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CHANNEL CAPACITIES FOR LIST CODES

RUDOLF AHLSWEDE, Ohio State University, Columbus

Abstract

In the present paper we demonstrate that the concept of a list code is from a
mathematical point of view a more canonical notion than the classical code
concept (list size one) in that it allows a unified treatment of various coding
problems. In particular we determine for small list sizes the capacities of arbitra-
rily varying channels.

PROBABILISTIC CODING THEORY; ARBITRARILY VARYING CHANNELS; COMPOUND
CHANNELS; CHANNEL CAPACITIES; ZERO ERROR CAPACITY; LIST CODES; FEEDBACK

1. Introduction
A. Preliminary remarks

List codes were first considered by Elias in [3]. They are a natural generalization
of ordinary codes. Instead of making a single decision about which code word
was sent, the decoder decides on a list of code words. Only if the transmitted code
word is not on the list do we say that a decoding error has occurred. This decision
scheme is of practical use whenever incorrect code words on the list can be
recognized by internal evidence. This is, for example, sometimes possible in the
case of the transmission of a text in an ordinary language, because languages
have a certain degree of redundancy.

The concept of a list code has found an additional justification by providing a
helpful tool for proving results for ordinary coding. (see, for instance, [8]).

Our present investigation originated from an analysis of a method to prove the
coding theorem for certain channels with noiseless feedback ([4], [5]).

The method consists of three parts:

(1) a lemma on list codes (Lemma 1 in Section 2);

(2) a procedure to reduce the list codes iteratively to list codes of small list size;

(3) the reduction to list size 1, that is, to ordinary coding.

In [4] we developed the method for the discrete memoryless channel with
noiseless feedback (d.m.c.f.) and in [5] we gave an extension to channels with
arbitrarily varying channel probability functions with noiseless feedback (a.v.ch.f.).
The method does not work for compound channels with noiseless feedback
(c.ch.f.). This is somehow surprising, since the method seems to be very natural.

Received 27 November 1972.
824



Channel capacities for list codes 825

Of course c.ch.f. can easily be treated otherwise, but there remains this formal
inconsistency, which seems to indicate that something is not clearly understood.
We therefore asked for the “‘well understood’’ method and for the coding problem
for which this method is applicable without exceptions.

In the method described above, feedback is made use of only in Parts (2) and
(3). In the present paper we provide a tool (Lemma 4 in Section 2), which makes it
possible to make the reduction in (2) also without feedback. Thus we obtain a
method to prove coding theorems for a large class of channels in the case of list
decoding and this modified method is therefore just appropriate for list decoding.
We shall treat compound channels, a.v.ch. and the zero error capacity problem.
For ordinary coding the capacity of an a.v.ch. is known only for the case of a
binary output alphabet [7] and a few other special cases. Our original method
works in the case of feedback only for those channels for which the list code
capacity (see (1.7)) equals the feedback capacity. For compound channels, for
instance, this is in general not the case.

We limit ourselves throughout this paper to finite alphabets even though some
of the results extend to infinite alphabets.

B. Definitions
I. Channels, list codes and capacities

Let X = {1,---,a} be the “input alphabet’’ and Y = {1,---,b} be the “‘output
alphabet’” of the channels we shall introduce below. Let X = X and Y' =Y for
t=1,2,---. By X, =]]f=; X* we denote the set of input n-sequences (words of
length n) and by Y, = []7-, Y' we denote the set of output n-sequences.

Let w(- ] *) be an a x b stochastic matrix and let 2 be a discrete memoryless
channel (d.m.c.) with transmission probabilities P(- | -) defined by

(L1) PG, |x) = T] w0 |x)

r=1

for every x, = (x',---,x") e X,, and every y, = (y!, -,y e¥,; n=1,2,---.
Let S be any set and let W = {w(~|-|s)|seS} be a set of stochastic a x b
matrices. Set S' =S for t=1,2,---,n. For every

= (st onse [T S
t=1
we define P(~|~ |s.) by
(1.2) POa|xals) =TT w0 x']s")
=

for every x, € X, and every y,€Y,.
For every n; n=1,2,---, define %A, by
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(1.3) €A, = {P(‘|~|s,,)|s,,eS,,}
and €, by
(1.4) €= {P(:|"|s))] s, = (5,-,5), s€ S}.

A channel with arbitrarily varying channel probability functions (a.v.ch.) U is
defined by the sequence (2,),~ ;... and a compound channel (c.ch.) % is defined
by the sequence (%,),-;.,.....

(1.5) Let L be a positive integer. A list code (n, N, L) is a system
{(uia A:)I’ = l’ "’»N}>

where u;e X,, A; < Y,and TN, 14,(y,) < Lforall y,€Y,. 15 denotes the indicator
function of a set B.

(1.6) A code (n,N,L)is a A-code (n,N,L,})

(a) for the d.m.c. 2, if P(4;|u;) 21— Afori=1,- N;

(b) for the av.ch. U, if P(4;|u;|s,)=1—7 for i=1,--,N and all
s, €8,:

(c) for the cch. &, if P(A;|u;|s)21—4 for i=1,--,N and all
P(~]~|s,,)e%’,,.

(1.7)  Wecall a number K; = 0 the list code capacity or I-capacity of a channel, if
(a) for any ¢>0, 6>0 and A, 0< <1, there exists a A-code
(n,e"®1=9 ¢, 1) for all sufficiently large n, and
(b) for any 6 > 0and /, 0 < A < 1, there exists no ¢, 0 < ¢ < 8, such that
there exists a A-code (n,e"*' "9 " 1) for all sufficiently large n.

(1.8)  We call a number D, = 0 the list code zero error capacity of a d.m.c. Z,
if Dy, satisfies (1.7) for 2 = 0.

Similar to the feedback case, [5], we determine first the I-capacity A, for the
a.v.ch. A. The result for D,, follows by specialization. D, is by definition the
maximal rate which can be achieved on a d.m.c. with 0 error probability for list
codes of not exponentially increasing list length .Actually we show that one can
achieve Dy, for codes of a list length smaller than n, the word length.

II. Entropy and rate functions

(1.9)  The entropy of a probability vector p = (p,, -+, p.) is defined to be

H(p)= - X p;logp.
i=1

(1.10) The “‘rate’’ for the probability vector = on X and matrix w(- ’~) is
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R(m,w(-|*)) = H(gw)) — ? mHwW(- | i),
where g(w) =z w(: | ).
(1.11) For 7 and w(:|-) define a b x a stochastic matrix w*(-|-) by
w*(i |J) = ”iW(jli)/‘JJ(W);j =1,-,b;i=1,-a.

It is well known and easy to verify that

(1.12) R, w(-|) = Hm) — Z g,)HW*(-| ).
J
The ordinary capacity D of the d.m.c. 2 is given by

(1.13) D = maxR(m,w(-|")).

(1.14) For ieX denote the closed convex hull of the set of probability vectors
{w(-|i)|weW} by W(i) and set

VT’={W("’)IW(" i) e W(i) for all ieX}.

W is called the row convex closure of the set of matrices W.
We define two quantities C and 4 by

(1.15) C = max inf R(m,w)
n weW

and

(1.16) A = maxmin R(m,w).
T weW

C is the ordinary capacity of the c.ch. ¥ and A is the capacity of the a.v.ch. A
in the case of noiseless feedback, provided the capacity is positive (see [5]).

2. Auxiliary results

First, we restate results, which were obtained in [4] and [5], in terms of list
codes.

Lemma 1. Let 2 be a d.m.c., = a probability distribution (p.d.)on X, l a
positive integer and ¢ a positive number. One can construct a list code (I, N, L, A)
for 2, such that:

(a) N z exp {H(n)l — f(x, a)logl};
b
®) Lsexp (T a0 HC| D)+ 501

©) A Zexp { — E(e,m,w)l}.
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The functions f(n,a), g(e) and E(e,m,w) can be given explicitly. E(e, m,w) is
positive and lim,_ g(¢) = 0. (Compare Lemma 1 and (2.11) of [4] and the error
calculation given there.)

In [5], Lemma 1, we obtained a generalization, which we state as Lemma 2.

Lemma 2. Let Abeana.v.ch,nap.d. on X, | apositive integer and ¢ a pos-
itive number. One can construct a list code (I, N, L, 4) for U, such that:

@ N 2 exp {Hm)! - (@) log };

b
(b) L gexpmax T g0 HOAC D)1+ F0) |
© s Sexp { — E(e, m)l}.

g() can be given explicitly and lim,_,, g(¢) = 0;

E(e,m) = min E(e,m,w) > 0.
weW
The methods in [5] yield a similar result for the c.ch. Lemma 2 can be expressed
for this channel, if one changes (b) into

b
@1 L <exp { sup X g (0H(- [+ e
wel j=1 ]
For an understanding of our later arguments, familiarity with the proofs of
Lemmas | and 2 is not necessary.

Lemma 3. Let & be a d.m.c. with transmission matrix w and let W, be a set
of stochastic 0—1 matrices given by

Wy = {W]W stochastic 0—1 matrix, W(j| ) =0if w(j| i) = 0}.

For the a.v.ch. W,—determined by W,—the following statements hold:
(a) an (n,N, L, /) code for U, is an (n, N, L, 0) code for Ay;
(b) an (n, N, L,0) code for U, is an (n,N, L,0) code for &, and conversely.

Proof. (a) follows from the fact that W, contains only 0—1 matrices. (b) is a
consequence of the fact that w can be written as a convex combination of matrices
in W,. (cf. Lemma in [6]. There we used ordinary codes, but the same argument
extends to list codes.)

Denote the cardinality of a set G, say, by |G |

Lemma 4. Let N, M, L and t be non-negative integers such that M-L < ¢!,
Denote the set {l,---,N} by N and the set {1,---,L} by L. For any system
{Ty, -, Ty} of M subsets of N, which satisfies |T;| < L(j=1,---,M), there
exists a mapping ® from N into L such that |®~(i) N T;| <t forall ieL and
j=1M.
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Proof. For A < N denote by &(A) the set of all mappings from N into L,
which are constant on A. Set

F,= U FA
AST 4|2t
and set
M
F'= U 5’73
j=1

Denote the set of all mappings from N into L by &. It suffices to prove that
|#!||#|~* < L. Since | #| = L"and

Ea §M(I;)-L-L"“,

we obtain that

L

7|7 s m (]

)L’“'g ML[t' <1,
by assumption.

(This Lemma will provide a substitute for the lack of feedback and will enable
us to make an iterative list reduction.)

We give now the definitions needed in order to state the elementary Lemma 5.
Let p be a non-negative number, let r be larger than p and let I be a positive
integer. Set I, = I. Define now for every positive integer i an /; inductively as the
smallest integer for which

(2.2) pUs

Obviously, I, 21, 2132 ---. In the following we use “[ ]’ as the smallest

integer larger than the number in brackets.
Lemma 5. Set Q =logp(logr)~* and 0* = (1 — Q)~!. For
I=1+[-(logQ) log!]

we have:
(a) I =1+0%
I
(b) 2 L £10* + 10*.

1

Proof. By (2.2) and the definition of Q we have I, <1,Q + 1 and generally
l,' é IlQi—l + Qi—2+ b + 1
for i=1,2,---. Hence,

LSIQT N QY S 1+ 0%,
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by definition of Q* and I. Furthermore,

™M~

1 i—-2
L X (1Q"‘+ z Qf)gIQ*HQ*.
i=1 ji=0

I

i=1
3. Determination of the list code capacities 4,, D, and C,
Let W, be as defined in Lemma 3 and use the operation ‘="’ in the sense of

Definition (1.14). Our goal is to prove the following theorem.

Theorem. The list code capacities are given by the formulae:
(a) A, = max min R(x, w) for the a.v.ch. U;

r weW

(b) Dy, = max min R(m,w) for the d.m.c. Z;
n weWn

(¢) C, = max inf R(m, w) for the c.ch. €. The expression to the right is known

. weW

to be the capacity for ordinary coding.
The capacities can actually be achieved with a list length smaller than n, the
word length.

Remarks. (1) In the case of noiseless feedback one can reduce codes of list size
n to ordinary codes provided that the feedback capacities are positive. Denoting
these capacities by A, Doy and C, we thus obtain: 4, > 4,if A, > 0; Dy, = Dy,
if Do, > 0and C, = C, if C; > 0. Comparing the Theorem with the results of [5]
we can actually conclude that A, = A, if A;>0 and Dy, = Dy, if Dy, > 0.
However, A (D, ) may be 0 and A,(Dy,) still be positive. In the case of list codes
the formulae (a) and (b) for 4, and Dy, are valid independently of whether A4, or
Dy, are positive or not. For the d.m.c. £ given by the matrix

(3 0

w= {0 1,
P 0 4
for instance, we have Dy, = log$ and Dy, = 0.

(2) For averaged channels, [10], one can show that list coding provides no
improvement over ordinary coding, whereas feedback leads in general to a larger
capacity. This is the case whenever we have channels with memory. We propose
therefore as a problem to determine feedback capacities and eventually also to
construct coding schemes for a large class of channels with memory.

(3) One can introduce zero error list code capacities D§, by requiring that the
list size be smaller than a constant L. For L =1 one obtains Shannon’s zero
error capacity, [1]. There are examples of channels for which D2, > D},.

(4) Forney has introduced in [9] a diiterent notion of list codes. Instead of
requiring that the list size is uniformly bounded by L (see Definition (1.5)) he
assumes that the average list size converges to 1 as the block length n increases.
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The average is taken over all messages, which are selected at random according
to the uniform distribution, and over all received sequences, which occur at random
according to the transmission probabilities. Let us denote by Dy, the maximal
rate, which can be achieved on the d.m.c. with those codes and with error
probabilities zero. Furthermore, let 6 =(0;;) (i=1,---,a;j=1,---,b) be defined
by

] {0 if w(j|i)=0,

e w(i] i) > o
For Do, > 0 Shannon proved in [1] that

Dy, = max( - log maxgq0)),
n j

where ¢,(0) = X{-, m0;,, and we showed in [5] that Dy, = max, min,, . ,p R(x, w).
From Equation (b) in the Theorem we obtain, therefore, that

Dy; = max(— logmaxq,(0)),
T j

if Doy > 0. One can actually show analytically that

max (— logmax q,(0)) = max min R(x,w)
n J t weWy
always'. Forney proved—using methods which are completely different from
ours—that

b
Dy 2 max(— log X g9 j(O))
n i=1

and we can therefore conclude that Dg; 2 Doy. Dy is in general larger than Dy,.
This result is by no means trivial. On the one hand, Forney makes a weaker
requirement than we do by considering an average list size rather than a uniform
list size; on the other hand, he has a stronger condition on the list size than we
have. It might be of some interest to decide whether Forney’s result can be ex-
tended to the a.v.ch. (Forney also introduces for the d.m.c.f. a zero error capacity
Dy, say, by allowing a sequential coding procedure. He proves that

Dop = max (— % q;logq;(0)).
Since

max (— :2 g;log;(0)) = max (— log ? 4,4,0)

2 max(— logmax g,(0)),

1 We are grateful to P. Elias for drawing our attention to his publication [13]. In it he derives
the formula Dor = maxz ( — log max; ¢;(0)) using a very elegant argument. However, the
same argument does not extend to a.v.ch.
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and since in many cases one has strict inequalities, we can conclude that D, > Dy,

in those cases.)
(5) So far no results arc known about the zero error capacity in the case of a

noisy feedback channel. Any progress on this problem could also be important
for Shannon’s zero error capacity problem.

Proof of the Theorem

In order to prove that the quantities listed in (a), (b) and (c) are the capacities in
question, we have to prove coding theorems and converses of the coding theorems.
We begin with the coding theorems.

A. The coding scheme. For ¢ > 0 let mgy(e) be the smallest integer for which
emg(€) = f(m, a) log my(e). We abbreviate H(n)-¢ by H and we let H stand for

b
max X q;(w)Hw*(-|j)) + 5(e)

or for

max él q,(w) How*(- | 1)) + 5(e)
or for

sup 2 q,(w) HOw*(- | ) + 2(e)

Wew j=1

depending on whether we treat the a.v.ch., the d.m.c. with zero error or the c.ch.
We shall also write E instead of E(e, n). With this convention we can say—because
of Lemma 2, (2.1)and Lemma 3—that for all channels considered there exists an

(m,N,,, L, 4,)-list code
{(un(D, A |1 =1,,N,}
such that
(3.1 N, =[e""], L, = [e"™], 2 < e7F™ for m > mg(e).

For cvery y, €Y, there exists a list of code words T(y,,) < {u,(i) | i=1,-,Nu}
into which y, is decoded. {T(y,)|Vm€ Y} is the system of possible lists and
| T(3)| £ Lo
Starting for a fixed ! with an (I, N,L,2)= (I, N, L, 7)) list code
i), AG@)]i=1, N}

for which (3.1) holds we now reduce the list size iteratively by a repeated application
of Lemma 4 and (3.1). Set I, =1 and define a decreasing sequence of integers
I, Iy, as in (2.2) with p = ¢" H

and r=¢e".
We now describe the first step of our reduction. Apply Lemma 4 with
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N=[e"], L=["], M=|Y,|=10,

to the set {u(i)|i=1,-,N;} and to the system of sets {T(y,)|y,e Y,}. For a
suitable constant [*(b, H) we have

(3.2) bl <11, if 12 1%b, H).

Thus for t = | the conclusion of Lemma 4 holds, that is, there exists a mapping
from {ui)|i=1,---,N;} into any set with at least L elements such that this
mapping assumes on T(y,), y,€Y,, the same value at most | times. Hence,

(3.3) there exists a mapping ®,, say, from {u,(i)li =1,-+,N;} into {“‘z(i)li
= 1,--,N,.}, which assumes on T(y,), y,€Y,, the same value at most / times.
Generally, for any s with

(3.4) I.,, = max(my(e), I*(b, H)) there exists—because of (3.1) and Lemma
4—a mapping @, from {u, (i) | i=1,-,N,}into {u, (i) | i=1,-,N,  }, which
assumes on T(y,), y, €Y,,, the same value at most /_ times.

Let s* be the maximal s for which (3.4) holds and define I* by
(3.5) I* =min {I,s* + 1}, where [ is as defined in Lemma 5.
The result (3.4), the definitions of s* and I* and Lemma 5 yield
(3.6) 1< max {1+ 0% [0~ 'my(®)], [Q~'1%(b, )]} = I(e. b, A),

say, and
I*

3.7 X I S10* + 1Q*.
s=1

Now suppose that a finite set of messages {1,---, N}, one of which will be
presented to the sender for transmission, is given. We encode message i {1,--, N}
as

(3.8) up = (u,, (), ©u,,00), ©,9,u,0),-, Qoo @y uy (i)
What the receiver receives is a matter of chance. Suppose he has received

Y= Yigs s Yiyo)-

He now associates with this sequence the sequence of lists (T(y,), T(y,),
T(y,,»))- Now define sets Vi(k = 0,1, -+, I* — 1) recursively as follows

VO = T(yll‘)’
Vi = ¢l-[‘l—k Vi1 D T(yy,e_ ).

’

3.9

Having received y, the receiver decides on the list T(y) = V,._,. T(y) is a subset
of {u(i)|i=1,--,N;} and
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I*

i

s=

(3.10) | T(»)| = | Ty,

Hence, by Lemma 5,

(3.11) | T(y)| S exp{l).loga + (1 — (log Q)~")log?l} = L,
say. Set n' = SI7 1. 1t follows from I* < I and from Lemma 5 that
(3.12) n' Z10*+1—(logQ) 'logl.

With u; as defined in (3.8) and with 4; = {ylye Y,,u;e T(y)} we obtain an
(n’,N, L) list code {(u;, A)] i =1, N}.

B. Refinement of the coding scheme and calculation of the error probability.
Suppose message i is encoded as u;. Using the scheme {(u‘.,A,»)|i= 1,--,N} a
decoding error is made, if for some s, | <5 < I*,

Oy, Oy uy (1) € T(yy,).

It follows from (3.1) that the probability for a decoding error 1 satisfies

I 1
(3.13) LS X Ay, T e,
s=1 s=1

IIA

Since I, > I, > I3 > --- the numbers %, , 4,,, --- are increasing and the bound at
the right of (3.13) may be very large. We therefore modify our scheme as in [4] or
[5]. This modification is of course unnecessary for the zero error case, because
there 7, =0 for s = 1,---,I*. We now encode i into u}, which is obtained from
u; as follows:

(a) u;* has the same first d(/) = c log I, ¢ suitable, components as u;;

(b) for s > d(l) we repeat every component of u; [1*] times. It was shown in
[4], Equations (2.14) to (2.25), that one can choose ¢ such that

(3.14) J. < 7B Ex(e) suitable,
(3.15) I, 1F for s=d

and

(3.16) n<n' + f*e)it logl,

where n denotes the total number of letters needed and f*(¢) is chosen suitably.
It follows from (3.12) and (3.16) that

(3.17) n < 10* + {f*@e)l'logl + 1 — (logQ)~'logI}.

Since the list size of the modified scheme is the same as the list size of the
original scheme, the coding theorems now follow from (3.11), (3.14) and (3.17).
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C. Reduction to list size smaller than n. Above we obtained an (n,N, L, 1)
list code {(u¥, A}")l i=1,-, N}, where N = [¢"'] and L satisfies (3.11). Since L is
smaller than exp {Klog?I} for some constant X, we obtain by applying Lemma 4
and (3.1) twice a list size smaller than K,(b)I(logl)~*. log?l for I sufficiently
large. K,(b) is a suitable constant.

Now we repeat this double reduction once more and obtain a list size smaller
than

log |

_1 .
K,(b)I(log]) fog logl

<1

for I sufficiently large. Our estimates are obtained by a nearly optimal exploitation
of the condition M- L< t!in Lemma 4. It is clear that the number of additional
letters needed for our reduction is of small magnitude and that the increase in
error probability can also be ignored.

Actually one could continue to reduce the list size from ! to log / and so on.
But thus one achieves the capacities only for larger and larger block lengths. It
would be of interest to obtain results for a constant list size, but those results
would have to be obtained by a different approach.

D. The converses. Since (b) is a special case of (a), it suffices to prove converses
only in the cases (a) and (c).
It is well known (see, for instance, Lemma 4 of [7]) that

A = max min R(7,w) = min max R(w, w).
T weW weW =n
Let w’ be such that 4 = max, R(m,w’), let 2’ be the d.m.c. corresponding to w’,
and denote its capacity by D’. The strong converse theorem for a d.m.c. 2 in
the case of list codes (see [12]) says that:

(3.18) one can give a function c(2) explicitly such that there does not exist a list
code (n,N, L, A) with NL™* > exp {Dn + ¢(1)/n}. Since w' € W and since D’ = A4,
we obtain that 4, < A.

The result stated in (3.18) was derived in [12] by using codes of fixed decomposi-
tion. The proof for the strong converse theorem for compound channels given in
[11] also uses codes of fixed decomposition and can be carried over verbally to
the case of list codes. One thus obtains that C, < C.

Remark. Our results are concerned with the existence of certain codes with
certain properties. Our approach leads to no code construction, because Lemma 4
gives no construction of the mapping ®. It would be desirable to know a @
explicitly. However, since we obtained the existence of ® by a simple counting
argument, one could actually make a random choice according to the uniform
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distribution over the set of all mappings from N into L. (For our coding scheme
we would have to make about log n such choices.) Thus, we are in a situation
which might be compared with the situation in Shannon’s random coding method.
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