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Abstract

In earlier papers finite pseudorandom binary sequences were studied, quantitative
measures of pseudorandomness of them were introduced and studied, and large families
of “good” pseudorandom sequences were constructed. In certain applications (cryp-
tography) it is not enough to know that a family of “good” pseudorandom binary
sequences is large, it is a more important property if it has a “rich”, “complex” struc-
ture. Correspondingly, the notion of “f–complexity” of a family of binary sequences
is introduced. It is shown that the family of “good” pseudorandom binary sequences
constructed earlier is also of high f–complexity. Finally, the cardinality of the smallest
family achieving a prescibed f–complexity and multiplicity is estimated.
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1 Introduction

In a series of papers Mauduit and Sárközy (partly with further coauthors) studied finite
pseudorandom binary sequences

EN = (e1, e2, . . . , eN) ∈ {−1, +1}N .

In particular, in Part I [4] first they introduced the following measures of pseudorandomness:

Write

U(EN , t, a, b) =
t−1
∑

j=0

ea+jb

and, for D = (d1, . . . , dk) with non–negative integers d1 < · · · < dk,

V (EN ,M,D) =
M

∑

n=1

en+d1
en+d2

. . . en+dk
.

Then the well–distribution measure of EN is defined as

W (EN) = max
a,b,t

|U(EN , t, a, b)| = max
a,b,t

∣

∣

∣

∣

∣

t−1
∑

j=0

ea+jb

∣

∣

∣

∣

∣

,

where the maximum is taken over all a, b, t such that a, b, t ∈ N and 1 ≤ a ≤ a+(t−1)b ≤ N ,
while the correlation measure of order k of EN is defined as

Ck(EN) = max
M,D

|V (EN ,M,D)| = max
M,D

∣

∣

∣

∣

∣

M
∑

n=1

en+d1
en+d2

. . . en+dk

∣

∣

∣

∣

∣

,

where the maximum is taken over all D = (d1, . . . , dk) and M such that M + dk ≤ N . Then
the sequence EN is considered as a “good” pseudorandom sequence, if both these measures
W (EN) and Ck(EN) (at least for small k) are “small” in terms of N (in particular, both are
o(N) as N → ∞). Indeed, it is shown in [2] that for a “truely random” EN ∈ {−1, +1}N

both, W (EN) and, for fixed k, Ck(EN), are around N1/2 with “near 1” probability.

Moreover, it was shown in [4] that the Legendre symbol forms a “good” pseudorandom
sequence. More exactly, let p be an odd prime, and

N = p − 1, en =

(

n

p

)

, EN = (e1, . . . , eN). (1.1)

Then by Theorem 1 in [4] we have

W (EN) ≪ p1/2 log p ≪ N1/2 log N

and
Ck(EN) ≪ kp1/2 log p ≪ kN1/2 log N.
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(Here ≪ is Vinogradov’s notation, i.e., f(x) ≪ g(x) means f(x) = O
(

g(x)
)

.)

Later this construction was extended [5], and another modular construction of a “good”
pseudorandom sequence was given in [7]. Numerous other binary sequences have been tested
for pseudorandomness by Cassaigne, Ferenczi, Mauduit, Rivat and Sárközy, but none of them
proved to be nearly as “good” as the ones mentioned above.

However, these “good” constructions produce only a “few” good sequences while in many ap-
plications, e.g., in cryptography, one needs “large” families of “good” pseudorandom binary
sequences. Note that here we speak of families of binary sequences instead of sets of them.
The reason is that there is a natural and often used bijection between binary sequences
EN = (e1, . . . , eN) ∈ {−1, +1}N and subsets of {1, 2, . . . , N}:

EN = (e1, . . . , eN) ↔ {n : 1 ≤ n ≤ N, en = +1}.

This bijection maps sets of binary sequences onto families of subsets which would force us to
use the terminologies “set” and “family” alternately. This may cause a confusion; to avoid
this, it is simpler and safer to use the terminology “family” in both cases.

Very recently, Goubin, Mauduit and Sárközy [3] succeeded in constructing large families
of pseudorandom binary sequences. Their most important results can be summarized as
follows:

Theorem A. If p is a prime number, f(x) ∈ Fp[x] (Fp being the field of the modulo p residue
classes) has degree k(> 0) and no multiple zero in F p (= the algebraic closure of Fp), and
the binary sequence Ep = (e1, . . . , ep) is defined by

en =

{

(

f(n)
p

)

for (f(n), p) = 1

+1 for p | f(n),
(1.2)

then we have
W (Ep) < 10kp1/2 log p. (1.3)

Moreover, assume that for ℓ ∈ N one of the following assumptions holds:

(i) ℓ = 2;

(ii) ℓ < p, and 2 is a primitive root modulo p;

(iii) (4k)ℓ < p.

Then we also have
Cℓ(Ep) < 10kℓp1/2 log p. (1.4)

(Note that the crucial tool in the proofs of (1.3) and (1.4) is an estimate for incomplete
character sums of the form

∑

A<x<B

χ
(

f(x)
)

, where χ 6= χo is a character modulo p and

f(x) ∈ Fp[x]. This estimate was deduced in [4] from a theorem of Weil [9]. Examples
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show that, perhaps, conditions (i) – (iii) can be relaxed, but that they cannot be omitted
completely.)

It is easy to see that this theorem generates “large” families of “good” pseudorandom binary
sequences. However, in many applications it is not enough to know that our family F of
“good” binary sequences is large; it can be much more important to know that F has a
“rich”, “complex” structure, there are many “independent” sequences in it. Thus one might
like to introduce a quantitative measure of the complexity of the structure of families of
binary sequences. Before defining such a measure, consider the following well–known model.

Suppose a family F of binary sequences EN ∈ {−1, +1}N is given, that we want to use in
cryptography as key space.

First a sequence EN = (e1, . . . , eN) ∈ F is choosen as the key. If the sequences in F are
expressed in terms of certain parameters, then picking EN means to fix the values of these
parameters, and the sender and receiver of the messages may let each other know about the
choice of the parameters (by using public key cryptosystem for instance). Using this key
EN = (e1, . . . , eN), the message to be sent can be coded in the following way: first the text
to be sent should be expressed in terms of binary sequences UN belonging to {−1, +1}N ,
and then each of these sequences UN is coded by

UN = (u1, . . . , uN)
EN−→ VN = (v1, . . . , vn) = (e1u1, . . . , eNuN);

then the message consists of these binary sequences VN = EN(UN). To decode the message,
one has to repeat this operation, so that

UN = EN(VN) = (e1v1, . . . , eNvN) = (u1, . . . , uN).

(This procedure is clearly equivalent to using 0–1 sequences and adding them modulo 2.)

Suppose now that there is an eavesdropper, who wants to break the code. He hopes to do
this in two steps:

Step 1. He hopes that the coding operation UN
EN−→ VN does not destroy the structural

properties (certain regularities, repetitions, etc.) of the message to be coded completely,
and by using the remaining structure, he is able to determine many elements ei of the key
EN = (e1, . . . , eN), say, that is he finds a specification of En of length j

ei1 = ε1, . . . , eij = εj (i1 < · · · < ij) (1.5)

for a possibly large j.

Step 2. He hopes that the specification (1.5) uniquely determines the rest of the key EN

(or, in the worst case, there are only a few EN ’s with specification (1.5) so that it suffices to
check a few possibilities only).

Thus our cryptosystem has reasonable security properties if both, Step 1 and 2, are made
possibly, ideally hopelessly, difficult. In case of Step 1, this goal can be achieved by taking
“good” pseudorandom sequences EN ; this is the problem studied by Mauduit and Sárközy,
and satisfactorily settled in form of Theorem A above. In case of Step 2, the requirement
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motivates the following definition of f–complexity of families of binary sequences, which is
also inspired by the concept of local randomness introduced in [8] and further studied in
[6]. It is also related to the concept of unicity introduced by Shannon. “Complexity” is
an often used word but it usually concerns a property of single sequences and not that of
families of sequences. Moreover, it expresses the nature of the property to be studied by us
very well. Thus in spite of the other uses of the word we propose the use of it in this context
as well, but to avoid confusion we will speak about f–complexity (“f” for family).

Definition. The f–complexity Γ(F) of a family F of binary sequences EN ∈ {−1, +1}N

is defined as the greatest integer j so that for any specification (1.5) there is at least one
EN ∈ F which satisfies it. The f–complexity of F is denoted by Γ(F). (If there is no j ∈ N

with the property above, we set Γ(F) = 0.)

Now indeed, for j < Γ(F) and any specification (1.5) of length j, clearly there are at least
2Γ(F)−j sequences EN ∈ F with the given specification. This means that the eavesdropper
knowing a specification of length j has many options for the true key and therefore a difficult
task, if Γ(F) is large.

We conclude that if we can construct a family F of high f–complexity and of “good” pseu-
dorandom binary sequences, then the cryptosystem based on it (as described above) has good
security properties.

Therefore we are looking for families F which have as their elements “good” pseudorandom
sequences EN and at the same time have large f–complexity Γ(F). Our finding is Theorem
1 in Section 2, which shows that the construction in Theorem A does not only give a set with
“good” pseudorandom sequences, but under condition (iii) also with “high” f–complecity.

Next we adress the question how large a family (key space) F is needed to achieve a prescribed
f–complexity.

A simple observation illustrates the difference between large size of F and f–complexity
Γ(F).

Let
F =

{

EN = (e1, . . . , eN) : EN ∈ {−1, +1}N , eN = +1
}

.

This family contains 2N−1 sequences EN , which is half of the total number of binary sequences
of length N , so that this is a “very large” family. On the other hand, there is no EN =
(e1, . . . , eN) ∈ F with specification

eN = −1

so that Γ(F) = 0.

On the other hand, we will see that high f–complexity enforces large size.

Theorem 2 in Section 3 gives rather sharp estimates on the values of these two quantities.
In addition it incorporates multiplicity of F , a parameter measuring the ambiguity for the
eavesdropper in selecting a key confining to the specification known to him.
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2 Construction of a family of pseudorandom sequences

with high f–complexity

The following result significantly improves Theorem A, because it establishes an additional
complexity property of the construction, expressed in (2.6).

Theorem 1. Let p be a prime number, and K ∈ N, L ∈ N,

(4K)L < p. (2.1)

Consider all the polynomials f(x) ∈ Fp[x] with the properties that

0 < deg f(x) ≤ K (2.2)

(where deg f(x) denotes the degree of f(x)) and

f(x) has no multiple zero in F p. (2.3)

For each of these polynomials f(x), consider the binary sequence Ep = Ep(f) = (e1, . . . , ep) ∈
{−1, +1}p defined by (1.2), and let F denote the family of all the binary sequences obtained
in this way. Then for all Ep ∈ F we have

W (Ep) < 10Kp1/2 log p (2.4)

and
Cℓ(Ep) < 10KLp1/2 log p for all ℓ ∈ N, 1 < ℓ ≤ L. (2.5)

Moreover, we have
Γ(F) ≥ K. (2.6)

Note that his result is based on the use of assumption (iii) in Theorem A. If we are satisfied
with estimating C2(Ep) and we do not insist on estimating correlations of higher order as
well, then we may use assumption (i) instead of (iii), and then the strong assumption (2.1)
in Theorem 1 can be dropped.

Moreover, if we assume that p is a prime such that 2 is a primitive root modulo p, then
we may use (ii) in Theorem A instead of (iii), and then assumption (2.1) in Theorem 1 can
be replaced by the much weaker L < p, which is natural anyway. However, the problem
with this approach is that we do not know whether 2 is a primitive root for infinitely many
primes p. By a well–known conjecture of Artin, there are infinitely many primes p with this
property. Unfortunately, there is no hope for proving this conjecture in the near future, and
even if it gets proved, we would also need information on the distribution of these primes
and a good algorithm for finding such a p.

Proof of Theorem 1. We will need the following simple result:

Lemma 1. If T is a field and g(x) ∈ T [x] is a non–zero polynomial, then it can be written
in the form

g(x) =
(

h(x)
)2

g∗(x) (2.7)
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where h(x) ∈ T [x], g∗(x) ∈ T [x] and g∗(x) has no multiple zero in T (the algebraic closure
of T ).

Note that by using the notion and properties of the derivative of a polynomial (which can
be defined over any field) a simple and fast algorithm can be given for determining these
polynomials h(x) and g∗(x).

Proof. By the theorem on unique factorization into irreducible factors, g(x) can be written
as

g(x) = a
(

p1(x)
)2α1+1

. . .
(

pr(x)
)2αr+1(

q1(x)
)2β1 . . .

(

qs(x)
)2βs

where a ∈ T , the pi’s and qi’s are irreducible polynomials over T which are pairwise essentially
distinct (none of them is the constant multiple of another one), the αi’s are non–negative
integers and the βi’s are positive integers. Write

h(x) =
(

p1(x)
)α1 . . .

(

pr(x)
)αr

(

q1(x)
)β1 . . .

(

qs(x)
)βs

and
g∗(x) = ap1(x) . . . pr(x).

Then (2.7) holds trivially. Moreover, the polynomials pi(x), being irreducible, cannot have
multiple zero (this follows from

(

pi(x), p′i(x)
)

| pi(x)), and the zeros of the pairwise essentially
distinct irreducible polynomials pi(x) are distinct. Thus g∗(x) cannot have multiple zero
either, and this completes the proof of the lemma.

To prove Theorem 1, we have to show that for any specification of length K:

ei1 = ε1, . . . , eiK = εK (i1 < · · · < iK), (2.8)

there is a polynomial f(x) ∈ Fp[x] which satisfies (2.2) and (2.3) so that Ep = Ep(f) ∈ F ,
and this sequence Ep = Ep(f) satisfies the specification (2.8), and, finally, (2.4) and (2.5)
also hold.

(Throughout the proof we will not distinguish between a number a ∈ Z, the residue class
represented by a modulo p, and the corresponding element of Fp. Moreover, if we write, say,
f(x)

a
with a ∈ Z, a 6= 0 ( mod p) and f(x) ∈ Fp(x), then we mean f(x)a−1 where a−1 is the

multiplicative inverse of that element of Fp which corresponds to a.)

By (2.1), we have K < p, thus there is an integer iK+1 with

0 < iK+1 ≤ p, iK+1 /∈ {i1, . . . , iK}.

Let
εK+1 = −ε1, (2.9)

let q, r be integers with (q, p) = (r, p) = 1 and

(

q

p

)

= +1,

(

r

p

)

= −1, (2.10)
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and define y1, . . . , yK+1 by

yi =

{

q if εj = +1

r if εj = −1
(for j = 1, 2, . . . , K + 1). (2.11)

By the well–known theorem on interpolation, there is a unique polynomial g(x) ∈ Fp[x] with

deg g(x) ≤ K (2.12)

and
g(ij) = yj for j = 1, 2, . . . , K + 1. (2.13)

Indeed, this polynomial can be determined by using either Lagrange interpolation or Newton
interpolation; e.g., by using Lagrange interpolation, we obtain

g(x) =
K+1
∑

j=1

yj

∏

1≤t≤K+1
t6=j

x − it
ij − it

.

(Clearly, this formula can be used for interpolating over any field.)

By Lemma 1, this polynomial g(x) can be written in form (2.7) (where now T = Fp). Let

f(x) = g∗(x). (2.14)

Then by Lemma 1, (2.3) holds. It follows from (2.7), (2.12) and (2.14) that

deg f(x) = deg g∗(x) ≤ deg g(x) ≤ K. (2.15)

By (2.11) and (2.13) we have

g(ij) = yj =

{

q if εj = +1

r if εj = −1
(for j = 1, 2, . . . , K + 1), (2.16)

and by (2.10), this implies that

(

g(ij), p
)

= 1 (for j = 1, 2, . . . , K + 1) (2.17)

so that by (2.7), (2.10), (2.14), (2.16) and (2.17) we have

(

g(ij)

p

)

=

(

(

h(ij)
)2

p

)

(

g∗(ij)

p

)

=

(

f(ij)

p

)

=

(

yi

p

)

=







(

q
p

)

= +1 if εj = +1
(

r
p

)

= −1 if εj = −1.
(2.18)

It follows from (2.9) and (2.18) that
(

f(i1)

p

)

6=

(

f(iK+1)

p

)
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and thus f(x) is not constant, i.e.,
deg f(x) > 0. (2.19)

(2.2) follows from (2.15) and (2.19). Moreover, it follows from (1.2) and (2.18) that Ep(f)
satisfies the specification (2.8).

It remains to show that (2.4) and (2.5) also hold. By (1.2), (2.2) and (2.3), we may apply
Theorem A to estimate W (Ep) and Cℓ(Ep). We obtain that

W (Ep) < 10
(

deg f(x)
)

p1/2 log p ≤ 10Kp1/2 log p.

Moreover, by (2.1) and (2.2), for all 1 < ℓ ≤ L we have

(

4 deg f(x)
)ℓ

≤ (4K)L < p

so that (iii) in Theorem A also holds with deg f(x) in place of k. Thus by Theorem A and
(2.2), for all 1 < ℓ ≤ L we have

Cℓ(Ep) < 10
(

deg f(x)
)

ℓp1/2 log p ≤ 10KLp1/2 log p

which completes the proof of Theorem 1.

3 On the cardinality of a smallest family achieving a

prescribed f–complexity and multiplicity

We consider for positive integers j ≤ K ≤ N and M

S(N, j,M) , min{|F| : F ⊂ {−1, +1}N , every

j–specification is covered by F with multiplicity ≥ M} (3.1)

and in particular

S(N,K) , S(N,K, 1) = min
{

|F| : F ⊂ {−1, +1}N , Γ(F) = K
}

, (3.2)

that is, we want to know here how many sequences EN are needed to cover all K–specifications
in {−1, +1}N . This can be formulated as a covering problem for the hypergraph H(N,K) =
(

V(N,K), E(N)
)

, where E(N) = {−1, +1}N is the edge set and the vertex set V(N,K) is
defined as the set of K–specifications on E(N) or, equivalently, as set of (N−K)–dimensional
subcubes of {−1, +1}N and thus

|V(N,K)| =

(

N

K

)

2K , |E(N)| = 2N . (3.3)

EN ∈ E(N) contains specification V iff EN ∈ V .

We use
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Covering Lemma 1 (see [1]). For any hypergraph (V , E) with

min
V ∈V

deg(v) ≥ d (3.4)

there exists a covering C ⊂ E with

|C| ≤

⌈

|E|

d
log |V|

⌉

.

Application to our hypergraph H(N,K) yields with d = 2N−K a family F with Γ(F) ≥ K,

|F| ≤

⌈

2N

2N−K
log

(

N

K

)

2K

⌉

. (3.5)

On the other hand one edge EN covers exactly
(

N
K

)

K–specifications and therefore by (3.3)
necessarily

|F| ≥ 2K (3.6)

and together with (3.5)

2K ≤ S(N,K) ≤ 2K log

(

N

K

)

2K ≤ 2K · K · log N(K ≥ 4). (3.7)

As already mentioned in Section 1, to make Step 2 difficult for the eavesdropper, who observes
j positions of EN ∈ F , we must construct a family F of high f–complexity Γ(F). Then
for j < Γ(F) the multiplicity Mj(F), that is, the least multiplicity of every j–specification
satisfies

Mj(F) ≥ 2Γ(F)−j, (3.8)

because a j–specification can be extended to as many Γ(F)–specifications with the same
support. Therefore

min
F :Γ(F)≥K

Mj(F) ≥ 2K−j (3.9)

and
S(N, j, 2K−j) ≤ S(N,K) ≤ 2K · K · log N(K ≥ 4). (3.10)

On the other hand, since |V(N, j)| =
(

N
j

)

2j and an edge EN covers exactly
(

N
j

)

j–specification,
necessarily

S(N, j, 2K−j) ≥ 2K−j

(

N

j

)

2j

(

N

j

)−1

= 2K . (3.11)

The fact that S(N,K) and thus f–complexity contains almost complete information about
the quantity S(N, j, 2K−j) concerning multiplicity deserves attention. (3.7), (3.10) and (3.11)
establish

Theorem 2. The cardinality S(N,K) of a smallest family F ⊂ {−1, +1}N with f–
complexity Γ(F) = K satisfies
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(i) 2K ≤ S(N,K) ≤ 2K log
(

N
K

)

2K ≤ 2K · K · log N(K ≥ 4).

Furthermore, the cardinality S(N, j, 2K−j) of a smallest family F ⊂ {−1, +1}N which covers
every j–specification with multiplicity ≥ 2K−j (K ≥ j) satisfies

(ii) 2K ≤ S(N, j, 2K−j) ≤ S(N,K) ≤ 2K · K · log N(K ≥ 4) for all j ≤ K ≤ N .

In a statistical context often K is proportional to N , say K = κN and thus we have the

Corollary. For 0 < κ ≤ 1

(i) lim
N→∞

1
N

log2 S(N, κN) = κ

(ii) lim
N→∞

1
N

log2 S(N, j, 2κN−1) = κ for every 0 ≤ j ≤ κN .

Finally, Theorem 2 shows that the family constructed in Theorem 1 is clearly much larger
than S(4KL, K). This shows that there is space for improvement.
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