i = | X N[0+ 2,¢ + 2r*]]).

2
Claim: If k£ < (3 — €)n and n is sufficiently large then we have for all £,
with 0 <t4+2r" =4, 2 [0+t 0<i<t+2" —(—1

k-t i1 k—tEt
ZZ <n—t—2r*—1>>€—t+2 - <n—t—2r*>
This inequality is easily seen to be equivalent to
k=g oy op
n—t—2r Yim® (7)) e+ (28)
n—t=2r—k+ 5t +i (D) t—1
Since ¢ <t + 2r* — 4 it suffices to show that the LHS of (28) is greater than
t+2r*—3
t—1
For every r let
r Kr—1 + Ky
kyp = ———— and m, = ———.
t+2r—1 2
Note that r = (t—1) "2— and that x, is strictly increasing and lim, o k, =

%. We consider the finite set
1
R::{TEN:/@gi—e}.
Since for k < %, ¢ € N constant
|kn]|+c
1 n 11—k
lim —— Z <> =
n—00 (LnnJJrc) 0 i 1-—2k

(cf. [5]), we have for sufficiently large n and all r, ¢, i withr € R, ¢ < t+2r—4,
2 l+t,0<i<t+2r—(—1

et
n—t—2r ST I S S L et
i+t | . —t—2 — o — '
n—t—2r—|mmn|+ 5+ (Lm:’nj_é_i) 1 — 2K, t—1
(29)
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Analogously, we have for sufficiently large n and all r € R
ZyLzaﬂnJ—t—r (n—t—jQr—Q) = Ky iy
(i) 1= 2K, t—1

Mmypyin|—t—r

(30)
Now let n such that (29) and (30) are satisfied and let r be determined
by
|myn| <k < |mpqn].
By (23), Lemma 21 and (30) we have
|S<k(n,t,7)| > |S<i(n,t,r +1)],

hence, by Lemma 22, 7* < r. Lemma 21 and (29) now imply that (28) is
satisfied. O
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