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The shadow minimization problem for t-intersecting systems of finite sets is considered.
Let A be a family of k-subsets of N. The ¢-shadow of A is the set of all (k—¢)-subsets 0¢.A
contained in the members of A. Let A be a ¢-intersecting family (any two members have
at least ¢ elements in common) with |A| =m. Given k,t,m the problem is to minimize
|00 A| (over all choices of A). In this paper we solve this problem when m is big enough.

1. Introduction and result

N denotes the set of positive integers and the set {1,...,n} is abbreviated
as [n]. Given n,k€N and X CN denote

ol = [F . F c [n]}, (‘:) —{FC X :|F|=k}.

A finite family A C ()]g) is called t-intersecting if |ANB| >t for all A, B€ A.
In the sequel this definition is used for X = [n] resp. X =N. I(n,k,t) resp.
I(00,k,t) denote the sets of all such families.
We use the notation ||Al|=| U Al.
AcA

The ¢-shadow of AC ()k() is defined by 6@A:{F€ (k‘)fé) :EIAE.A:FCA}.

When /=1 we write 0. A. Define the colex order for the elements A, B € (121)
as follows:

A< B& max((ANB)U (B A)) € B.
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For a family F C (I,j) we denote by L,,F the set of the first m elements
of F (m<|F|) in colex order.

Let AC ([2}) (or AC (?)) with |A|=m. How small can |0y.A| be?

The well known Kruskal-Katona Theorem (proved by Kruskal [8], by
Katona [6] and by Lindstrom and Zetterstrom [9]) solves the (shadows min-
imization) problem for any parameters n,k,m,¥¢.

()

Let now A € I(n,k,t). What can we say about |0p.A|? (Can we have a
result like Theorem KK?) An important result of Katona [7] is the following

Theorem KK.

(1.1) |0p A| >

Theorem Ka. For integers 1</<t and t<k<n, A€I(n,k,t)

2k—t
(r—e)
2k—t
)
For extensions and analogues of this inequality see Frankl [4].
In the lemma below we characterize equality in (1.2). The inequality
actually is not valid for £>t¢: for example for t=1, /=2, k=3 and n>7 the

2k—t

N ) B

(1.2) 00 A| = | Al

AT SR T

Thus in general finding the exact lower bound for |0yA| for any given
parameters n,k,t,¢,m is an open (and seemingly difficult) problem.

We state now our result, which solves the problem when the ground set

is N and m is big enough. For integers 1 <r<s, k>r define

Bk, s,7) = {B e (f) BN s]| > r}.

Theorem. Let A€ I(oc0,k,t).

1-intersecting EKR family satisfies

(a) For 1<(<t<k and |A|=m>mq(k,t,{) (suitable) we have
|00 A| > |0e Ly B(k, 2k — 2 — t, k — 1)|.
(b) For 1<t</{<k and |A|=m>maq(k,t,l) (suitable) we have

100A| > [0 LBk, L, 1)



ON SHADOWS OF INTERSECTING FAMILIES 557

2. An auxiliary result

Lemma. Under the conditions of Theorem Ka equality in (1.2) holds iff
A= ([zkk_ﬂ)-

Proof. Actually for any 1 </{,t <k counting edges, which are defined by
containment, in the bipartite graph (A, dp.A) in two ways one gets for s = ||.A||

b
5

(2.1) |0e(A)| = | A]

Now in the

Case 1: s<2k—t
we continue with

() )
O e
¢ %)
with equality iff s=2k—t.
(Notice that in this case the assumption ¢ <t is not used.)
Case 2: s>2k—t.
Recall the well known shifting operation S;; defined for any F'e 27l and

for any family F c 2", For integers 1<i<j<n

Sis(F) = { (F~ o), HighjeR (PO E7
SZ](]:) = {SZ](F) e f}

We say that F is shifted, if S;;(F)=F for all 1<i<j<n.

The following properties of S;;(F) are well known (see e.g. [2] or [3])
Pr 185 (F)| =171,
P. agsij (f) - Sij (85‘7:) (hence |8gSij (f)| < |<94]-"|),
Ps. fEI(n,k,t)iSij(]:)EI(’I’L,k‘,t).

We also need the following result due to Mors [10] and Fiiredi and
Griggs [5].

Theorem MFG. Let F C ([Z]) have minimal {-shadow, then its (£+1)-
shadow is minimal as well.

In particular the theorem implies that for an optimal family F the shifting
operation does not decrease || F||. In particular if F is a ¢-intersecting family
with minimal ¢-shadow and |F| < (2kk_t) then || F|| <2k —t.
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Combining all these facts we conclude that w.l.o.g. we can assume that
A is shifted.
Define now

A1:{A€A:$€A},A0:A\A1, A&:{A\{S}:Aégﬁh}.

Proposition 1. |0,A|=[0pAo|+ |0p. A}
Proof. Define

Bl = {B Cag.Alts EB}, BO :8@41 \Bl.

It is not hard to see that the shiftedness of A implies that By C 9pAp.
Also it is clear that B1NdpAy=9. ]

Proposition 2. For s>2k—t+1 A C ([l‘zj}) is a t-intersecting family.

Proof. Suppose A} is (t — 1)-intersecting, that is there are two elements
A,B € A; with |ANB| =t. Then in view of the shiftedness we must have
|AUB|=s. This is clear, because otherwise there exists i € [s]\ (AUB) such
that S;5(A)= A’ € A~ {A}, and hence |A'NB|=t—1 a contradiction. Note
however that for s >2k—t¢+1 the conditions |[AUB|=s and |[ANB|>t are
contradictory. ]

We are prepared now to complete the proof of the lemma.

We proceed by induction on s>2k—t. The induction beginning s =2k—1
is already done by Case 1.

For the induction s— s+1 we first show that for s>2k—¢+1

(2.2) Ay # (pkk_ ﬂ).

For this we distinguish two subcases of case 2.

Subcase s=2k—t+1: Observe that |Ay|< (%k*t), because otherwise by
the t-intersecting property of A A; would be empty in contradiction to
s=2k—t+1.

Subcase s> 2k —t-+ 2: Here by shiftedness ||A|| > 2k —t+ 1 and again

(2.2) holds.
For || A]|=s+1 we have ||Ap||=s and the induction hypothesis yields
(2k7t)
(2'3) ‘({“)5.140’ > ’Ao’ﬂ

*5%
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Further in view of Proposition 2 and (1.2) and the fact |A}| = |Ai| we
have
(2k—2—t)
k—1—(
(2.4) |00 AY| > A m = | A4

k-1

k—92—
(zk—12—€t)
o=
)

. L (Qk: 2— t) (Qkft)
Finally by Proposition 1, (2.2), (2.3) and the inequality R > €
i .
(for t>1) we get

(2k t) (2k t)
(2.5) |06A] > (| A1] + [ Aol) =7 = Al

%) )

concluding the proof. ]

3. Proof of the theorem in case (a): 1<£<t<k

Given m > (**~") consider the family A*2 L,,B(k,2k —2—t,k—1).
Observe that A* is t-intersecting.
Let us write m=|A*| in the form

2k —2—t 2k —2—1t
(3.1) m—( I )—i—n( ko1 )—l—r,

where n €N and 0<T<(2k 2= t).

Note then that A*~ (Zk k2 ﬂ) can be partitioned into n+1 (or n, if
r =0) classes, where each class consists of sets containing a fixed element
JERk—1—t2k—1—t+n] (or 2k—1—t,2k—1—t+(n—1)], if r=0).

We can observe now that

2k —2—1t 2k—2—1t
3.2 A = 0
(32 oA ( o >+n<k_1_€>+e(7"),
where 9y (r ’6@ ( 213;21_ ﬂ)) ’

Now we show first that the ratio |9,.4*||A*|~! can be approximated like
in (1.2) of Katona’s Theorem from above but also from below by passing
from k to k— 1. By elementary calculations of binomial coefficients we get
Claim 1 below. The lower bound is not needed in this paper, but perhaps
useful elsewhere.

In the second part of this proof of (a) we show that for any family A ¢
B(k,2k—2—t,k—1), |A|=m, we can establish a lower bound for |0y.A| which

exceeds the upper bound in Claim 1 for m large. This contradiction will
complete the proof of (a).
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Claim 1.
(2kk_2_gt) 2kk_2_gt
—1— * —1—
k—1 k—1
for some 1 <a< (2k]€__1[t).
)

Proof. Let us abbreviate ﬁ by A. We want to see how much |9p.A*|

deviates from mA.
The following identity can be easily verified using (3.1) and (3.2).

(34)  |9pA"| = mA+ <2k];_2£_ t) _ <2k o t))\ + () — .

Since 9y(r) < (37 27") in view of (3.4) we have the desired upperbound

. -2\ (-2t % —1—1t
|8g.A\<m/\+< ¢ >+<k—€—1>m)\+< 0 ),

(which can be improved, but is good enough for our purposes).
Furthermore by (1.2) we have dy(r)>rA\. Also one can check that

2k —2—t 2k -2 -1t C(2k—1—1
_ A= - > 1.
k—1 k k k—1¢

Hence by (3.4) we get our lower bound
(3.5) |0p Ay > mA+ 1.

Note that the constant 1 cannot be improved in general. For example for
k=t+1, /=1 and r=0 we have equality in (3.5). 1

Suppose now A€ (00, k,t) is an optimal family (has minimal ¢-shadow)
with [A|=m> (") and ||.A||=u. Suppose also again that A is shifted.

Let us partition A into s+1 disjoint classes A:Ufill Ai, s2u—(2k—t),
defined by

A1Z{A€A:U€A},
Ay ={Ae AN A :u—1¢€ A},

A;={Ace AN (A U---UAs_1):u—s+ 1€ A},
A1 = AN (AU U Ay).
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Note that Az C ([% t})
Define also

Al ={A~{u—i+1}:Ac A}, i=1,...,s.
Since A is shifted, from Proposition 1 we infer that
(3.6) |00 Al = 00 As 1| + [00AG| + - - + DAY
We distinguish now between two cases.

Case 1: .A'7é([2 kk H- t]), i=1,...,s.
By Proposition 2 each class A}, i =1,...,s, is t-intersecting. Note also

that |A}|=|A;|. Therefore by the Lemma we have

2(k—1)—t

Gy

Sy

|00 ALl > | Al +1,i=1,...,s.

This with (3.6) implies

|00A| > |00 Asi1| + A(JALF+ -+ As]) + 5 = |00As1| + AA] = A A1 ] + 5
> /\’A’ + s — )\‘A5+1|.

Since |As11| < (2k7t) we have 8 = B(k,t,0) = N Ag1| < A(Zkkft) and a
2k—2— 2k—2—t
E% P t; +s5— 3, where 3< (2k t) 52]212{5;-

k—1 k—1

If now m is big enough, such that s >3+ (Zk i 1) then in view of (3.3)
we get |dpA| > [0p.A%|, a contradiction with the optlmahty of A.

fortiori |0pA| >m

Case 2: There exists a family A;, i€{1,...,s} such that

o (12k—2—1]
(3.7) Ai—< o )

Claim 2.
ACB(k,2k—2—tk—1).

Proof. By definition each member of A; contains the element u—i+1 and
u—i+1>2k—t+1, since i < s=u—2k+t. Also in view of (3.7) A; contains the
set By={k—t,...,2k—2—t,u—i+1}. Moreover by the shiftedness (and the
fact that u—i—1>2k—2—t) A contains also Bo={k—t,...,2k—2—t,u—i}
and B3={k—t,...,2k—2—t,u—i—1}.

Suppose now F € A and F ¢ B(k,2k—2—t,k—1), that is |F N [2k—2—t]| <
k —2. In view of the shiftedness we can take F = {1,...,k'} UE, where
{1,..,K'}=FN[2k—2—1t], ¥ <k-—2.
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If ¥ < k—2, then observe that |F'N B;| < t, a contradiction. Let now
k' =k—2. Then clearly |{1,...,k'}NB;|=t—1 (j=1,2,3). Hence (to provide
t-intersection with Bj, Bo, B3) F' must contain the elements v —i+1, u—1
and u—i—1, a contradiction with |F|=k. |
To complete the proof of case (a) we use a special case of the result in [1].
Theorem AAK. For s,r,k € N, 1 <r <s/{ <k let FC B(k,s,r) with
|F|=m. Then
\85}“] > ‘angB(k‘,S,T)’. [ |

4. Proof of the theorem in case (b): 1<t</t<k

Claim. It is sufficient to consider the case /=t-+1.
Proof. Let’s explain first that (for £>t)

8ngB(k,t,t)—LM*< N )

k—¢
where M* 2|0, L,,B(k,t,t)|.
By definition of B,,(k,t,t)

LBk, t,t) = {[t] UE:E eLm@\_[f])}.

Since £ >t the largest element F of 9;L,,,B(k,t,t) (in colex order) satisfies
Fedy_L,, (RIL\J:]). Therefore for every (k—{¢)-set F’' < F there exists B €
L, B(k,t,t) such that F’ C B and the identity follows.

Suppose now we have proved the theorem for some ¢>¢+1. That is for
any family A€ I(oco,k,t) with |A|=m (m>ma(k,t,£)) we have
M 2 |0pA| > |0gLyB(k,t,t)| = M*.

Then using Theorem KK we can write

N
0Ly (k:—£>

Let now {=t+1 and let A€ (00, k,t) be an optimal, shifted family with
|A|=m.

Define next (in new notation)
Ai={AecA: 1€ A}, Al={A~{1}:Ac A}, Ao=A~A,

and denote |Ag|=mo, |A1|=m1=m—my.
We consider two cases.

10011 A| = [0(0 A)| > >

N
OL (ki_£>':|aé+1[/m8(katat)| i
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Case 1: Ag=0@
Clearly we have

|01 A = |0y AL + |01 AT

Since A} € I(co,k—1,t—1) we can use induction on ¢ (the case t=1 can
be easily derived). That is we have

1041 A] > |0y Ly B(k — 1,6 — 1, — 1)| 4+ |Opp1 Lin B(k — 1, — 1,t — 1))
= 011 LinB(k, t,1)].

Case 2: Ay#£2.

Let us note first that Ay is (¢4 1)-intersecting. This easily follows from
the shiftedness of A.

Hence by (1.2) we have

(4.1) |0t41A0| > [ Aol

Also in view of the shiftedness {2,...,k+1} €4 # 2.
This implies that

A’lcfé{Fe <Nk\_{11}> :\Fn{2,...,k+1}\zt}.

We apply now Theorem AAK to A} identifying F with B(k—1,k,t). We
get then

(4.2) |0p+1 A > |01 Liny Bk — Lk, )], [0pAL] > [0 Lin, Bk — 1, k,1)].
Obviously we also have

k—t—1 k—t—1
k r—k ' k x—k+1
(43) Y (m‘) (k—l—t—i) <A =m < Z <t+i> (k—l—t—i)’

1=0 =0

where x = ||Ly,, B(k—1,k,t)|| — 1.
Therefore for a positive constant ¢; =c; (k, 1)

(4.4) my ~ e
On the other hand

|Opp1A1] = |01 AL + |0 AL
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This with (4.2) and (4.3) gives for another positive constant co =co(k,t)
the estimation

(4.5) 01 Ar| > (0,4 > (k o 1) > comy.

Assuming now, for a contradiction, that |0;41.A| < [Op41 LinB(k,t,t)| we
observe that for any € >0, if m >m(e,t,k), suitable, we have

0111 A] _ 91 A < [O+1 LBk, 8,0 _

| Al m m

This with (4.1) implies for m >m(e,t, k) also

1041 Al [0i41A0] _ Aol mo my
4.6 € > > > = - =1- -
(46) A A C A m -

Together with (4.5) we get

\8t+1A\ > ‘({9t+1¢41| > Comq miq g

or — < —.
A~ AL T om m = oc
On the other hand (4.6) implies that 7t >1—¢ and thus € > (1 —¢)ca.
This contradiction completes the proof of (b). 1
5. Remarks

1. We give a numerical version for case (a) of our theorem. Note first that
any integer m > (Zkkft) can be uniquely represented in the form (3.1). Also

we can uniquely represent r in the (k—1)-cascade form (see [2] or [3])

where ap_1>ap_o9>--->as>s>1.
Then in view of our theorem and Theorem KK we have the following:
For 1</<t<k and m>m;(k,t,¢) holds

2k —2—t 2k —2—t ap—1 Qs
> .
‘85“4’—< b= >+n<k—€—1>+<k—1—£>+ +<s—€>

Note that for applications one can use also the lower estimate in (3.3)
(for m>mq(k,t,0)).
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2. As an improvement of the theorem it would be interesting to find minimal
values of mi(k,¢,t) and meo(k,£,t) for which the result holds. In fact for
the case (a) the proof gives also an upper bound for mq(k,¢,t). However
this estimation seems to be rough.

More generally one should decide whether ¢-intersecting B(k, s, r) sets are
extremal.

On the other hand note that our theorem is not valid for all m > (
Here are examples for cases (a) and (b).

(a) 1<e<t.
Let k>3, t=(=1, m= (2k];1) +1. Then we can write

_— 2k — 3 43 2k — 3 1
N k E—1 '
Hence

Ay 2 (9L Bk, 2k — 3,k — 1)) = (2:__13> 4 3(2:__23> Fh—1

2k -3
(h o)+

Define now the following intersecting family

F= (([%k—u) \{k,...,2k—1}> U{l,....k—1,2k}U
{1,... k—1,2k+1}.

Zk]:t) ]

Clearly |F|= (*71) +1 and [0F] = (37 +2(k —2) =3(* ) + (32) +
2(k—2).
Thus |0F| < A;.

(b) 1<t<L.
For the same m,k and t=1, let now £=2. Then

Ay = |a2(LmB(ka1?1))| = <k2_k2> + (k;1>a

2k —1 k—1
o= (32, +2(* 1) < 2

while
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