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6.1 Introduction

We survey results in the recently (in the late 90’s) emerged area described in the title. The
focus is on the compression rates, i.e. the average length of codewords.

In Shannon’s Foundation of Information Theory ([27]) perhaps the most basic contributions
are Source Coding Theorems (lossy and lossless) and the Channel Coding Theorem. In
the most natural and simple source model DMS the source outputs a sequence X1, X2, . . .

of independent, identically distributed random variables taking finitely many values. The
Lossy Source Coding Theorem says that this sequence can be compresed by block coding with
arbitrarily small error probability at a rate H(P ), the entropy of the common distribution P

of the Xi’s. (Later Shannon gave an extension replacing the probability of error criterion by
general fidelity criteria and an ingenious formula for the rate–distortion function replacing
H(P ).)

The Lossless Source Coding Theorem states that for variable–length codes the optimal data
compression rate for an arbitrary source with distribution P is between H(P ) and H(P )+1.

Whereas the beginning of Quantum Information Theory can be traced back for instance to
Holevo’s paper [15] from 1973 it started flourishing only in the midnineties. With Schu-
macher’s Quantum Lossy Source Coding Theorem [24] one of Shannon’s basic results could
be carried over to the quantum world: a memoryless quantum source generating a sequence
|x1, x2, . . . , xn〉 of pure states with probability P n(xn), where xn = (x1, . . . , xn) is a sequence
of indices of the states from a finite index set X , can be compressed at rate S(P ), the von
Neumann entropy of the state

∑

x∈X

P (x)|x >< x| with arbitrary high fidelity.

Subsequent work on quantum lossy data compression can be found in [4], [5], [12], [13],
[14], [18], [19], [22], and [28]. ([25] gives significant progess on channel coding; “single–
letterisations” of the capacity formula are still not known.)

However, the extension of the Lossless Source Coding Theorem meets an obvious barrier:
a measurement of the length of codewords will disturb the message. Thus quantum data
cannot be compressed losslessly if only the quantum resource is available. This was pointed
out by many authors, e.g. in [8], [9], [26].

Nevertheless some applications of quantum variable–length codes have been found. We
report on these as follows:
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In Section 6.2 we present basic concepts and results on quantum variable–length codes,
mainly from [8] and [26].

In Section 6.3 it is explained how in [9] and [26] long quantum codes are build from quantum
variable–length codes.

In Section 6.4 the model of Boström/Felbinger [8] (based on Bolström’s [6], [7]) for a quantum
source with a classical helper, a classical channel informing the decoder about the lengths of
codewords, is described.

In Sections 6.5 and 6.6 from [3] our recent results for this model and also our more general
model are given.

In Section 6.7 for the first time in this survey we discuss a model and a result for mixed
states, which are due to Koashi/Imoto [21].

In Section 6.8, finally we include a recent model for lossy quantum data compression, because
it is related to the helper aspects.

6.2 Codes, Lengths, Kraft Inequality and von Neumann Entropy

Bound

It is obvious that there is no way to compress losslessly classical nor quantum data by using
block codes. So we always mean that a variable–length or in other words an indeterminate–
length code (refered to in [26]) is employed, when we speak of lossless data compression.

6.2.1 The Codes

Quantum variable–length codes are defined by different authors, e.g. [8], [9] and [26]. The
following is the definition by Boström and Felbinger in [8].

Let H be a Hilbert space of finite dimension d with an orthonormal basis

B(H) = {|i >: i = 0, 1, 2, . . . , d − 1}. (6.1)

Denote by H⊗n the nth tensor power of the Hilbert space H. For ℓ = 1, 2, . . . , ℓmax let H⊗ℓ

be a set of pairwise orthogonal (sub)spaces (in a sufficiently large Hilbert space). Then we
can define the direct sum

H⊕ℓmax = H⊕H⊗2 ⊕ · · · ⊕ H⊗ℓmax, (6.2)

a Hilbert space of dimension
ℓmax
∑

ℓ=1

dℓ. Now suppose we are given an information source space

S, a Hilbert space of finite dimension d′, say. Then it was defined in [8] that a variable–length
encoder E of maximal length ℓmax is a linear isometric operator E from S to a subspace C ⊂
H⊕ℓmax of dimension d′ i.e., for all |s〉, |s′〉 ∈ S 〈E(s)|E(s′)〉 = 〈s|s′〉, where |E(s′′)〉 = E(|s′′〉).
C is called codeword space and (normalized) vectors (i.e., states) in it are called codewords.

To realize coding schemes, Schumacher and Westmoreland introduce zero–extended forms
(zef) in [26]. For a codeword γℓ ∈ H⊗ℓ, its zef |γℓ0ℓmax−ℓ〉 is obtained by appending (ℓmax−ℓ)’s
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|0〉 to it. zef of a superposition of codewords |γℓi >∈ H⊗ℓi i = 1, 2, . . . , k (which in itself is a
codeword) is the superposition of zefs of |γℓi〉’s. Similarly, to realize a coding scheme, |0〉’s
are padded at the end in [9] and in front of codewords in [8].

6.2.2 Length Observable and Average Length of Codewords

In classical information theory the lengths of codewords in a variable–length code are de-
terminate e.g., in the code {0, 10, 11} the codewords 0, 10, 11 have length 1, 2, 2 respectively
whereas the length of codewords in a quantum variable–length code are indeterminate be-

cause of superposition. Namely, for a vector (a1, a2, . . . , aℓmax
) ∈ Cℓmax, with

ℓmax
∑

ℓ=1

a2
ℓ = 1 and

|γℓ〉 ∈ C ∩ H⊗ℓ,
ℓmax
∑

ℓ=1

aℓ|γ
ℓ〉 is a codeword (cf. (6.2)) because the encoder mapping is linear.

So Schumacher and Westmoreland prefer to refer to the codes as “indeterminate codes” in
[26]. One way to measure the lengths of codewords in this case is as follows ([26] and [8]).
Let H⊕ℓmax be the Hilbert space in (6.2) and let Pℓ be the projection of H⊕ℓmax onto H⊗ℓ

for ℓ = 1, 2, . . . , ℓmax. Then the observable L = {Pℓ}, where Pℓ corresponds to the outcome
ℓ, is called length observable. Thus with the probability tr(|w〉〈w|Pℓ) = 〈w|Pℓ|w〉 = a2

ℓ the

outcoming length of a codeword |w〉 =
ℓmax
∑

ℓ=1

aℓ|γ
ℓ〉, |γℓ〉 ∈ H⊗ℓ, is ℓ when one measures the

codeword by L. Let

∧ =

ℓmax
∑

ℓ=1

ℓPℓ. (6.3)

The expected outcoming length, also called the average length, of a codeword |w〉 is

L(|w〉) = tr(|w〉〈w|∧) = 〈w| ∧ |w〉. (6.4)

6.2.3 Kraft Inequality and von Neumann Entropy Bound

The quantum prefix codes i.e., a codes such that no codeword is a prefix of other codewords,
are well studied by Schumacher and Westmoreland in [26]. In particular in similar ways as
in Classical Information Theory they proved:

Quantum Kraft Inequality: For all quantum prefix codes C and D = dim(H)

ℓmax
∑

ℓ=1

dim(C ∩ H⊗ℓ)D−ℓ ≤ 1. (6.5)

Like in the classical case, it was shown in [26] that the quantum Kraft inequality holds for
all uniquely decodable codes (cf. Section 6.3). For non–uniquely decodable codes, Boström
and Felbinger in [8] extend them to prefix codes and then obtain a Kraft–type inequality
with an additional term, which depends on the extension of the codes and therefore on the
structure of the codes.

von Neumann Entropy Bound [26]: Consider a quantum source which outputs a state
|s〉 with probability P (s), and σ =

∑

s

P (s)|s〉〈s|. Then for all uniquely decodable quantum
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codes, in particular for all quantum prefix codes in (6.4) the expected average length of
codewords with respect to the probability P is lowerbounded by the von Neumann entropy
S(σ) of the state σ.

6.2.4 Base Length

An important parameter, the base length L(|w〉) of a codeword |w〉 in a quantum variable–
length code was introduced in [8]:

L(|w〉) = max{ℓ : 〈w|Pℓ|w〉 > 0}. (6.6)

That is, L(|w〉) is the largest ℓ such that aℓ 6= 0 if |w〉 is a superposition |w〉 =
∑

ℓ

aℓ|γ
ℓ〉,

|γℓ〉 ∈ C ∩ H⊗ℓ. It is clear that for all codewords |w〉

L(|w〉) ≤ L(|w〉). (6.7)

To store a codeword of base length ℓ, one needs a quantum register of length at least ℓ. So
it is necessary for the decoder to know the base length of codewords.

6.3 Construct Long Codes from Variable–length Codes

When they observed that it is impossible to losslessly compress quantum data if only quan-
tum resources are available (cf. next section), Braustein and Fuchs in [9] suggested to apply
quantum variable–length codes to construct a long block code in the following way. First
connect N codewords of a quantum variable–length code and then truncate the obtained
codeword and keep the first N(L̃+ δ) components, where L̃ is the expectation of the average
lengths with respect to the source distribution. Then a block code of length N(L̃ + δ) with
high fidelity is obtained.

Algorithms for the purposes of storage and communication are also presented in [9]. It is
shown that, in both cases, the computational complexity using quantum variable–length
codes to construct long block codes is remarkably lower than the best known algorithms.

Constructing block codes from quantum variable–length codes is systematically analysed in
[26]. A transformation, called condensation, is introduced. A code is said to be condensable
if for all N there exists a unitary operator U (depending on N) such that for all γℓi ∈ H⊗ℓi ,
i = 1, 2, . . . , N

U |γℓ10ℓmax−ℓ1〉|γℓ20ℓmax−ℓ2〉 . . . |γℓN 0ℓmax−ℓN 〉 = |Ψ
PN

i=1
ℓi0Nℓmax−

PN
i=1

ℓi〉 (6.8)

for a |Ψ
PN

i=1
ℓi〉 ∈ H⊗

PN
i=1

ℓi , and the process is called condensation. The code is called
simply condensable and the condensation is said to be simple if for all γℓi i = 1, 2, . . . , N ,
|Ψ

PN
i=1

ℓi〉 in (6.8) is |γℓ1γℓ2 . . . γℓN 〉. Then a prefix code is simply condensable. Obviously
simply condensable codes are analogous to uniquely decodable codes in Classical Information
Theory. So we also address simply condensable codes as uniquely decodable codes. Since
unitary transformations are isoperimetric, a condensable code essentially is treated as a
uniquely decodable code. In [26] quantum Kraft inequality and von Neumann entropy bound
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(see Subsection 6.2.3) for condensable codes are established. Based on them it is shown in [26]
that the rate of asymptotically optimal codes of high fidelity constructed by condensation
equals von Neumann entropy for pure state sources generating |s〉 with probability P (s).
More efficient ways to use quantum variable–length codes to build long block codes are also
presented in [26].

6.4 Lossless Quantum Data Compression, if the Decoder is In-
formed about the Base Lengths

In this and the next two sections we consider lossless quantum data compression for pure
state quantum sources. We emphasize again

Observation I: A length measurement performed at a codeword of a quantum variable–
length code will destroy the codewords.

That means, there must be a way to inform the decoder about the base lengths of codewords
in a procedure of lossless quantum data compression since to decode correctly the decoder
must know the base length of the decoded codeword. Moreover it is noticed in [3]

Observation II: In general, there is no way to measure the base length of unknown code-
words without error.

So to inform the decoder about the lengths of codewords the encoder should know the output
of the quantum source i.e., the output should be visible (by the encoder).

Boström and Felbinger in [8] suggest to code the message in the following way.

1) Quantum Source Output Visible by Encoder: Suppose the encoder needs to encode
the output states from the source space S of dimension d. He does this by a linear
isometric operator from S to a subspace C of H⊕ℓmax (c.f. Subsection 6.2.1). The
output is visible, that is the encoder knows the output state of the quantum source
and therefore the base length of the codeword to which the output state is encoded,
say ℓB.

2) Classical Channel: Now the encoder knows ℓB and has to inform the decoder about
it. This is done via the classical channel. Thus the decoder may store and decode the
codewords correctly.

We point out here that the classical channel in their model only is used to inform about
the lengths of codewords. Under this assumption the authors of [8] proposed the following
coding scheme for the discrete quantum source

{

(P (x), |x〉) : x ∈ X
}

, which outputs the
state |x〉, x ∈ X with probability P (x), where X is a finite set,

(a) Choose a basis {|x1〉, |x2〉, . . . , |xd′〉} recursively as follows

(a1) Choose an |x1〉 such that P (x1) = max
x∈X1

P (x) for X1 = X .

(ai) Having chosen |x1〉, . . . , |xi−1〉, one first deletes all |x′〉 in the subspace spanned
by {|x1〉, . . . , |xi−1〉} from {|x〉 : x ∈ X} and obtains a subset {|x′′〉 : x′′ ∈ Xi},
Xi ⊂ X . Then one chooses an |xi〉 in Xi such that P (xi) = max

x′′∈Xi

P (x′′).
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(ad′) The procedure is stopped at a vector |xd′〉 such that Xd′+1 = ∅.

(b) Gram–Schmidt Orthonormalization: Obtain an orthonormal basis {|βi〉 : i = 1, 2, . . . , d′}
from {|xi〉 : i = 1, 2, . . . , d′} by Gram–Schmidt orthonormalization.

(c) Encoding: Suppose dim(H) = d, and let zd(i) be the d–ary representation of number
i and wd′

d (i) be the d–ary sequence of length d obtained by padding d − ⌈logd i⌉’s 0 in
front of zd(i) for i = 1, 2, . . . , d′. Then encode |βi〉 to |wd′

d (i)〉.

(d) Remove the redundancy and inform about the base length: Now assume a state |x〉 =
j

∑

i=1

ci|βi〉 for cj 6= 0 as output. Then by the previous step and the linearity of the

encoder, we know |s〉 is encoded to a codeword
j

∑

i=1

ci|w
d′

d (i)〉, a codeword starting with

r zeros for r = d−⌈logd j⌉, say. Then the encoder, who knows |s〉 and consequently j,
removes the r zeros to obtain a codeword of base length ℓ = ⌈logd j⌉, say, and inform
the decoder about ℓ via a classical channel. Notice that the resulting codeword after
removing the redudancy can be stored in a d–ary quantum register of length ℓ.

(e) Decoding: The decoder pads d − ℓ zeros in front of the received (quantum) codeword
and recovers the state |s〉 by the inverse of the (isometric) encoder in Step (c).

6.5 Code Analysis Based on the Base Length

In our recent work [3] we systematically analyse the code of Boström and Felbinger [8], which
is defined by the coding scheme 1), 2) in the previous section. To realize the coding scheme
we expect that a codeword of base length ℓ can be stored in a quantum register of length ℓ.
So we constrain the code C such that C∩H⊗ℓ can be embedded in H⊗ℓ. Under this constraint
we obtain a sufficient and necessary condition for the existence of codes of Section 6.4. For
such a code C we denote by Cℓ the set of codewords of base lengths at most ℓ and by Nℓ the
number of codewords of base length ℓ. Then Cℓ is a linear subspace and the code exists iff
for ℓ = 1, 2, . . . , ℓmax

C1 ⊂ C2 ⊂ · · · ⊂ Cℓmax
, (6.9)

dim Cℓ ≤ dℓ (6.10)

or equivalently
ℓ

∑

i=1

Nℓ ≤ dℓ. (6.11)

To realize the coding scheme we may obtain its ref by appending |0〉’s to its codewords.
Then we obtain the canonical codes introduced in [3].

Moreover we determine the optimal compression rate for an arbitrary quantum pure state
source.

Let S be a Hilbert space of dimension d′, which will serve as a source space. F is a σ–field
on S and P is a probability distribution over F , which is not necessary discrete. Suppose a
quantum source outputs pure states in F ∈ F with probability P (F ).
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We call a sequence of subspaces L = {Lℓ : ℓ = 1, 2, . . . , ℓmax − 1} for an ℓmax such that
dℓmax−1 < d′ ≤ dℓmax, where d′ = dimS, d–nested if for all ℓ

dim Lℓ = dℓ, (6.12)

L1 ⊂ L2 ⊂ · · · ⊂ Lℓmax−1. (6.13)

Denote by Ld(S) the set of d–nested sequences of subspaces of S. Then we have

Theorem 6.1. (Ahlswede, Cai [3]) The minimum achievable lossless compression rate of
a quantum source, specified by a probability space (S,F , P ), via a quantum variable–length
code with a classical helping channel informing about base lengths i.e., the codes in Section
6.4, is

R0 , ℓmax − sup
L∈Ld(S)

ℓmax−1
∑

ℓ=1

P (Lℓ). (6.14)

6.6 Lossless Quantum Data Compression with a Classical Helper

We have seen in Section 6.4 that in the codes introduced by Boström and Felbinger, the
classical channel only transmits the base lengths of codewords. As the lengths of codewords
actually carry information we naturally ask ourselves “Why do’nt we use the classical channel
to send other information?” The following example in [3] shows that we can do better.

Example: Let dimH = 2, dimS = 4 and S0 and S1 be two orthogonal subspaces of S of
dimension 2. P is a probability distribution over S such that P (S1) = P (S2) = 1

2
. Suppose

the source outputs a state in A ⊂ S with the probability P (A). For a “continuous” source
one may assume P is uniformly distributed on S0 ∪ S1 and for the discrete quantum source
one may assume P is uniformly distributed on a set of states

{|ui〉 : i = 0, 1, 2, . . . , m − 1} ∪ {|vj〉 : j = 0, 1, 2, . . . , m − 1},

where |ui〉 ∈ S0, |vj〉 ∈ S1, and m ≥ 3. But we shall see that the assumption for assigning
the probabilities to the particular states makes no difference. Now ℓmax = 2 and it is easy to
see that the maximum probability of 2–dimensional subspaces of S is 1

2
. So by Theorem 6.1

the best quantum compression rate with classical helping channel informing the base length
is 3

2
. Additionally the encoder has to send one bit to the decoder to inform him about the

base length.

As in the current source the probability is concentrated on S0 ∪ S1 the encoder has a more
clever way to compress the quantum source. He can just simply choose arbitrary two unitrary
operators U0 and U1, one mapping from S0 to H and the other from S1 to H. In the case that
a state |s〉 ∈ Si for i = 0 or 1, is output from the source, the encoder encodes it to Ui|s〉 by
using operator Ui and sends i to the decoder via the classical channel. Then the decoder who
knows i now decodes the quantum codeword by using U−1

i and obtains U−1
i Ui|s〉 = |s〉. For

this code the quantum compression rate is 1 and the encoder sends one bit via the classical
channel. It is a better code.

This simple example motivated us to look for a more efficient way to use the classical helper.
By Observations I and II in Section 6.4 the following assumptions are necessary.
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(1) Visible encoding: The encoder knows the output state of the quantum source.

(2) The classical helper: There is a classical channel connecting the encoder and the de-
coder such that the encoder can send classical information to the decoder.

Under these assumptions we have the following coding scheme.

We let H and S be complex Hilbert spaces of dimensions d and d′ respectively and P be a
probability distribution with support set U ⊂ S.

Suppose a quantum source outputs a state |u〉 ∈ S with probability P (u). Without loss of
generality we assume that S = span{|u〉 : u ∈ U}, because otherwise we may replace S by
span{|u〉 : u ∈ U}.

Coding Scheme:

(I) Partition U properly into {Uj : j = 0, 1, . . . , J − 1} for an integers J . For each j find
the minimum ℓj such that there is an dℓj–dimensional subspace Sj of S, containing
span{|u〉 : u ∈ Uj}. We write Lq(Uj) = ℓj.

(II) For all j ∈ {0, 1, . . . , J −1}, arbitrarily choose a unitrary operator Uj from Sj to H⊗ℓj .

(III) Suppose a |u〉 ∈ S is output by the quantum source and assume that |u〉 ∈ Sj . Then the
encoder encodes |u〉 to a codeword |w(u)〉 , Uj|u〉 ∈ H⊗Lq(Uj) by using the operator Uj .
We say |u〉 is encoded to a quantum codeword |w(u)〉 of length Lq(|w(u)〉) = Lq(Uj).
Then the encoder sends j by classical variable–length code e.g., Huffman code, for a
classical source outputing j ∈ {0, 1, 2, . . . , J − 1} with probability Q(j) = P (Uj), to
the decoder via the classical channel.

(IV) Finally the decoder who has the quantum codeword |w(u)〉 = Uj |u〉 and knows j from
the classical channel, reconstructs the output state |u〉 by applying the operator U−1

j

to |w(u)〉.

It is not hard to see that this coding scheme is most general under the two assumptions,
there is no better code than the best codes constructed by this coding scheme.

The key step is how to choose the partition in (I) and it is actually the most difficult part
in the coding scheme.

We call a code constructed by coding scheme a quantum–classical variable–length code, or
shortly a q − c varibale–length code and its two components, quantum and classical compo-
nents respectively and speak of lossless quantum data compression with classical helper.

We denote by Lc(Uj) the length of the codeword to which the classical message is encoded
by the classical variable–length code in step (III) of the coding scheme when |u〉 ∈ Uj . Then
the classical and quantum components of the compression rate are

Rc =
J−1
∑

j=0

P (Uj)Lc(Uj),

Rq =

J−1
∑

j=0

P (Uj)Lq(Uj)
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respectively. By Shannon’s Lossless Source Coding Theorem ([27]; also in [10], [11]), with
the notation Q ,

{

Q(j) = P (Uj) : j = 0, 1, . . . , J − 1
}

, Rc is bounded by

(log a)−1H(Q) ≤ Rc < (log a)−1H(Q) + 1, (6.15)

where a is the size of the alphabet of the classical code and H is Shannon’s entropy.

To simplify notation, in the sequel we assume the size of the classical alphabet to be a =
d = dimH. Then we have

Theorem 6.2. (Ahlswede, Cai [3]) For any q − c variable–length code,

Rq + Rc ≥ (log d)−1S(ρ) (6.16)

where S(ρ) is the von Neumann entropy of the state,

ρ ,
∑

u∈U

P (u)|u >< u|, (6.17)

and equality holds iff the following conditions hold simultaneously.

(i) For the probability Q in (6.15), i.e. Q(j) = P (Uj),

Rc = (log d)−1H(Q). (6.18)

(ii) For all j 6= j′

Sj ⊥ Sj′ , (6.19)

and

(iii) for all j ∈ {0, 1, . . . , J − 1}

P (Uj)
−1

∑

u∈Uj

P (u)|u〉〈u| = d′−1
j Pj , (6.20)

where d′
j = dimSj and Pj is the projector onto subspace Sj.

When the support set of the source distribution is a set of independent pure states, we have
a sharper bound.

Proposition 6.1 (Ahlswede, Cai [3]). Let |u〉, u ∈ U , be a set of independent pure states,
let P be a probability distribution on U and let a quantum source output |u〉 with probability
P (u), where U is a finite index set. Then for all q − c variable–length codes for the source

Rq + Rc ≥ (log d)−1H(P )

with equality iff for all j Lc(Uj) = −(log d)−1 log P (Uj), Lq(Uj) = −(log d)−1 log |Uj |, and for

all u ∈ Uj P (u) =
P (Uj)

|Uj |
.

We conclude this section with a few Problems, which we pose on lossless quantum data
compression for pure state sources:
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1. In [3] we showed that the gap between von Neumann entropy and the optimal compres-
sion rates in Theorem 6.2 may be arbitrary large. On the other hand by our knowledge
successfully used quantum information measures are all in terms of von Neumann en-
tropy. So we ask “Is there a quantity better to fit lossless quantum data compression
than von Neumann entropy?”

2. For an arbitrary discrete memoryless quantum pure state source determine the optimal
compression rate. For this problem we know that von Neumann entropy and Shannon
entropy are lower and upper bounds and in general neither bound is tight.

3. Study other models of quantum data compression e.g., the quantum version of the
identification problem treated in [2], which was introduced in the context of [1].

6.7 Lossless Quantum Data Compression for Mixed State Sources

We report here the work of Koashi and Imoto [21]. This is their model:

— A quantum source outputs for i = 1, . . . , I mixed states ρi in a Hilbert space H′
A with

probability pi.

— The measurement of lengths of codewords is performed in an auxiliary quantum system
HE so that it will (by assumption) not disturb the message.

More precisely the encoding–decoding operator is specified by a unitary operator U acting
on H′

A ⊗HE such that for i = 1, 2, . . . , I

trE

[

U(ρi ⊗ ΣE)U ′
]

= ρi, (6.21)

where HE is an auxiliary system initially prepared in a pure state ΣE . They assume that
there is an observable L acting on HE , which corresponds to the lengths of codewords such
that the expected length of codewords for ρ =

∑

i

Piρi,

=

L = trE

{

LℓγA

[

U(ρ ⊗ ΣE)U ′
]}

. (6.22)

The coding theorem is based on their previous work [20], where it was shown that for a
set {ρi}i if mixed states a probability distribution {Pi}i and ρ =

∑

i

ρiPi, there is a unique

decomposition of the support set HA of ρ such that

HA = ⊕ℓH
(ℓ)
J ⊗H

(ℓ)
K (6.23)

and for all i

ρi = ⊕ℓq
(i,ℓ)ρ

(i,ℓ)
J ⊗ ρ

(ℓ)
K , (6.24)

where ρ
(i,ℓ)
J and ρ

(ℓ)
K are normalized density operators acting on H

(ℓ)
J and H

(ℓ)
K , respectively,

q(i,ℓ) is the probability for the states to be in the subspace H
(ℓ)
J ⊗ H

(ℓ)
K , ρ

(ℓ)
K is independent

of i and {ρ
(i,ℓ)
J }i cannot be expressed in a simultaneously block–diagonalized form. For a
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quantum source outputing mixed state ρi with probability Pi, we denote P (ℓ) =
∑

i

Piq
(i,ℓ),

Ic = −
∑

ℓ

P (ℓ) logP (ℓ) = H(P ) and PNC =
∑

ℓ

P (ℓ) log dimH
(ℓ)
J .

Let R be the optimal compression rate for this model. Then the coding theorem in [21] says

Ic + DNC ≤ R ≤ Ic + DNC + 2. (6.25)

6.8 A Result on Tradeoff between Quantum and Classical Re-

sources in Lossy Quantum Data Compression

In this last section we report a result on lossy quantum data compression due to Hayden,
Jozsa, and Winter in [14], because it relates to the helper model, best briefly, because it
concerns the lossy case whereas this survey primarily adresses the lossless case.

This is the model:

— A quantum DMS outputs a pure state |u〉, u ∈ U with probability Q(u) and conse-
quently outputs a sequence |un〉 = |u1u2 . . . un〉, un ∈ Un with probability Qn(un) =
n
∏

i=1

Q(ui). In other words an ensembles E =
{

|u〉, P (u)
}

u is given.

— Assume that the encoder can send messages to the decoder via a classical channel at
rate R bits per signa,.

— Then the trade–off function Q∗(R) is defined as the asymptotically optimal compression
rate (qbits per signal) with an arbitrarily high fidelity under the above assumptions.

To compute Q∗(R) the authors Hayden, Jozsa, and Winter decompose the ensemble E =
{

|u〉, P (u)
}

into at most |U| + 1 ensembles Ej =
{

|u〉, W (u|j)
}

with weight P (j) and their
union ∪jP (j)Ej reporduces E . This is equivalent to decompositing the probability dis-
tribution Q by an input distribution P over {0, 1, . . . , |U|} and using a classical channel
W : {0, 1, . . . , |U|} → U such that for all u ∈ U Q(u) =

∑

j

P (j)W (u|j). Let D(R) be the

set of decompositions with I(P ; W ) = R and S(P ) =
∑

j

P (j)S(Ej), where I is Shannon’s

mutual information and S is von Neumann entropy. Then

Theorem 6.3. (Hayden, Jozsa, Winter [13])

Q∗(R) = min
(P,W )∈D(R)

S(R).

Finally we remark that in addition to the difference between the models in Sections 4 – 6 and
this section with respect to the property lossless versus property lossy, another difference is
that we deal with general quantum sources in Sections 4 – 6 and with quantum DMS in this
section.

Moreover, in Sections 6.4 and 6.5 the decoder allows only to send lengths of codewords via
the classical channel and there is not such a restriction in sections 6.6 and 6.7.
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