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Abstract

We obtain asymptotic estimates on the probabilities of events of special types which
are usefull in quantum information theory, especially in the theory of identification for
noisy channels.

1 Introduction

Let T be the topological Hausdorff space with Borel σ–algebra B. Also let (Pn)∞n=1 be a
sequence of distributions on T . We say that the large deviations principle (LDP) for (Pn)∞n=1

is valid if there exists a functional I : T → R, I 6≡ 0,∞ such that for arbitrary B ∈ B the
following relations are valid

− inf
ξ∈Bo

I(ξ) ≤ lim inf
n→∞

ln Pn(B)

n
≤ lim sup

n→∞

ln Pn(B)

n
≤ − inf

ξ∈B̄
I(ξ), (1)

where B̄ (Bo) is the closure (open kernel) of the set B. In the case where T is a metric space
we say that the local LDP for (Pn)∞n=1 is valid if there exists a functional I : T → R, I 6≡ 0,∞
such that for arbitrary z ∈ T

lim
δ→0

lim
n→∞

ln Pn(Bz,δ)

n
= −I(z),

where Bz,δ = {y ∈ T : d(y, z) ≤ δ} is the ball of radius δ centered in z.

Let Hd be the space of Hermitian d × d matrices and let Pd be a distribution on it. Space
Hd is naturally isomorphic to the linear space R

d2
and the dimension of it equals d2. The

large deviations theory in R
d2

is properly developed. We recall it. Let t ∈ Rd2
and let

Λ(t) = Ee(t,z) < ∞. (2)

Then the value
Λ∗(ξ) = sup

t∈Rd2

((t, ξ) − ln Λ(t))

is the rate function for the sequence of probabilities (Pn)∞n=1, where

Pn(B) =

(

1

n

n
∑

i=1

Zi ∈ B

)
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Zi ∈ Hd, B ∈ B. If we consider in addition the exponential tightness of the sequence of
probabilities (Pn)∞n=1 then the LDP for (Pn)∞n=1 is still valid (with rate function Λ∗), when
d = ∞.

Actually one of the interesting problems for Quantum Information Theory is the estimation
of the probability of the events (see [2])

B(C) = {Z 6≤ C}, (3)

B′(C) = {Z 6< C}, (4)

where Z = 1
n
Zn = 1

n

∑n

i=1 Zi and (Zi)
∞
n=1 is the sequence of i.i.d. random Hermitian matrices

of finite dimension d × d and C is some Hermitian matrix. Note that Bn(C) is open and
when d < ∞ then B′

n(C) is closed. Then we also consider the case when Zi is random
Hilbert-Schmidt operator on an infinite dimensional separable Hilbert space H.

Let’s consider at first that the dimension d of the ground space H is finite. Note that in this
case sequence (Pn)∞n=1 is exponentially compact.1 It is easy to see that the sets Bn(C), B′

n(C)
are Borel sets.

Next we prove that if
EZi 6∈ B′(C), (5)

then

− inf
x∈Cd

lim
δ→0

Λ′(C−Iδ, x) ≤ lim inf
n→∞

ln Pn(B(C))

n
≤ lim sup

n→∞

ln Pn(B(C))

n
≤ − inf

x∈Cd
Λ′(C, x), (6)

and

lim
n→∞

ln Pn(B′(C))

n
= − inf

x∈Cd
Λ′(C, x), (7)

where
Λ′(C, x) = sup

t∈R

(t(x,Cx) − ln Λ̄(t, x)), Λ̄(x) = Eet(x,Zix)

and I is the unit matrix. It is enough to optimize the expressions in the last relations only
over unit vectors x ∈ Cd.

Note that if
EZi ∈ B(C),

then

lim
n→∞

ln Pn(B(C))

n
= lim

n→∞

ln Pn(B′(C))

n
= 0.

We will produce the proof of (6), (7) in such a way that it will be valid for d = ∞ after
minor changes. First of all we prove that the limit in the LHS of (6) exists. Note that the

1This means that for every nonnegative real number δ there exists a compact set Kδ with Pn(Kδ) < e−δn

for all large n.
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relations

Zn =
n

∑

i=1

Zi 6≤ Cn,

Zn =
n

∑

i=1

Zi 6< Cn

mean that for some x ∈ Rd

(x, Znx) > (x,Cx)n

or
(x, Znx) ≥ (x,Cx)n

corresspondingly.

The closure of the set S = {Z 6< nC} is contained in the set
⋃

x∈Rd

{(x, Zx) > n((x,Cx) − ǫx)} , t > 0,

where ǫx are choosen in such a way that

(x,EZix) < (x,Cx) − ǫx.

Since the sequence (Pn)∞n=1 is exponentially compact, for every L < ∞ one can choose the
compact set K ⊂ Rd2

such that for large enough n,

ln(Pn(Rd2
\ KL))

n
n < −L. (8)

Then the set S ′ = S̄
⋂

KL is also compact and one can choose finitely many x1, x2, . . . , xm ∈
Rd such that

S ′ ⊂
m
⋃

j=1

{(xj, Zxj) > (xj, Cxj) − ǫxj
}.

For every set {(xj, Zxj) > (xj, Cxj)} the LDP for (Pn)∞n=1 is valid with rate function
Λ′(C, xj). Indeed in this case we deal with the one dimensional random variable (xj, Zxj)
and by the previous condition Ee((xj ,Zi,xj)t) < ∞. Therefore

−Λ′(C − Iδ, xj) ≤ lim inf
n→∞

ln Pn (t(xj, Z
nxj) > nt(xj, Cxj))

n
≤

≤ lim sup
n→∞

ln Pn (t(xj, Z
nxj) > nt(xj, Cxj))

n
≤

≤ lim sup
n→∞

ln Pn

(

t(xj, Z
nxj) > nt((xj, Cxj) − ǫxj

)
)

n
≤

tag9

≤ −Λ′(C − Iǫ, xj)

and
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−Λ′(C, xj) ≤ lim inf
n→∞

ln Pn (t(xj, Z
nxj) ≥ nt(xj, Cxj))

n
≤

≤ lim sup
n→∞

ln Pn (t(xj, Z
nxj) ≥ nt(xj, Cxj))

n
≤

≤ lim sup
n→∞

ln Pn

(

t(xj, Z
nxj) ≥ nt((xj, Cxj) − ǫxj

)
)

n
≤ (10)

≤ −Λ′(C − Iǫxj
, xj).

The RHS equalities in the relations (9) (10) are a consequence of the Chebyshev inequality.
The LHS equalities in the relations (9) (10) are a consequence Cramer’s theorem for semi-
infinite intervals (see [1]: for an arbitrary a ∈ R and a sequence of i.i.d. random variables
(χi)

∞
i=1

lim
n→∞

ln P
(

1
n

∑n

i=1 χi ∈ [a,∞)
)

n
= − inf

x≥a
Γ(x),

where for every i
Γ(x) = sup

t∈R

(xt − ln Eetχi).

Now we choose
L > inf

x∈Cd
Λ′(C, x) (11)

and then we have

− inf
x∈Cd

lim
δ→0

Λ′(C − Iδ, x) ≤ lim inf
n→∞

ln Pn(B(C))

n
≤ lim sup

n→∞

ln Pn(B(C))

n
≤

≤ lim sup
n→∞

ln
(

Pn(B(C)
⋂

KL) + Pn(Rd \ KL)
)

n
≤ (12)

≤ − inf
xj

(Λ′(C − Iǫxj
), xj)) + o(1), (13)

− inf
x∈C

Λ′(C, x) ≤ lim
n→∞

ln Pn(B′(C))

n
≤

≤ lim sup
n→∞

ln
(

Pn(B′(C)
⋂

KL) + Pn(Rd \ KL)
)

n
≤ (14)

≤ − inf
xj

(Λ′(C − Iǫxj
, xj)) + o(1), (15)

where o(t) is the rest term which follows from the relation (11) and the fact that we take
infxj

. Because we can change the range over which the infimum at the RHS of the last chain
of relations is taken to x ∈ Rd, we obtain that

lim
n→∞

ln Pn(B′(C))

n
= − inf

x∈Cd
Λ′(C, x),

inf
x∈Cd

lim
δ→0

Λ′(C − Iδ, x) ≤ lim inf
n→∞

ln Pn(B(C))

n
≤ lim sup

n→∞

ln Pn(B(C))

n
≤ − inf

xj

(Λ′(C − Iǫxj
, xj)).

Since for every xj, (xj, EZixj) < (xj, Cxj)− ǫxj
, the function Λ′(C − Iǫxj

, xj) monotonically
increase as ǫxj

decreases we can omit ǫ in the RHS of the relations (13), (15). Now we
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consider the case when d = ∞ and we consider the matrices, which corresspond to self-
adjoint Hilbert-Schmidt operators on Hilbert space H. We suppose that EZi is also H-S
matrix. In this case all previous considerations are still valid under the assumption that
(Pn)∞n=1 is exponentially tight. Hence we should find out in which cases this assumption
is valid. Recall that for the self-adjoint Hilbert-Schmidt matrix Z = (zij) the following
relations are valid

||Z|| ≤ ||Z||2 ≤ ||Z||1,

where || · || is uniform norm ,

||Z||22
∆
= tr(Z2) =

∑

i,j

|aij|
2

is the square of the Hilbert-Schmidt norm and

||Z||1 = tr|Z|

is the trace-norm (if it exists). Hence to every Hilbert-Schmidt (H-S) matrix corressponds in
the natural order the sequence of reals which is ℓ2−sequence and vice versa. If one considers
the set of all ℓ2−sequences A = {a} such that

|aj| ≤ bj

for some given ℓ2− sequence b of positive reals, then the set A is compact (in ℓ2− norm).
Hence the exponential tightness of the sequence (Pn)∞n=1 is a consequence of the following
condition. Let b = {b1, b2, . . . , bn, . . . , } be some ℓ2− sequence of positive reals and let
Z = (zi) be the R∞- representation of self-adjoint H-S matrix Z. If for some natural n the
sum

πn =
∞

∑

j=1

(

e−nΩ+
j (bj) + e−nΩ−

j (bj)
)

, (16)

where
Ω±

i (b) = sup
t∈R

((t, Ezj ± bj) − ln Ee(t,zj)), (17)

converges, then the sequence (Pn)∞n=1 is exponentially compact. Note that the RHS of
inequality (16) is nothing else but the additive upper bound for the probability that |Ezi −
zi| > bi for some i. It is easy to see that if (17) is valid, then for any given L > 0 one can
choose i such that

∑

j>i

(

e−Ω+
j (bj)n + e−Ω−

j (bj)n
)

<
1

i + 1
e−Ln.

Then we use the relation, which follows from the finiteness of Λ(t),

lim
|b|→∞

Ω±
m(b)

|b|
= ∞

to choose the values b̄1, b̄2, . . . , b̄i > 0 such that

e−Ω±
m(b̄m)n <

1

i + 1
e−Ln,m = 1, 2, . . . , i.
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Then we have
πn < e−Ln (18)

and b̄1, b̄2, . . . , b̄i, bi+1, . . . is ℓ2−sequence. From (18) it follows that Pn is exponentially com-
pact.

Note that even if one considers the diagonal matrices A and distribution P on them (all
elements on the diagonals of matrices from A are ℓ2−sequences) and we have no information
about the joint distributions of different diagonal elements the only possible upper bound
for the probability P (|Zn −EZn| 6≤ Cn), where C is some self-adjoint bounded operator, is
the additive bound (16), which can be obtained by using the Chebyshev inequality for the
estimation of deviations P (|zj − Ezj| > cjn).

The last thing we should like to note is a convenient upper asymptotic bound on the prob-
ability of the event Zn 6≤ Cn, which follows from our considerations. As in estimations (13)
we use the Chebyshev estimation (x is unit vector)

Pn(Bn(C)) ≤ e−n(inf
x∈Rd(t(x,Cx)−ln Ee

t(x,Zj,x)+ǫ)) =

= eǫn sup
x∈Rd

(

Eet(x,Zj ,x)e−t(x,Cx)
)n

≤

≤ eǫn sup
x∈Rd

(

(x,Eet(Zj−C), x)
)n

≤ eǫn||EetZj−tC ||n.

Here the second inequality follows from the inequality

e(x,Zx) ≤ (x, eZx),

which in turn is a consequence of the convexity of ey. Since ǫ > 0 is arbitrary we have

lim sup
n→∞

ln Pn(B(C))

n
≤ inf

t≥0
ln ||EtZj−tC ||.

This formula under the assumption of exponential compactness is also valid for d = ∞.

Note also that the unitary transformation U = {up,q} preserve the compactness and if for
some H-S matrices A = {ai,j}, B = {bi,j}, |ai,j| ≤ |bi,j|, then for the matrices A′ = UAU∗ =
{a′

i,j} and B′ = UBU∗ = {b′i,j} we have

|a′
i,j| = |

∑

p,q

ui,pap,qu
∗
q,j| ≤

∑

p,q

|ui,p||ap,q||u
∗
q,j| ≤

∑

p,q

|ui,p||bp,q||u
∗
q,j|

and
∑

i,j

|a′
i,j|

2 ≤
∑

p,q

|bp,q|
2 < ∞.

Hence, we can view {|ai,j|} as a sequence (in any order). It has ℓ2−majorant {|bi,j|} in
some basis the conjugate sequence a′

i,j has the property that |a′
i,j| has the majorant |UBU∗

ij|.
Hence one could check the validness of the relations (16), (17) in some most convenient basis
for the corresponding estimations.
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At the end we should like to state an open problem. Let {Zj}
∞
n=1 be a sequence of i.i.d.

Hermitian d × d matrices. Then the following chain of relations is valid

Tr
(

E
(

e
Pn

i=1 Zi

))

= E
(

Tr
(

e
Pn

i=1 Zi

))

≤

≤ E
(

Tr
(

e
Pm

i=1 Zi

)

Tr
(

e
Pn

i=m+1 Zi

)

)
)

= E
(

Tr
(

e
Pm

i=1 Zi

))

E
(

Tr
(

e
Pn

i=m+1 Zi

))

=

= Tr
(

E
(

e
Pm

i=1 Zi

))

Tr
(

E
(

e
Pn

i=m+1 Zi

))

.

Here the first inequality is a consequence of the Golden - Thompson inequality (see [4], [3])

Tr
(

eA+B
)

≤ Tr
(

eAeB
)

.

Hence the sequence (an)∞n=1 with

an = ln Tr
(

E
(

e
Pn

i=1 Zi

))

is subadditive
an ≤ am + an−m

and there exists the limit
a

∆
= lim

n→∞

an

n
.

The problem now is to find an explicit expression for this limit in terms of a ‘single letter
characterization’ i.e. in terms of the marginal distribution of Zj.

If Zj are commutative, then

ln

∣

∣

∣

∣

|
(

EeZi
)n

∣

∣

∣

∣

| ≤ an ≤ ln
(

d||EZi||n
)

. (19)

Because E = EeZi is A self-adjoint operator

||E||2 = ||E2||

and hence from (19) and the convergence of (an/n)∞n=1 it follows that

lim
n→∞

an

n
= lim

k→∞

a2k

2k
= ln ||EeZi||.

Also in any case
an ≤ ln d||EeZi||n

and hence
lim

n→∞

an

n
≤ ln ||EeZi||.

From the inequalities

||Ee
Pn

i=1 Zi|| ≤ TrEe
Pn

i=1 Zi ≤ d||Ee
Pn

i=1 Zi||
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it follows that

lim
n→∞

ln ||Ee
Pn

i=1 Zi||

n
= a.
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