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Abstract. We call A ⊂ En cone independent of B ⊂ En , the euclidean n-space, if no a = (a1, . . . , an) ∈ A equals
a linear combination of B \ {a} with non-negative coefficients. If A is cone independent of A we call A a cone inde-
pendent set. We begin the analysis of this concept for the sets P(n) = {A ⊂ {0, 1}n ⊂ En : A is cone independent}
and their maximal cardinalities c(n) � max{|A| : A ∈ P(n)}.

We show that limn→∞ c(n)
2n > 1

2 , but can’t decide whether the limit equals 1.
Furthermore, for integers 1 < k < � ≤ n we prove first results about cn(k, �) � max{|A| : A ∈ Pn(k, �)}, where

Pn(k, �) = {A : A ⊂ V n
k and V n

�
is cone independent of A} and V n

k equals the set of binary sequences of length n
and Hamming weight k. Finding cn(k, �) is in general a very hard problem with relations to finding Turan numbers.
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1. Introduction

We begin with our notation. Z is the set of integers, N denotes the set of positive integers,
R is the set of real numbers, and En is the Euclidean space of dimension n. For i, j ∈ N,
i < j , the set {i, i +1, . . . , j} is abbreviated as [i, j], and [n] stands for [1, n]. For k, n ∈ N,
we set

2[n] = {E : E ⊂ [n]},
(

[n]

k

)
= {

E ∈ 2[n] : |E | = k
}
.

There is a natural bijection T between 2[n] and {0, 1}n—the set of binary sequences of
length n: for any E ∈ 2[n] T (E) = (v1, . . . , vn) = v ∈ {0, 1}n , where vi = {1 if i ∈ E

0 if i /∈ E.

More generally, for E ⊂ 2[n] (resp. H ⊂ {0, 1}n) define

T (E) = {T (E) : E ∈ E}(resp. T −1(H)).

In particular T (2[n]) = {0, 1}n and T (
[n]
k ) = V n

k —the set of binary sequences of length n
and Hamming weight k.

Now new concepts and questions follow.
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New Definitions

Definition 1. A ⊂ En is cone independent of B ⊂ En if no a = (a1, . . . , an) ∈ A equals a
linear combination of B \ {a} with non-negative coefficients.

Definition 2. If A is cone independent of A we call A a cone independent set.

Definition 3. We study the case A, B ⊂ {0, 1}n ⊂ En and in particular consider P(n) =
{A ⊂ {0, 1}n : A is cone independent}.

Problems

PROBLEM 1. Find

c(n) � max{|A| : A ∈ P(n)}

PROBLEM 2. For integers 1 < k < � ≤ n find

cn(k, �) � max{|A| : A ∈ Pn(k, �)},
where Pn(k, �) = {A : A ⊂ V n

k and V n
� is cone independent of A}

Remark. Finding cn(k, �) is in general a very hard problem.
We have

cn(k, k +1) = τn(k, k +1)

where τn(k, �) � Turan number � max{|A| : A ⊂ (
[n]
k ), no B ∈ (

[n]
�

) contains more than

( �
k )−1 members of A}.

We begin with a bound and a conjecture for Problem 1 in Section 2.
Section 3 contains classical results for graphs and hypergraphs, which are used in the

analysis of Problem 2.
The results on this problem are stated as Theorems 1, 2 in Section 4, where also further

conjectures about cn(k, �) are stated.
The rest of the paper is devoted to proofs of the theorems, auxiliary results needed are

with their proofs in Section 5, Theorem 2 is proved in Section 6, and finally Theorem 2 is
proved in Section 7.

2. A Bound for Problem 1

Consider the set

C = {vn = (v1, . . . , vn) ∈ {0, 1}n : v1 = 1}.
Clearly |C | = 2n−1 and it is easy to see that C ∈ P(n).
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One more naive construction is

D = {10, 01}×{0, 1}n−2 = {vn = (v1, . . . , vn) ∈ {0, 1}n : (v1, v2) ∈ {(0, 1), (1, 0)}}.
Again we have |D| = 2n−1 and D ∈ P(n).

PROPOSITION

(i) c(n +1) ≥ 2c(n)

(ii) If an A ∈ P(n) and 1n = (1, . . . , 1) ∈ A, then |A| ≤ 2n−1.

Proof. (i) For an A ∈ P(n) consider A′ = A ×{0, 1} = {vn+1 = (v1, . . . , vn, vn+1) ∈
{0, 1}n+1 : (v1, . . . , vn) ∈ A}.
We have |A′| = 2|A| and verify that A′ ∈ P(n +1).

(ii) follows from the observation that from every complemented pair (vn, 1n −vn) at most
one can be in A.

Can we beat the naive bound 2n−1? The following construction shows that this is the case
for n ≥ 5.

CONSTRUCTION. Let C ∈ P(n) and 1n /∈ C. Take an m ∈ N with m > |C |.
Consider

C ′ = {C ×{{0, 1}m \ {0}m}}∪ {1n ×{e1, . . . , em}},
where e1, . . . , em are unit vectors in the ground set [n +1, n +m].
It can be easily proved that C ′ ∈ P(n +m). We have

|C ′| = |C | · (2m −1)+m = |C | ·2m +m −|C | > |C | ·2m .

Now choose n = 2, C = {(1, 0), (0, 1)}, m = 3, (3 > 2 = |C |). Since C ∈ P(2) and (1, 1) =
12 /∈ C we can apply the construction to get

C ′ = {(10100), (10010), (10001), (10110), (10101), (10011), (10111), (01100), (01010),

(01001), (01110), (01101), (01011), (01111), (11100), (11010), (11001)}
with C ′ ∈ P(5), |C ′| = 17.

It is convenient to introduce the parameter β(n) = c(n)

2n .

LEMMA 1.

(i) β = lim
n→∞ β(n) exists.

(ii) β is never assumed, i.e., β > β(n) for all n ∈ N.

Proof. (i) directly follows from (i) in the proposition.
(ii) We know that β(n) ≥ 17

32 , n ≥ 5 and hence by the proposition ((ii)) an optimal A ∈
P(n) does not contain the vector 1n . Consequently we can apply the construction to get
β(n +m) > β(n) (for a suitable m).

How far can we go with the construction? A simple calculation shows that we can have
only β > 0, 55. We conjecture that β < 1.
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3. Some Classical Results

THEOREM (Mantel [6]). Let G = (V, E) be a graph on n vertices not containing triangles.
Then

|E | ≤ Mn �
⌊n

2

⌋ ⌈n

2

⌉
. (1)

THEOREM (Erdős–Gallai [3]). Let G = (V, E) be a graph on n vertices not containing s
pairwise disjoint edges. Then for s ≥ 2, n ≥ 2s

|E | ≤ gn(2, s) � max

((
2s −1

s

)
,

(
s −1

2

)
+ (s −1)(n − s +1)

)
. (2)

Moreover, equality holds here iff—up to permutation—

E =
(

[2s −1]

2

)
or

{
A ∈

(
[n]

2

)
: |A ∩ [1, s −1]| �= 0

}
.

CONJECTURE (Erdős [2]). Let F ⊂ (
[n]
k ) not contain pairwise disjoint sets. Then for n ≥ ks

|F | ≤ gn(k, s) � max

((
ks −1

k

)
,

(
n
k

)
−

(
n − s +1

k

))
. (3)

1965 Erdős proved (3) for n > n0(k, s).
1976 Bollobas, Daykin, Erdős proved (3) for n > 2k3s.
1987 Frankl, Füredi proved (3) for n > 100ks3.

THEOREM (Frankl [5]).

gn(k, s) ≤ (s −1)

(
n −1
k −1

)
.

In particular for n = ks

gks(k, s) =
(

ks −1
k

)
.

It is convenient to write gn(s) instead of gn(2, s).

4. Results and Conjectures for Problem 2

We succeeded in settling two special cases.

The case � = n. Clearly cn(k, n) ≥ (
n−1

k ), because 1n = (1, 1, . . . , 1} is cone independent
of V n−1

k ×{0} and |V n−1
k | = (

n−1
k ).
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In case k | n any A ⊂ V n
k cone independent of 1n does not contain n

k pairwise disjoint
elements and hence by Theorem F we get

cn(k, n) =
(

n −1
k

)
.

Thus we have proved part (a) of the following theorem. The main work consists in proving
part (b) in Sections 5, 6.

THEOREM 1.

cn(k, n) =
(

n −1
k

)
, if

{
(a) k | n
(b) k � n and n > n0(k).

The case k = 2. Recall the numbers gn(s) (Theorem EG) and Mn (Theorem M).

THEOREM 2.

cn(2, �) =




gn

(
�

2

)
, if 2 | �

max

{
Mn, gn

(
�+1

2

)}
, if 2 � �.

(4)

Conjectures

For 1 ≤ s ≤ k define ns = � n·s
k 
−1 and the set

Hs =
{

v = (v1, . . . , vn) ∈ V n
k :

ns∑
i=1

vi ≥ s

}
, |Hs | =

k−s∑
i=0

(
ns

s + i

)(
n −ns

k − s − i

)
.

It can be easily verified that Hs ∈ Pn(k, n) for all 1 ≤ s ≤ k.

CONJECTURE 1.

cn(k, n) = max
s

|Hs |.

Theorem 1 proves this conjecture for n > n(k). For big n max
s

|Hs | = |Hk | = (
n−1

k ).

Clearly, cone dependence is a stronger concept than linear dependence. The difference
seems to be smaller for very different parameters k, �, n.

CONJECTURE 2. For k � � � n cn(k, �) behaves like in the case where positive indepen-
dence is replaced by linear independence.
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5. Auxiliary Results: Left–Compression

The following method was introduced in [4] (see [5] for a nice survey). For integers 1 ≤
i < j ≤ n and a family F ⊂ 2[n] define the (i, j)-shift Si j as follows:

Si j (F) =
{

(F \ { j})∪{i} = F1 if i /∈ F, j ∈ F, F1 /∈ F
F otherwise

Si j (F) = {Si j (F) : F ∈ F}.
Now, for F ⊂ 2[n] T (F) = A ⊂ {0, 1}n , and the (i, j)-shift is defined in a natural way:

Si j (A) = T (Si j (T −1(A))).

For a v ∈ {0, 1}n , i, j ∈ N, we also define Ei j (v), which is a vector obtained from v by
exchanging the i th and j th coordinates, and for B ⊂ {0, 1}n define

Ei j (B) = {Ei j (v) : v ∈ B}.

LEMMA 2.

(i) |Si j (A)| = |A|
(ii) if A ⊂ V n

k , then Si j (A) ⊂ V n
k as well.

(iii) if A ∈ Pn(k, n), then Si j (A) ∈ Pn(k, n) as well.

Proof. (i) and (ii) are trivial. To prove (iii), assume to the opposite, for some A ∈ Pn(k, n)

and 1 ≤ i < j ≤ n, Si j (A) /∈ Pn(k, n) holds, that is, there is a subset V ⊂ Si j (A) and positive
numbers {λv : v ∈ V } such that

(1, . . . , 1) = 1n =
∑
v∈V

λv ·v. (5)

Let

V = V00 ∪̇ V10 ∪̇ V01 ∪̇ V11,

where Vεδ is the set of vectors of V having ε in the position i and δ in the position j .
By the definition of the (i, j)-shift we have

(V \ A) = V ′
10 ⊂ V10 (6)

and that for every

v ∈ V01, v ∈ A and Ei j (v) ∈ A. (7)

Denote Ei j (V01) by W . We look at the equality (5) for the i th and j th components. We have∑
v∈V10∪V11

λv = 1 and
∑

v∈V01∪V11

λv = 1. (8)
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It follows from (8) that∑
v∈V10

λv =
∑
v∈V01

λv (9)

and by (6) and the positivity of λv’s we get∑
v∈V ′

10

λv ≤
∑
v∈V01

λv. (10)

Let U ⊂ A be the image of V ′
10, that is Si j (U ) = V ′

10. Clearly, also U = Ei j (V ′
10).

Consider the set

V ∗ = U ∪ (V \ V ′
10)∪ W.

We have V ∗ ⊂ A. By (10) we can split the coefficients λv, v ∈ V01, in such a way, that

λv = λ′
v +λ′′

v, λ
′
v, λ

′′
v ≥ 0 for every v ∈ V01

and ∑
v∈V01

λv =
∑
v∈V01

(λ′
v +λ′′

v) =
∑
v∈W

λ′
v +

∑
v∈V01

λ′′
v =

∑
v∈V ′

10

λv +
∑
v∈V01

λ′′
v. (11)

Finally from (5)–(11) we have

1n =
∑
v∈V

λv ·v =
∑

v∈V \(V ′
10∪V01)

λv ·v +
∑
v∈V ′

10

λv ·v +
∑
v∈V01

λv ·v

=
∑

v∈V \(V ′
10∪V01)

λv ·v +
∑

u=Ei j (v)

v∈V ′
10

λv ·u +
∑

w=Ei j (v)

v∈V01

λ′
v ·w +

∑
v∈V01

λ′′
vv

i.e., 1n is positively dependent on V ∗ ⊂ A, a contradiction to A ∈ Pn(k, n).

Definition 4. A B ⊂ 2[n] (resp. B ⊂ {0, 1}n) is said to be stable or left-compressed if
Si j (B) = B for all 1 ≤ i < j ≤ n (resp. Si j (B) = B). Denote by L Pn(k, n) the set of all
stable systems of Pn(k, n).

By Lemma 2 (after finitely many shifts) we get

cn(k, n) = max
A∈Pn(k,n)

|A| = max
A∈L Pn(k,n)

|A|. (12)

Definition 5. A vector v = (v1, . . . , vn) ∈ En , vi ≥ 0 is called “good” if there exists an
s ∈ N, 1 ≤ s ≤ n −1, such that∑s

i=1 vi

s
>

∑n
i=s+1 vi

n − s
.

Otherwise, it is called “bad.”
We observe that a positive, linear combination of any “bad” vectors is again “bad,” but

the similar statement with respect to “good” vectors, in general, is false.
We also observe that for any α > 0 α ·v is “good” (resp. “bad”) whenever v is “good”

(resp. “bad”). We note that clearly 1n is a “bad” vector.
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LEMMA 3. Let A ⊂ V n
k be left-compressed. Then A ∈ Pn(k, n) (and hence A ∈ L Pn(k, n))

if and only if any non-negative, nonzero combination of A produces a “good” vector. In
particular, if A ∈ L Pn(k, n), then necessarily all vectors of A are “good.”

Proof. Since the vector 1n is a “bad” vector, the “if” part of the lemma is trivially true.
To prove the part “only if” we assume to the opposite, that A ∈ L Pn(k, n) but there exists

a nonempty subset A′ ⊂ A and positive coefficients λv > 0 : v ∈ A′ such that
∑

v∈A′ λv ·v
is a “bad” vector.

Clearly, we can assume that all coefficients λv are rational numbers, and consequently
(multiplying all coefficients by a suitable integer) we can assume

λv ∈ N; v ∈ A′,
∑
v∈A′

λv ·v = v∗ = (a1, . . . , an),

n∑
i=1

ai = m ·n for some m ∈ N and v∗ is a “bad” vector. (13)

In other words, v∗ is a sum of vectors of A′ (possibly taken with multiplicity).
By the definition of “bad” vectors for v∗ we have

a1 ≤ a2 +· · ·+an

n −1
,

a1 +a2

2
≤ a3 +· · ·+an

n −2
· · · a1 +· · ·+an−1

n −1
≤ an.

The last inequality together with (13) implies an ≥ m. If an > m, then we build a new “bad”
vector as follows:

Let i , 1 ≤ i ≤ n −1 be the largest index for which ai < m (such an index always exists
by (13)). Consider the vector u = (a1, . . . , ai−1, ai +1, ai+1, . . . , an−1, an −1). It is easy
to verify that u is a “bad” vector. Moreover, since an > m, ai < m, then in A′ there exists a
vector (call it w), which has 1 in the nth component and 0 in the i th component. Since A is
a left-compressed set, then Ei j (w) ∈ A as well, and consequently the vector u also can be
positively produced from A.

The sum of coordinates of u is still m ·n. Continuing, we get a “bad” vector where the
last component equals m.

Now we follow the same procedure with respect to the (n −1)th component and so on.
Finally, we produce the vector (m, m, . . . , m), equivalently, the vector (1, 1, . . . , 1) = 1n ,
a contradiction.

Remark. In the proof we did not use the weight of vectors in A. With it Lemma 3 can be
formulated in a more general form.

6. Proof of Theorem 1

Let A ∈ Pn(k, n) and |A| = cn(k, n). By (12) we can assume that A ∈ L Pn(k, n). We par-
tition A by the last component: A = A0 ∪ A1, where

A0 = {A = (a1, . . . , an) ∈ A : an = 0}, A1 = A \ A0.
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We want to prove, and this is equivalent to the statement (b) in Theorem 1, that A1 = Ø if
n is big enough. Assume to the opposite, that A1 �= Ø for infinitely many n, k � n. Write

n = mk + r , where 1 ≤ r < k.

Since A is a left-compressed set and by assumption A1 �= Ø, then clearlyv∗ = (v1, . . . , vn) ∈
A1, where

v1 = · · · = vk−1 = 1, vk = · · · = vn−1 = 0, vn = 1. (14)

CLAIM. Assume A1 �= Ø, then

|A0| ≤
(

mk + r −1
k

)
−

(
mk − k −1

k −1

)
. (15)

Proof of the claim. Let B ⊂ A0 be the set of all vectors having all k ones in the interval
[k + r, mk + r −1] (of length k(m −1)). If |B| ≤ (

k(m−1)

k )− (
k(m−1)−1

k−1 ) then (15) trivially
holds. Otherwise, since k divides the length of the interval, by the part (b) of the Theorem,
the vector u = (u1, . . . , umk+r ), where

u1 = u2 = · · · = uk+r−1 = 0, uk+r = · · · = umk+r−1 = 1, umk+r = 0

can be positively built using vectors of B.
The vector u is a “bad” vector in the ground set [k, mk + r −1], and A is left-compressed.

Hence by Lemma 3, we can positively build, from vectors of A, also the vector u∗ =
(u∗

1, . . . , u∗
mk+r ), where

u∗
1 = · · · = u∗

k−1 = 0, u∗
k = · · · = u∗

mk+r−1 = 1, u∗
mk+r = 0.

Now

v∗ +u∗ = (1, 1, . . . , 1) = 1n,

where v∗ ∈ A1 is the vector in (14), a contradiction.
By Lemma 3 all vectors of A1 must be “good.” We estimate from below (very roughly)

the number of “bad” vectors: consider the partition of the ground set

[1, mk + r ] = [1, m + r −1]∪ [m + r, 2m + r −1]∪ . . .

[(k −1)m + r, km + r −1]∪{mk + r}
and the set W ⊂ V mk+r

k consisting of the vectors having all 0-s in the first part and single 1-s
in every remaining part. It is easy to verify that all vectors of W are “bad” and |W | = mk−1.
Hence

|A1| ≤
(

mk + r −1
k −1

)
−mk−1. (16)

The combination of (15) and (16) gives

|A| = |A0|+ |A1| ≤
(

mk + r −1
k

)
−

(
mk − k −1

k −1

)
+

(
mk + r −1

k −1

)
−mk−1.
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It is easily seen that RH S < (
mk+r−1

k ) if m > m0(k) (hence n > n0(k)), because by the

binomial formula (
mk−k−1

k−1 ) = (mk)k−1

(k−1)! + 0(mk)k−2, (
mk+r−1

k−1 ) = (mk)k−1

(k−1)! , + 0(mk)k−2 and

therefore their difference is smaller than 0(mk−1). Therefore |A| < (
n−1

k ) if n > n0(k),
a contradiction. Hence A1 = Ø for m > n0(k), |A| = cn(k, m) = (

n−1
k ) and the optimal set

is unique up to permutation.

Remarks.

1. It is easy to calculate cn(2, n) (k = 2). Moreover, this is a special case of Theorem 2.
We have

cn(2, n) =
(

n −1
2

)
for all 2 | n, cn(2, 3) = 2, cn(2, 5) = 7

and the optimal set is

1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1.

Let n = 2�+1. Look at the sets A0, A1 in the proof of Theorem 1. It is easily seen
that there are � “bad” vectors and consequently |A1| ≤ �. Since |A0| ≤ (

2�

2 )− (
2�−3

1 )

(by claim), then

|A| = |A0|+ |A1| ≤
(

2�

2

)
+�− (2�−3) =

(
2�

2

)
−�+3.

Hence A ≤ (
2�

2 ) = cn(2, n) for � ≥ 3.
Note, that in the case n = 7 (� = 3) we have the second optimal set: Take

A = {v = (v1, . . . , v7) ∈ V 7
2 : v1 +v2 +v3 ≥ 1}.

It is easy to verify that A ∈ P7(2, 7). We have |A| = (
3
2 )+ (

3
1 ) · ( 4

1 ) = 15 = (
6
2 ).

2. The estimation (16) used in the proof of Theorem 1 is very rough, and of course can be
greatly improved.1

7. Proof of Theorem 2

At first we show, that the bound in (4) can be achieved. For this we just take the 0, 1 images
of optimal graphs in Theorem M (only for odd values of �) and in Theorem EG. It can be
easily shown that these sets belong to Pn(2, �).

Now, the case 2 | � is trivial, since having �
2 pairwise disjoint 2-sets, we just sum the

corresponding vectors and get a vector of weight �, a contradiction.
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Let � = 2�1 +1, A ∈ Pn(2, �) be with |A| = cn(2, �).
If T −1(A) ⊂ (

[n]
2 ) does not contain �+1

2 = �1 +1 pairwise disjoint edges (2-sets), then

|T −1(A)| = |A| ≤ gn

(
�+1

2

)

proving the Theorem in this case.

CLAIM. Assume T −1(A) contains �1 +2 pairwise disjoint edges. Then T −1(A) does not
contain triangles, and hence |T −1(A)| = |A| ≤ Mn.

Proof of the claim. Assume to the opposite, that the graph with E = T −1(A) contains a tri-
angle, say {{1, 2}, {1, 3}, {2, 3}}, and we denote by vn

1 , vn
2 , vn

3 the corresponding vectors in A.
By assumption T −1(A) contains �1 +2 pairwise disjoint edges and at most 3 of them can

intersect (have a common vertex) with the triangle. Hence in the ground set [4, n] one can
find (�1 −1) from these edges, say {4, 5}, {6, 7}, . . . , {2�1, 2�1 +1}, and let vn

4 , . . . , vn
�1+2

be the corresponding vectors in A.
Now we just observe, that

1

2
vn

1 + 1

2
vn

2 + 1

2
vn

3 +vn
4 +· · ·+vn

�1+2 = (11 . . . 10 . . . 0) ∈ V n
� ,

a contradiction.
So, it remains to treat the case, when T −1(A) contains exactly �1 +1 pairwise disjoint

edges, say

{1, 2}, {3, 4}, . . . , {2�1 +1, 2�1 +2}.] (17)

We observe that

(i) in T −1(A) there are no edges {i, j} with 2�1 +2 < i < j ≤ n, otherwise we would have
�1 +2 pairwise disjoint edges.

(ii) There are no triangles involving edges from (17), otherwise if, say {1, 2}, {1, 3}, {2, 3} ∈
T −1(A), then as in the claim, the positive combination of images of these and (�1 −1)

disjoint edges {5, 6}, . . . , {2�1 +1, 2�1 +2} produces a vector from V n
� , a contradiction.

The case {1, 2}, {1, i}, {2, i} for i ∈ [2�1 +3, n] is excluded by the same reason.
We note, that actually we can have triangles in this case, say {1, 3}, {1, 5}, {3, 5}.
Now we estimate |A| = |T −1(A)| from above.
By the observation we have
• at most 2 edges between any two edges of (17), and consequently at most 2(

�1+1
2 )

edges in [1, 2�2 +2] except the (�1 +1) edges of (17).
• at most (�1 +1)(n −2�2 −1) edges {i, j}, with 1 ≤ i ≤ 2�1 +2, 2�1 +2 < j ≤ n.
Hence

|T −1(A)| = |A| ≤ (�1 +1)+2

(
�1 +1

2

)
+ (�1 +1)(n −2�1 −2)

= (�1 +1)(n −�1 −1) ≤
⌊n

2

⌋
·
⌈n

2

⌉
= Mn.
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Note

1. A referee suggested the following improvements: A weight k vector ending in 1 has in its orbit under the
permutations on [n −1] at least one bad vector. Therefore (16) can be improved to |A1| ≤ (1− 1

(k−1)! )(
km+r−1

k−1 ).
Actually it can even be shown that in each orbit under rotations there is at least one bad vector. Therefore the
term 1

(k−1)! can also be replaced by 1
k−1 .
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