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The shadow minimization problem for t-intersecting systems of finite sets is considered.
Let A be a family of k-subsets of N. The �-shadow of A is the set of all (k−�)-subsets ∂�A
contained in the members of A. Let A be a t-intersecting family (any two members have
at least t elements in common) with |A| =m. Given k,t,m the problem is to minimize
|∂�A| (over all choices of A). In this paper we solve this problem when m is big enough.

1. Introduction and result

N denotes the set of positive integers and the set {1, . . . ,n} is abbreviated
as [n]. Given n,k∈N and X⊂N denote

2[n] =
{
F : F ⊂ [n]

}
,

(
X

k

)
= {F ⊂ X : |F | = k}.

A finite family A⊂
(X

k

)
is called t-intersecting if |A∩B|≥ t for all A,B∈A.

In the sequel this definition is used for X = [n] resp. X =N. I(n,k,t) resp.
I(∞,k, t) denote the sets of all such families.

We use the notation ‖A‖=
∣∣ ⋃
A∈A

A
∣∣.

The �-shadow of A⊂
(X

k

)
is defined by ∂�A=

{
F ∈

( X
k−�

)
:∃A∈A :F ⊂A

}
.

When �=1 we write ∂A. Define the colex order for the elements A,B∈
(
N

k

)
as follows:

A < B ⇔ max
(
(A � B) ∪ (B � A)

)
∈ B.
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For a family F ⊂
(
N

k

)
we denote by LmF the set of the first m elements

of F (m≤|F|) in colex order.
Let A⊂

([n]
k

)
(or A⊂

(
N

k

)
) with |A|=m. How small can |∂�A| be?

The well known Kruskal–Katona Theorem (proved by Kruskal [8], by
Katona [6] and by Lindström and Zetterström [9]) solves the (shadows min-
imization) problem for any parameters n,k,m,�.

Theorem KK.

|∂�A| ≥
∣∣∣∣∣∂�

(
Lm

(
[n]
k

))∣∣∣∣∣ .(1.1)

Let now A ∈ I(n,k,t). What can we say about |∂�A|? (Can we have a
result like Theorem KK?) An important result of Katona [7] is the following

Theorem Ka. For integers 1≤�≤ t and t≤k≤n, A∈I(n,k,t)

|∂�A| ≥ |A|
(2k−t

k−�

)
(2k−t

k

) .(1.2)

For extensions and analogues of this inequality see Frankl [4].
In the lemma below we characterize equality in (1.2). The inequality

actually is not valid for �>t: for example for t=1, �=2, k=3 and n≥7 the

1-intersecting EKR family satisfies |∂2(A)|
|A| = n

(n−1
2 )<

(2k−t
k−� )
(2k−t

k ) =
1
2 .

Thus in general finding the exact lower bound for |∂�A| for any given
parameters n,k,t,�,m is an open (and seemingly difficult) problem.

We state now our result, which solves the problem when the ground set
is N and m is big enough. For integers 1≤r≤s, k≥r define

B(k, s, r) =
{
B ∈

(
N

k

)
: |B ∩ [s]| ≥ r

}
.

Theorem. Let A∈I(∞,k, t).

(a) For 1≤�≤ t<k and |A|=m>m1(k,t,�) (suitable) we have

|∂�A| ≥ |∂�LmB(k, 2k − 2− t, k − 1)|.

(b) For 1≤ t<�<k and |A|=m>m2(k,t,�) (suitable) we have

|∂�A| ≥ |∂�LmB(k, t, t)|.
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2. An auxiliary result

Lemma. Under the conditions of Theorem Ka equality in (1.2) holds iff

A=
([2k−t]

k

)
.

Proof. Actually for any 1 ≤ �, t ≤ k counting edges, which are defined by
containment, in the bipartite graph (A,∂�A) in two ways one gets for s=‖A‖

|∂�(A)| ≥ |A|
(k
�

)
(s−k+�

�

) .(2.1)

Now in the

Case 1: s≤2k− t
we continue with

|∂�(A)| ≥ |A|
(k
�

)
(k−t+�

�

) = |A|
(2k−t

k−�

)
(2k−t

k

)
with equality iff s=2k− t.

(Notice that in this case the assumption �≤ t is not used.)

Case 2: s>2k− t.
Recall the well known shifting operation Sij defined for any F ∈2[n] and

for any family F⊂2[n]. For integers 1≤ i<j≤n

Sij(F ) =

{(
(F � {j}) ∪ {i}

)
, if i /∈ F, j ∈ F,

(
(F � {j}) ∪ {i}

)
/∈ F ;

F, otherwise.

Sij(F) = {Sij(F ) : F ∈ F}.

We say that F is shifted, if Sij(F)=F for all 1≤ i<j≤n.
The following properties of Sij(F) are well known (see e.g. [2] or [3])

P1. |Sij(F)|= |F|,
P2. ∂�Sij(F)⊂Sij(∂�F) (hence |∂�Sij(F)|≤|∂�F|),
P3. F∈I(n,k,t)⇒Sij(F)∈I(n,k,t).

We also need the following result due to Mörs [10] and Füredi and
Griggs [5].

Theorem MFG. Let F ⊂
([n]

k

)
have minimal �-shadow, then its (�+1)-

shadow is minimal as well.

In particular the theorem implies that for an optimal family F the shifting
operation does not decrease ‖F‖. In particular if F is a t-intersecting family
with minimal �-shadow and |F|≤

(2k−t
k

)
then ‖F‖≤2k− t.
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Combining all these facts we conclude that w.l.o.g. we can assume that
A is shifted.

Define now

A1 = {A ∈ A : s ∈ A},A0 = A � A1, A′
1 = {A � {s} : A ∈ A1}.

Proposition 1. |∂�A|= |∂�A0|+ |∂�A′
1|.

Proof. Define

B1 = {B ⊂ ∂�A1 : s ∈ B}, B0 = ∂�A1 � B1.

It is not hard to see that the shiftedness of A implies that B0 ⊂ ∂�A0.
Also it is clear that B1∩∂�A0=∅.

Proposition 2. For s≥2k− t+1 A′
1⊂
([s−1]

k−1

)
is a t-intersecting family.

Proof. Suppose A′
1 is (t− 1)-intersecting, that is there are two elements

A,B ∈ A1 with |A∩B|= t. Then in view of the shiftedness we must have
|A∪B|=s. This is clear, because otherwise there exists i∈ [s]�(A∪B) such
that Sis(A)�A′∈A�{A}, and hence |A′∩B|= t−1 a contradiction. Note
however that for s≥2k− t+1 the conditions |A∪B|=s and |A∩B|≥ t are
contradictory.

We are prepared now to complete the proof of the lemma.
We proceed by induction on s≥2k−t. The induction beginning s=2k−t

is already done by Case 1.
For the induction s→s+1 we first show that for s≥2k− t+1

A0 �=
(
[2k − t]

k

)
.(2.2)

For this we distinguish two subcases of case 2.

Subcase s=2k−t+1: Observe that |A0|<
(2k−t

k

)
, because otherwise by

the t-intersecting property of A A1 would be empty in contradiction to
s=2k− t+1.

Subcase s ≥ 2k − t+2: Here by shiftedness ‖A0‖≥ 2k− t+1 and again
(2.2) holds.

For ‖A‖=s+1 we have ‖A0‖=s and the induction hypothesis yields

|∂�A0| > |A0|
(2k−t

k−�

)
(2k−t

k

) .(2.3)
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Further in view of Proposition 2 and (1.2) and the fact |A′
1|= |A1| we

have

|∂�A′
1| ≥ |A′

1|
(2k−2−t

k−1−�

)
(2k−2−t

k−1

) = |A1|
(2k−2−t

k−1−�

)
(2k−2−t

k−1

) .(2.4)

Finally by Proposition 1, (2.2), (2.3) and the inequality (2k−2−t
k−1−� )
(2k−2−t

k−1 )≥
(2k−t

k−� )
(2k−t

k )
(for t≥�) we get

|∂�A| > (|A1|+ |A0|)
(2k−t

k−�

)
(2k−t

k

) = |A|
(2k−t

k−�

)
(2k−t

k

) ,(2.5)

concluding the proof.

3. Proof of the theorem in case (a): 1≤�≤ t<k

Given m>
(2k−t

k

)
consider the family A∗�LmB(k,2k−2− t,k−1).

Observe that A∗ is t-intersecting.
Let us write m= |A∗| in the form

m =

(
2k − 2− t

k

)
+ n

(
2k − 2− t

k − 1

)
+ r,(3.1)

where n∈N and 0≤r<
(2k−2−t

k−1

)
.

Note then that A∗
�
([2k−2−t]

k

)
can be partitioned into n+ 1 (or n, if

r = 0) classes, where each class consists of sets containing a fixed element
j∈ [2k−1− t,2k−1− t+n] (or [2k−1− t,2k−1− t+(n−1)], if r=0).

We can observe now that

|∂�A∗| =
(
2k − 2− t

k − �

)
+ n

(
2k − 2− t

k − 1− �

)
+ ∂�(r),(3.2)

where ∂�(r)�
∣∣∣∂�

(
Lr
([2k−2−t]

k−1

))∣∣∣.
Now we show first that the ratio |∂�A∗||A∗|−1 can be approximated like

in (1.2) of Katona’s Theorem from above but also from below by passing
from k to k−1. By elementary calculations of binomial coefficients we get
Claim 1 below. The lower bound is not needed in this paper, but perhaps
useful elsewhere.

In the second part of this proof of (a) we show that for any family A �⊂
B(k,2k−2−t,k−1), |A|=m, we can establish a lower bound for |∂�A| which
exceeds the upper bound in Claim 1 for m large. This contradiction will
complete the proof of (a).
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Claim 1.

m

(2k−2−t
k−1−�

)
(2k−2−t

k−1

) + 1 ≤ |∂�A∗| ≤ m

(2k−2−t
k−1−�

)
(2k−2−t

k−1

) + α,(3.3)

for some 1≤α<
(2k−1−t

k−�

)
.

Proof. Let us abbreviate (2k−2−t
k−1−� )
(2k−2−t

k−1 ) by λ. We want to see how much |∂�A∗|
deviates from mλ.

The following identity can be easily verified using (3.1) and (3.2).

|∂�A∗| = mλ+

(
2k − 2− t

k − �

)
−
(
2k − 2− t

k

)
λ+ ∂�(r)− rλ.(3.4)

Since ∂�(r)<
(2k−2−t

k−�−1

)
in view of (3.4) we have the desired upperbound

|∂�A∗| < mλ+

(
2k − 2− t

k − �

)
+

(
2k − 2− t

k − �− 1

)
= mλ+

(
2k − 1− t

k − �

)
,

(which can be improved, but is good enough for our purposes).
Furthermore by (1.2) we have ∂�(r)≥rλ. Also one can check that(

2k − 2− t

k − �

)
−
(
2k − 2− t

k

)
λ =

�

k

(
2k − 1− t

k − �

)
≥ 1.

Hence by (3.4) we get our lower bound

|∂�A∗
� | ≥ mλ+ 1.(3.5)

Note that the constant 1 cannot be improved in general. For example for
k= t+1, �=1 and r=0 we have equality in (3.5).

Suppose now A∈I(∞,k, t) is an optimal family (has minimal �-shadow)
with |A|=m>

(2k−t
k

)
and ‖A‖=u. Suppose also again that A is shifted.

Let us partition A into s+1 disjoint classes A=
⋃s+1

i=1 Ai, s�u−(2k−t),
defined by

A1 = {A ∈ A : u ∈ A},
A2 = {A ∈ A � A1 : u− 1 ∈ A},

...
As = {A ∈ A � (A1 ∪ · · · ∪ As−1) : u− s+ 1 ∈ A},

As+1 = A � (A1 ∪ · · · ∪ As).
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Note that As+1⊂
([2k−t]

k

)
.

Define also

A′
i = {A � {u− i+ 1} : A ∈ Ai}, i = 1, . . . , s.

Since A is shifted, from Proposition 1 we infer that

|∂�A| = |∂�As+1|+ |∂�A′
s|+ · · ·+ |∂�A′

1|.(3.6)

We distinguish now between two cases.

Case 1: A′
i �=
([2(k−1)−t]

k−1

)
, i=1, . . . ,s.

By Proposition 2 each class A′
i, i = 1, . . . ,s, is t-intersecting. Note also

that |A′
i|= |Ai|. Therefore by the Lemma we have

|∂�A′
i| ≥ |Ai|

(2(k−1)−t
k−1−�

)
(2(k−1)−t

k−1

) + 1, i = 1, . . . , s.

This with (3.6) implies

|∂�A| ≥ |∂�As+1|+ λ
(
|A1|+ · · ·+|As|

)
+ s = |∂�As+1|+ λ|A| − λ|As+1|+ s

> λ|A|+ s− λ|As+1|.

Since |As+1| <
(2k−t

k

)
we have β = β(k,t,�) � λ|As+1| < λ

(2k−t
k

)
and a

fortiori |∂�A|>m
(2k−2−t

k−1−� )
(2k−2−t

k−1 ) +s−β, where β<
(2k−t

k

)(2k−2−t
k−1−� )
(2k−2−t

k−1 ) .

If now m is big enough, such that s≥β+
(2k−t−1

k−�

)
, then in view of (3.3)

we get |∂�A|> |∂�A∗|, a contradiction with the optimality of A.
Case 2: There exists a family Ai, i∈{1, . . . ,s} such that

A′
i =

(
[2k − 2− t]

k − 1

)
.(3.7)

Claim 2.
A ⊂ B(k, 2k − 2− t, k − 1).

Proof. By definition each member of Ai contains the element u− i+1 and
u−i+1≥2k−t+1, since i≤s=u−2k+t. Also in view of (3.7) Ai contains the
set B1 �{k−t, . . . ,2k−2−t,u−i+1}. Moreover by the shiftedness (and the
fact that u−i−1>2k−2−t) A contains also B2 �{k−t, . . . ,2k−2−t,u−i}
and B3 �{k− t, . . . ,2k−2− t,u− i−1}.

Suppose now F ∈A and F /∈B(k,2k−2−t,k−1), that is |F ∩ [2k−2−t]|≤
k − 2. In view of the shiftedness we can take F = {1, . . . ,k′} ∪E, where
{1, . . . ,k′}=F ∩ [2k−2− t], k′≤k−2.
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If k′ < k− 2, then observe that |F ∩B1| < t, a contradiction. Let now
k′=k−2. Then clearly |{1, . . . ,k′}∩Bj |= t−1 (j=1,2,3). Hence (to provide
t-intersection with B1,B2,B3) F must contain the elements u− i+1, u− i
and u− i−1, a contradiction with |F |=k.

To complete the proof of case (a) we use a special case of the result in [1].

Theorem AAK. For s,r,k ∈ N, 1 ≤ r ≤ s,� ≤ k let F ⊂ B(k,s,r) with
|F|=m. Then

|∂�F| ≥ |∂�LmB(k, s, r)|.

4. Proof of the theorem in case (b): 1≤ t<�<k

Claim. It is sufficient to consider the case �= t+1.

Proof. Let’s explain first that (for �≥ t)

∂�LmB(k, t, t) = LM∗

(
N

k − �

)
,

where M∗� |∂�LmB(k,t, t)|.
By definition of Bm(k,t, t)

LmB(k, t, t) =
{
[t] ∪ E : E ∈ Lm

(
N � [t]
k − t

)}
.

Since �≥ t the largest element F of ∂�LmB(k,t, t) (in colex order) satisfies
F ∈ ∂�−tLm

(
N�[t]
k−t

)
. Therefore for every (k− �)-set F ′ < F there exists B ∈

LmB(k,t, t) such that F ′⊂B and the identity follows.
Suppose now we have proved the theorem for some �≥ t+1. That is for

any family A∈I(∞,k, t) with |A|=m (m>m2(k,t,�)) we have

M � |∂�A| ≥ |∂�LmB(k, t, t)| = M∗.

Then using Theorem KK we can write

|∂�+1A|= |∂(∂�A)| ≥
∣∣∣∣∣∂LM

(
N

k−�

)∣∣∣∣∣≥
∣∣∣∣∣∂LM∗

(
N

k−�

)∣∣∣∣∣= |∂�+1LmB(k, t, t)|.

Let now �= t+1 and let A∈I(∞,k, t) be an optimal, shifted family with
|A|=m.

Define next (in new notation)

A1 = {A ∈ A : 1 ∈ A}, A′
1 = {A � {1} : A ∈ A1}, A0 = A � A1,

and denote |A0|=m0, |A1|=m1=m−m0.
We consider two cases.
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Case 1: A0=∅

Clearly we have

|∂t+1A| = |∂tA′
1|+ |∂t+1A′

1|.

Since A′
1∈I(∞,k−1, t−1) we can use induction on t (the case t=1 can

be easily derived). That is we have

|∂t+1A| ≥ |∂tLmB(k − 1, t− 1, t− 1)|+ |∂t+1LmB(k − 1, t− 1, t− 1)|
= |∂t+1LmB(k, t, t)|.

Case 2: A0 �=∅.
Let us note first that A0 is (t+1)-intersecting. This easily follows from

the shiftedness of A.
Hence by (1.2) we have

|∂t+1A0| ≥ |A0|.(4.1)

Also in view of the shiftedness {2, . . . ,k+1}∈A0 �=∅.
This implies that

A′
1 ⊂ F �

{
F ∈

(
N � {1}
k − 1

)
: |F ∩ {2, . . . , k + 1}| ≥ t

}
.

We apply now Theorem AAK to A′
1 identifying F with B(k−1,k, t). We

get then

|∂t+1A′
1| ≥ |∂t+1Lm1B(k − 1, k, t)|, |∂tA′

1| ≥ |∂tLm1B(k − 1, k, t)|.(4.2)

Obviously we also have

k−t−1∑
i=0

(
k

t+i

)(
x−k

k−1−t−i

)
< |A′

1| = m1 ≤
k−t−1∑

i=0

(
k

t+i

)(
x−k+1
k−1−t−i

)
,(4.3)

where x=‖Lm1B(k−1,k, t)‖−1.
Therefore for a positive constant c1=c1(k,t)

m1 ∼ c1x
k−1−t.(4.4)

On the other hand

|∂t+1A1| = |∂t+1A′
1|+ |∂tA′

1|.
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This with (4.2) and (4.3) gives for another positive constant c2=c2(k,t)
the estimation

|∂t+1A1| ≥ |∂tA′
1| ≥

(
x

k − t− 1

)
≥ c2m1.(4.5)

Assuming now, for a contradiction, that |∂t+1A| ≤ |∂t+1LmB(k,t, t)| we
observe that for any ε>0, if m≥m(ε,t,k), suitable, we have

|∂t+1A|
|A| =

|∂t+1A|
m

≤ |∂t+1LmB(k, t, t)|
m

< ε.

This with (4.1) implies for m>m(ε,t,k) also

ε >
|∂t+1A|
|A| ≥ |∂t+1A0|

|A| ≥ |A0|
|A| =

m0

m
= 1− m1

m
.(4.6)

Together with (4.5) we get

ε >
|∂t+1A|
|A| ≥ |∂t+1A1|

|A| ≥ c2m1

m
or

m1

m
≤ ε

c2
.

On the other hand (4.6) implies that m1
m >1−ε and thus ε>(1−ε)c2.

This contradiction completes the proof of (b).

5. Remarks

1. We give a numerical version for case (a) of our theorem. Note first that
any integer m>

(2k−t
k

)
can be uniquely represented in the form (3.1). Also

we can uniquely represent r in the (k−1)-cascade form (see [2] or [3])

r =

(
ak−1

k − 1

)
+ · · ·+

(
as

s

)
,

where ak−1>ak−2> · · ·>as≥s≥1.
Then in view of our theorem and Theorem KK we have the following:
For 1≤�≤ t<k and m>m1(k,t,�) holds

|∂�A| ≥
(
2k − 2− t

k − �

)
+ n

(
2k − 2− t

k − �− 1

)
+

(
ak−1

k − 1− �

)
+ · · · +

(
as

s− �

)
.

Note that for applications one can use also the lower estimate in (3.3)
(for m>m1(k,t,�)).
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2. As an improvement of the theorem it would be interesting to find minimal
values of m1(k,�, t) and m2(k,�, t) for which the result holds. In fact for
the case (a) the proof gives also an upper bound for m1(k,�, t). However
this estimation seems to be rough.
More generally one should decide whether t-intersecting B(k,s,r) sets are
extremal.
On the other hand note that our theorem is not valid for all m>

(2k−t
k

)
.

Here are examples for cases (a) and (b).

(a) 1≤�<t.
Let k>3, t=�=1, m=

(2k−1
k

)
+1. Then we can write

m =

(
2k − 3

k

)
+ 3

(
2k − 3
k − 1

)
+ 1.

Hence

∆1 � |∂
(
LmB(k, 2k − 3, k − 1)

)
| =

(
2k − 3
k − 1

)
+ 3

(
2k − 3
k − 2

)
+ k − 1

= 4

(
2k − 3
k − 1

)
+ k − 1.

Define now the following intersecting family

F =

((
[2k − 1]

k

)
� {k, . . . , 2k − 1}

)
∪ {1, . . . , k − 1, 2k} ∪

{1, . . . , k − 1, 2k + 1}.

Clearly |F|=
(2k−1

k

)
+1 and |∂F|=

(2k−1
k−1

)
+2(k−2)= 3

(2k−3
k−1

)
+
(2k−3

k−3

)
+

2(k−2).
Thus |∂F|<∆1.

(b) 1≤ t<�.
For the same m,k and t=1, let now �=2. Then

∆2 �
∣∣∂2
(
LmB(k, 1, 1)

)∣∣ =
(

2k
k − 2

)
+

(
k − 1
2

)
,

while

|∂2F| =
(
2k − 1
k − 2

)
+ 2

(
k − 1
2

)
< ∆2.
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[10] M. Mörs: A generalization of a theorem of Kruskal, Graphs and Combinatorics 1
(1985), 167–183.

R. Ahlswede, H. Aydinian, L. H. Khachatrian

Department of Mathematics

University of Bielefeld

Box 100131

D-33501 Bielefeld

Germany

hollmann@Mathematik.uni-Bielefeld.de

mailto:hollmann@Mathematik.uni-Bielefeld.de

	Heading
	1. Introduction and result
	2. An auxiliary result
	3. Proof of the theorem in case (a): $1\leq \ell \leq t<k$
	4. Proof of the theorem in case (b): $1\leq t<\ell <k$
	5. Remarks
	References

