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Abstract

After K. Boström and T. Felbinger observed that lossless quantum data compres-
sion does not exist unless decoders know the lengths of codewords, they introduced a
classical noiseless channel to inform the decoder of a quantum source about the lengths
of codewords.

In this paper we analyse their codes and present

1) a sufficient and necessary condition for the existence of such codes for given lists
of lengths of codes

2) a characterization of the optimal compression rate for their codes.

However our main contribution is a more efficient way to use the classical channel.
We propose a more general coding scheme. It turned out that the optimal compression
can always be achieved by a code obtained by this scheme.

A von Neumann entropy lower bound to rates of our codes and a necessary and
sufficient condition to achieve the bound are obtained. The gap between this lower
bound and the compression rates is also well analysed.

For a special family of quantum sources we provide a sharper lower bound in terms
of Shannon entropy.

Finally we propose some problems for further research.

Index terms: quantum source, lossless data compression, classical helper, quantum–variable–
length codes, von Neumann entropy bound.
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1 Introduction

Since B. Schumacher extended Shannon’s Source Coding Theorem to quantum sources in
his well known work [12], the research on lossy quantum data compression got an impetus.
However the extension of lossless data compression to quantum is impossible, because a
length measurement performed at a codeword of a quantum variable–length code will destroy
the codeword. This observation (Observation I for later reference) was made by many
authors, e.g. [3], [14] and [2].

Consequently, one cannot compress quantum data by encoding them to a quantum variable–
length code that can be decoded by the decoder, unless the decoder knows the length of sent
codeword. In other words, there is no way to compress quantum data and decode them
losslessly by using only a quantum source code.

Nevertheless quantum variable–length codes have been studied by several authors. In par-
ticular, Kraft’s inequality has been established by B. Schumacher and M.P. Westmoreland
in [14].

Some authors [3, 14] apply quantum variable–length codes to construct long codes in lossy
quantum data compression. Along another line K. Boström and T. Felbinger [2] introduced
a classical noiseless channel to inform the decoder about the lengths of codewords. The
main goal of this paper is to discuss lossless quantum data compression in the presence of a
classical, noiseless helper channel whose use is not restricted. We begin with definitions to
prepare the discussion.

Let H be a Hilbert space of finite dimension d and let

B(H) = {|i〉 : i = 0, 1, 2, . . . , d − 1} (1)

be an orthonormal basis of H.

Denote by H⊗n the nth tensor power of the Hilbert space H. For ℓ = 1, 2, . . . , ℓmax let H⊗ℓ

be a set of pairwise orthogonal (sub)spaces (in a sufficiently large Hilbert space). Then we
can define the direct sum

H⊕ℓmax = H⊕H⊗2 ⊕ · · · ⊕ H⊗ℓmax, (2)

a Hilbert space of dimension
ℓmax
∑

ℓ=1

dℓ.

Throughout the paper we consider a quantum information source generating pure normal
states |s〉 in a Hilbert space S of finite dimension d′. We often call S the source space. As
was defined in [2], a lossless variable–length encoder E of maximal length ℓmax is a linear
isometric operator from S to a subspace C ⊂ H⊕ℓmax of dimension d′ i.e., for all |s〉, |s′〉 ∈ S
〈E(s)|E(s′)〉 = 〈s|s′〉, where |E(s′′)〉 = E(|s′′〉). C is called the codeword space and the
(normalized) vectors (i.e. states) in it are called codewords. To realize the coding procedure
B. Schumacher and M. Westmoreland [14] introduced the zero–extended form of a code C.
This is the set of states in H⊗ℓmax obtained by appending |ℓmax − ℓ| |0〉’s at the codewords
in C ∩ H⊗ℓ for all 0 < ℓ ≤ ℓmax, i.e. the set

{

|γℓ0ℓmax−ℓ〉 : |γℓ〉 ∈ C ∩ H⊗ℓ, ℓ = 1, 2, . . . , ℓmax

}

. (3)
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Similarly, to realize variable–length codes, K. Boström and T. Felbinger [2] put |0m1〉 in
front of codewords. As in the classical case, a code is called prefixfree if no codeword is a
prefix of another codeword.

In Classical Information Theory the lengths of codewords in a variable–length code are de-
terminate. For example, in the code {0, 10, 11} the codewords 0, 10, 11 have lengths 1, 2, 2
respectively whereas the length of codewords in a quantum variable–length code are inde-
terminate because of superposition. Namely, for a vector (a1, a2, . . . , aℓmax

) ∈ Cℓmax , with
ℓmax
∑

ℓ=1

a2
ℓ = 1 and |γℓ〉 ∈ C ∩H⊗ℓ,

ℓmax
∑

ℓ=1

aℓ|γ
ℓ〉 is a codeword because the encoder mapping is lin-

ear. Thus B. Schumacher and M. Westmoreland refer to these codes as “indeterminate length
codes”. One way to measure the lengths of codewords in this case is as follows ([14] and [2]).
Let H⊕ℓmax be the Hilbert space in (2) and let Pℓ be the projection of H⊕ℓmax onto H⊗ℓ for
ℓ = 1, 2, . . . , ℓmax. Then the observable L = {Pℓ}, where Pℓ corresponds to the outcome ℓ,
is called the length observable. Thus with probability tr(|w〉〈w|Pℓ) = 〈w|Pℓ|w〉 = |aℓ|

2 the

outcoming length of a codeword |w〉 =
ℓmax
∑

ℓ=1

aℓ|γ
ℓ〉, |γℓ〉 ∈ H⊗ℓ is ℓ when one measures the

codeword with L. Let

Λ =
ℓmax
∑

ℓ=1

ℓPℓ. (4)

Then the expected outcoming length of a codeword |w〉 is

L(|w〉) = tr(|w〉〈w|Λ) = 〈w|Λ|w〉, (5)

which we call the average length of codeword |w〉.

With this notation B. Schumacher and M. Westmoreland [14] presented a

Quantum Kraft Inequality: For all quantum uniquely decodable codes C

ℓmax
∑

ℓ=1

dim(C ∩ H⊗ℓ)d−ℓ ≤ 1, (6)

where d = dim(H).

From this they deduced a von Neumann entropy bound.

An important parameter, the base length L(|w〉) of a codeword |w〉 in a quantum variable
length code, was introduced in [2]:

L(|w〉) = max{ℓ : 〈w|Pℓ|w〉 > 0}. (7)

That is, L(|w〉) is the largest ℓ such that aℓ 6= 0 if |w〉 is a superposition |w〉 =
∑

ℓ

aℓ|γ
ℓ〉,

|γℓ〉 ∈ C ∩ H⊗ℓ. It is clear that for all codewords |w〉

L(|w〉) ≤ L(|w〉). (8)

In order to decode a quantum variable–length code without error, a decoder has to know the
base length of the sent codeword. For this reason K. Boström and T. Felbinger introduced
a classical channel in [2]. The following are the assumptions for their codes:
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1) Visible Quantum Encoding: Suppose the encoder needs to encode the output states
from the source space S of dimension d. He does this by a linear isometric operator
from S to a subspace C of H⊕ℓmax (c.f. Subsection 1.1). The encoding is visible, that
is the encoder knows the output state of the quantum source and therefore the base
length of the codeword to which the output state is encoded, say ℓB.

2) Classical Channel: Now the encoder knows ℓB and has to inform the decoder about it.
This is done via the classical channel.

We note that the classical channel in their model is only used to inform about the lengths
of codewords.

In the next section we analyse the codes introduced in [2]. An important question for
variable–length codes concerns the existence of codes for a given list of lengths of codewords.
This question is answered in Classical Information Theory by Kraft’s inequality. Since a
classical channel is present, now the codes in [2] are not necessarily uniquely decodable and
therefore (6) may not hold. K. Boström and T. Felbinger established a Kraft–type inequality
in [2] with an additional term that depends on how to extend the quantum variable–length
code to a uniquely decodable code and consequently on the structure of the particular code.
Because of this dependence, the inequality seems not easily to be usable to verify the existence
of codes for given lists of lengths of codewords. In Subsection 2.1 we first present a simple and
more transparent necessary and sufficient condition for their existence. Based on the analysis
of this condition, we then present a class of realizable codes which we call canonical codes,
because their members have a nice form and all codes in the discussion are isomorphic to a
member in that class. We must also point out that there is essentially no difference between
our canonical codes and “the natural–prefix codes” in [2], because they can be matched
by isomorphisms. This shows that one cannot do better. Probably the most important
problem for data compression are characterizations of optimal compression rates. We solve
this for the codes in [2] by Theorem 1 in Subsection 2.3. The characterization in Theorem
1 is then discussed. Section 2 concludes with simple observations to show that the visibility
assumption for encoding is necessary.

However, our main goal in the paper is to find a more efficient way to use the classical helper
than just to report the base lengths. This covers the rest of the paper.

We begin with a simple example in Section 3 to show that the codes in [2] may not be
optimal in general. This motivates us to find a more general coding scheme. We introduce
a class of codes constructed by the coding scheme, which we call quantum–classical or q − c
variable–length codes. It turns out that for all quantum sources the optimal compression
rates can be achieved by a q − c variable–length code.

In Section 4 we continue the discussion of q − c variable–length codes by providing a lower
bound to their code rates in terms of von Neumann entropy, and a sufficient and necessary
condition for codes to achieve it in Theorem 2. We then analyse the gap between the von
Neumann entropy bound and the optimal rates. Our analysis shows that the von Neumann
entropy bound is seldom tight and that the gap in general may be arbitrarily large. This sug-
gests as a challenging problem that of finding a new quantity better fitting lossless quantum
data compression than von Neumann entropy. (Notice that almost all information quantities
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successfully applied in Quantum Information Theory are in terms of von Neumann entropy!)

In Section 5 we present a sharper lower bound in terms of Shannon entropy for a special
class of quantum sources. By applying it to memoryless quantum sources we conclude that
the von Neumann entropy bound may not be tight even in the asymptotic sense in lossless
compression of data from memoryless quantum sources. This shows that lossless quantum
data compression is completely different from both classical data compression and lossy
quantum data compression. It gives us a further reason to doubt that von Neumann entropy
well fits lossless quantum data compression.

Finally we present a few problems for future research in Section 6.

2 Code Analysis Based on the Base Length

In this section we analyse the codes by Boström and Felbinger in [2]. First let us briefly
review some results of [2]. Let H be a Hilbert space of dimension d with basis B(H) in (1).
Then Boström and Felbinger suggested the following coding scheme under the assumptions
1) and 2) in Section 1.

(I) Choose an orthonormal basis of source space
{

β(j) : j = 1, 2, . . . , d′
}

and encode
β(i) to |b(β(i))〉 = |bri

(i)br−1(i) . . . b1(i)〉, where |bm(i)〉 ∈ B(H) for B(H) in (1), m =
1, 2, . . . , ri, and ri = ⌊logd i⌋+ 1 if the d–ary representation of i is bri

(i)br−1(i) . . . b1(i).
Then |b(β(i))〉 has determinate length ri. By linearity a superposition

∑

j cjβ(j),
∑

j c2
j = 1 cj 6= 0 of the states in the basis B(H) is encoded to

∑

j cj |b(β(j))〉, a
codeword whose base length is equal to the maximum lengths of the |b(j)〉’s involved
in the superposition.

(II) To realize the code physically, we choose an integer n ≥ ⌊logd d′⌋+ 1. Pad n− r |0〉’s
in front of a codeword obtained in (I) to get a state in H⊗n if the codeword has base
length r. Then we have a linear isometric encoding operator from S to a subspace of
H⊗n.

(III) The encoder encodes the output of the quantum source to a codeword in H⊗n by the
encoding operator and informs the decoder about the base length r of the codeword
through the classical channel. Then the encoder deletes the prefix of length n − r of
the codeword and sends the remaining part to the decoder. Notice that all deleted
“symbols” are |0〉’s.

(IV) The decoder pads n− r |0〉’s to the received quantum state and then uses the inverse
of the encoding operator to decode if he receives a base length r from the classical
channel.

In particular, Boström and Felbinger proposed the following algorithm for the discrete quan-
tum source

{

(P (x), |x〉) : x ∈ X
}

, which outputs the state |x〉, x ∈ X with probability P (x),
where X is a finite set,
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(a) Choose a basis {|x1〉, |x2〉, . . . , |xd′〉} recursively as follows

(a1) Choose an |x1〉 such that P (x1) = max
x∈X1

P (x) for X1 = X .

(ai) Having chosen |x1〉, . . . , |xi−1〉, one first deletes all |x′〉 in the subspace spanned
by {|x1〉, . . . , |xi−1〉} from {|x〉 : x ∈ X} and obtains a subset {|x′′〉 : x′′ ∈ Xi},
Xi ⊂ X . Then one chooses an |xi〉 in Xi such that P (xi) = max

x′′∈Xi

P (x′′).

(ad′) The procedure is stopped at a vector |xd′〉 such that Xd′+1 = ∅.

(b) Gram–Schmidt Orthonormalization: Obtain an orthonormal basis {|βi〉 : i = 1, 2, . . . , d′}
from {|xi〉 : i = 1, 2, . . . , d′} by Gram–Schmidt orthonormalization.

(c) Encoding: Suppose dim(H) = d, and let zd(i) be the d–ary representation of number
i and wd′

d (i) be the d–ary sequence of length d obtained by padding d − ⌈logd i⌉’s 0 in
front of zd(i) for i = 1, 2, . . . , d′. Then encode |βi〉 to |wd′

d (i)〉.

(d) Remove the redundancy and inform about the base length: Now assume a state |x〉 =
j
∑

i=1

ci|βi〉 for cj 6= 0 as output. Then by the previous step and the linearity of the

encoder, we know |s〉 is encoded to a codeword
j
∑

i=1

ci|w
d′

d (i)〉, a codeword starting with

r zeros for r = d−⌈logd j⌉, say. Then the encoder, who knows |s〉 and consequently j,
removes the r zeros to obtain a codeword of base length ℓ = ⌈logd j⌉, say, and inform
the decoder about ℓ via a classical channel. Notice that the resulting codeword after
removing the redudancy can be stored in a d–ary quantum register of length ℓ.

(e) Decoding: The decoder pads d − ℓ zeros in front of the received (quantum) codeword
and recovers the state |s〉 by the inverse of the (isometric) encoder in Step (c).

A similar coding scheme in [2] is to pad |0m1〉’s instead of |0m〉.

In [2] the possibility of lossless quantum data compression and its physical realization are
widely discussed. The following two conclusions from the discussion in [2] are related to our
current work:

— A classical helper channel is necessary for lossless quantum data compression.

— The quantum variable–length codes are not necessarily uniquely decodable because of
the presence of the classical channel.

Let B(S) =
{

β(j) : j = 1, 2, . . . , d′
}

be the orthonormal basis in (I) of the coding scheme,
whose members are encoded to codewords |b(β(j))〉, with determinate length ℓ(β(j)) j =
1, 2, . . . , d′. In general

{

ℓ(β(j)) : β(j) ∈ B(S)
}

does not satisfy Kraft’s inequality, by
the second conclusion above. Consequently an example that exceeds the von Neumann
entropy bound was found in [2]. The example exists because the lengths of codewords
carry information. To obtain a Kraft–type inequality, Boström and Felbinger extended

6



a non–uniquely decodable code
{

b(β(j)) : β(j) ∈ B(S)
}

to a prefix code with lengths

ℓ∗(β(j)) = ℓ(β(j)) + ℓ′(β(j)), for which a Kraft–type inequality
∑

β(j)

d−ℓ∗(β(j)) ≤ 1 holds.

There is no constraint on the classical rate in the model in [2]. Therefore, throughout this
section, without loss of generality, we simply assume that the decoder knows base lengths of
codewords.

2.1 Canonical Codes

It is well–known in classical Information Theory that there exists a uniquely decodable
variable–length code with a list of lengths of codewords L = {ℓj : j = 1, 2, . . . , J} iff the
list L satisfies the Kraft inequality. Now we are looking for a condition for existence of
a quantum variable–length code with a classical helper channel informing about the base
lengths. In [2] a Kraft–type inequality is used. We notice that the inequality contains an
additional term depending on how one extends the considered code to a prefix code. Actually
there is a simpler and more general relation for these codes. To see this, first consider the
classical case. We analogously assume that the decoder knows the lengths of codewords sent
by the encoder via an additional noiseless channel and therefore the variable–length code is
not necessarily uniquely decodable.

Obviously under this assumption there exists a variable–length code with Nℓ codewords of
length ℓ over an alphabet of size q iff Nℓ ≤ qℓ. To obtain such a code one needs simply to
take arbitrary Nℓ sequences of length ℓ for all ℓ with qℓ ≥ Nℓ > 0 as codewords. To see its
analogue in the quantum version let us consider a quantum–variable length code C as defined
in Subsection 1.1 for a complex Hilbert space H of dimension d. We first look at the sets of
codewords in C with base length ℓ for all possible ℓ. We find that they are not subspaces,
because linear combinations of codewords with base length ℓ may be codewords with base
length smaller than ℓ. So we turn to the sets of codewords of base length not larger than ℓ
for all ℓ ≤ ℓmax and denote them by Cℓ. Obviously Cℓ ⊂ Cℓ′ for ℓ < ℓ′ ≤ ℓmax and the Cℓ’s are
linear subspaces. Actually by definition

Cℓ = C ∩ H⊕ℓ (9)

for H⊕ℓ = H ⊕H⊗2 ⊕ · · · ⊕ H⊗ℓ (c.f. (2) in Subsection 1.1). First we assume that there is
no constraint to the code except for the linearity. Then we have the following conditions for
the existence of codes:

C1 ⊂ C2 ⊂ · · · ⊂ Cℓmax
(10)

and

dim Cℓ ≤ dimH⊕ℓ =

ℓ
∑

i=1

di. (11)

In particular, one can take a code such that equality holds in (11) for ℓ = 1, 2, . . . , ℓmax. To

store a codeword of base length ℓ, one needs a quantum register of length
ℓ
∑

i=1

di. This is

not what we would like to have, because we expect that a codeword of base length ℓ could
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be stored in a quantum register of length ℓ! It is therefore assumed in [2] that we have to
constrain

dim Cℓ ≤ dℓ (12)

instead of (11). It is not hard to see the existence of a code C satisfying the conditions
(10) and (12). Indeed to obtain such a code one can simply take the set of ℓmax orthogonal
normal states, say Q, such that |Q ∩ H| = dim C1 and for ℓ = 2, 3, . . . , ℓmax |Q ∩ H⊗ℓ| =
dim Cℓ − dim Cℓ−1 and let C = span{|t〉 : |t〉 ∈ Q}. (Note that by our assumption H⊗ℓ and
H⊗ℓ′ are orthogonal for ℓ 6= ℓ′.) Recall that our goal is to compress quantum data. We
observe that to achieve good rates one has to choose codes for which equality holds in (12)
for ℓ = 1, 2, . . . , ℓmax − 1, that is,

dim Cℓ = dℓ. (13)

We conclude that there exists a quantum variable–length code defined in [2] iff (10) and (12)
hold or equivalently for ℓ ≤ ℓmax,

ℓ
∑

i=1

Nℓi
≤ dℓ

where Nℓ is the number of linearly independent codewords of base length ℓ.

To embed such a code C into a Hilbert space H⊗ℓmax we choose an orthonormal basis of H
in (1) and denote D = {0, 1, . . . , d − 1}. Then we rewrite (1) as

B(H) = {|δ〉 : δ ∈ D}. (14)

Let {|wi〉 : i = 1, 2, . . . , d′} be a basis of C such that its first dℓ members {|wj〉 : j =
1, 2, . . . , dℓ} form a basis of Cℓ. Then the linear isometric operator sending the basis of Cℓ for
ℓ = 1, 2, . . . , ℓmax to {|δℓ0ℓmax−ℓ〉 : δℓ ∈ Dℓ} embeds a code C into H⊗ℓmax . Let C′ and C′

ℓ be
the images of C and Cℓ respectively. For simplicity, and without loss of generality, we assume
C′ = H⊗ℓmax and C′

ℓ is the subspace spanned by

△ℓ = {|δℓ0ℓmax−ℓ〉 : δℓ ∈ Dℓ}. (15)

Thus a codeword |cℓmax〉 ∈ H⊗ℓmax for a cℓmax = (c1, c2, . . . , cℓmax
) is the image of a codeword

of base length ℓb iff cℓb
6= 0 and cℓ = 0 for ℓ = ℓb + 1, . . . , ℓmax. In this case, the encoder

may remove the last ℓmax− ℓb components (which are all zeros) from cℓmax and send the state
|cℓb〉 to the decoder after the embedding. To recover the output state the decoder appends
|0ℓmax−ℓb〉 to the state |cℓb〉 and then obtains the output state from |cℓb0ℓmax−ℓb〉 via the inverse
operator of the encoding operator.

Summarizing the discussion, we obtain that lossless quantum data compression can always
be done in the following way.

Coding Scheme 1:

(I) Choose an ℓmax such that dℓmax−1 < d′ ≤ dℓmax, where d and d′ are the dimensions of
H and the source space S respectively, and the encoder E encodes the states in source
space S to codewords in H⊗ℓmax by a properly chosen unitary operator from S to H⊗ℓmax

(or its subspace in the case d′ 6= dℓmax).
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(II) In the case, where the output state |s〉 is encoded to a codeword |cℓb0ℓmax−ℓb〉 = E(|s〉)
with cℓb = c1, c2, . . . , cℓb

, cℓb
6= 0, the encoder sends |cℓb〉 to the decoder via a (noiseless)

quantum channel and sends ℓb to the decoder via the classical helping channel. 1

(III) The decoder appends |0ℓmax−ℓb〉 to |cℓb〉 and then decodes |cℓb0ℓmax−ℓb〉 using the inverse
of E , the decoder Y = E−1, to recover |s〉 = Y(|cℓb0ℓmax−ℓb〉 = E−1

(

E(|s〉)
)

.

We note that the Coding Scheme 1 is not different from “the natural–prefix codes” in [2]
unless the padded |0〉 is moved to the end of codewords and so all optimal codes can be
transmitted to codes in [2] by a unitary operator. Our discussion shows that the optimal
codes can always be obtained by Coding Scheme 1. We call the codes obtained by the Coding
Scheme 1 canonical codes.

2.2 Minimum Compression Rate

In the previous subsection we saw that the minimum achievable compression rate can be
achieved by the canonical codes for all quantum sources. It is easy to see that the compression
rate of a canonical code depends only on the encoding operator E . In this subsection we
focus on the encoding operator and reduce the problem further. To this end, consider a
quantum source specified by a probability space (S,F , P ), where S is the source space, F
is a σ–field, and the source outputs a state in an F ∈ F with probability P (F ). The source
is not necessarily discrete and so the probability measure P is not necessarily discrete. We
call a sequence of subspaces L = {Lℓ : ℓ = 1, 2, . . . , ℓmax − 1} of S for an ℓmax such that
dℓmax−1 < d′ ≤ dℓmax, where d′ = dimS, d–nested if for all ℓ

dim Lℓ = dℓ (16)

and
L1 ⊂ L2 ⊂ · · · ⊂ Lℓmax−1. (17)

Denote by Ld(S) the set of d–nested sequences of subspaces of S. Then we have

Theorem 1. The minimum achievable lossless compression rate of a quantum source spec-
ified by a probability space (S,F , P ), via a quantum variable–length code with a classical
helper channel informing about base lengths is

R0 , ℓmax − sup
L∈Ld(S)

ℓmax−1
∑

ℓ=1

P (Lℓ). (18)

Proof: By the discussion in the previous subsection we know that the minimum achievable
rate is achievable by canonical codes. So it is sufficient for us to show that R0 is the minimum
achievable rate by canonical codes. We denote the subspace of H⊗ℓmax spanned by ∆ℓ in (15)

1To simplify notation, we assume that the encoder has to send something via the quantum channel. So,
if E(|s〉) = |0ℓmax〉, the encoder sends |0〉 and 1 through quantum and classical channel.
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by C′
ℓ. Consider a canonical code with encoding operator E . Let Lℓ(E) be the inverse image

of the subspace C′
ℓ under the encoding operator E , that is,

Lℓ(E) =
{

|s〉 ∈ S : E(|s〉) ∈ C′
ℓ

}

. (19)

Then by linearity of the encoding operator E Lℓ(E) is a subspace of dimension dℓ of S and

L1(E) ⊂ L2(E) ⊂ · · · ⊂ Lℓmax−1(E). (20)

That is, L(E) =
{

Lℓ(E) : ℓ = 1, 2, . . . , ℓmax − 1
}

∈ Ld(S). On the other hand, for any
d–nested sequence of subspaces L = {Lℓ : ℓ = 1, 2, . . . , ℓmax − 1} ∈ Ld(S), there exists a
unitrary operator E sending Lℓ to C′

ℓ i.e. Lℓ = Lℓ(E) in the sense of (19). Finally, because
by definition a codeword has base length ℓb iff it is contained in the set C′

ℓb
rC′

ℓb−1 (note that
C′

ℓb
r C′

ℓb−1 is not a subspace), we have that the average base length, or the compression rate
of a canonical code with encoding operator E is

R(E) = 1 · P
(

L1(E)
)

+
ℓmax−1
∑

ℓ=2

ℓP
(

Lℓ(E) r Lℓ−1(E)
)

+ ℓmaxP
{

S r Lℓmax−1(E)
}

(1)
=

ℓmax−1
∑

ℓ=1

ℓP
(

Lℓ(E)
)

−

ℓmax−1
∑

ℓ=2

ℓP
(

Lℓ−1(E)
)

+ ℓmax

(

1 − P (Lℓmax−1(E)
)

=

ℓmax−1
∑

ℓ=1

ℓP
(

Lℓ(E)
)

−

ℓmax−1
∑

ℓ=1

(ℓ + 1)P
(

Lℓ(E)
)

+ ℓmax

= ℓmax −
ℓmax−1
∑

ℓ=1

P
(

Lℓ(E)
)

, (21)

where (1) holds because Lℓ−1(E) ⊂ Lℓ(E), Lℓmax−1(E) ⊂ S, P (S) = 1 and so P
(

Lℓ(E) r

Lℓ−1(E)
)

= P
(

Lℓ(E)
)

− P
(

Lℓ−1(E)
)

, P
(

S r Lℓmax−1(E)
)

= 1 − P
(

Lℓmax−1(E)
)

.

This completes our proof. �

The theorem reduces finding an optimal code to finding a d–nested sequence of subspaces

maximizing
ℓmax−1
∑

ℓ=1

P
(

Lℓ(E)
)

.

Two naive greedy algorithms to find the d–nested sequences of subspaces may be considered:

— First find a d dimensional space with maximal probability, say L′
1(E), then take a d2

dimensional subspace L′
2(E) with maximal probability among all subspaces containing

L′
1(E), . . . , and finally take a dℓmax−1 dimensional subspace with maximal probability

among the subspaces containing L′
ℓmax−2(E).

— One can also choose the subspaces going from bigger to smaller dimensions. First one
chooses a dℓmax−1 dimensional subspace with maximal probability as L′′

ℓmax−1(S), then
one chooses a dℓmax−2 dimensional subspace of L′′

ℓmax−1(S) with maximal probability as
L′′

ℓmax−2, and so on.
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The following example shows that in general neither of these methods guarantees that one
obtains an optimal code.

It is not hard to see that the coding algorithm in [2] presented at beginning of this section
may not be better than the first algorithm.

Example 1: Let S be a complex Hilbert space of dimension 8 with an orthonormal basis
{|βi〉 : i = 0, 1, . . . , 7}, let H be a complex Hilbert space of dimension 2 with orthonormal
basis {|0〉, |1〉}, and let p be a real number in

(

1
2
, 1
)

. We take m states |αj〉, j = 0, 1, . . . , m−1
in the subspace spanned by {|βi〉 : i = 4, 5, 6, 7} such that no four of them are in the
same 3 dimensional subspace. Let P be a probability distribution with P (|αj〉) = 1

m
p, for

j = 0, 1, . . . , m − 1 and P (|βi〉) = 1
4
(1 − p) for i = 0, 1, 2, 3. Let us consider a code encoding

S to H⊗3, in particular the following two codes.

Code A: The encoder sends two vectors in |βi〉, i = 0, 1, 2, 3 e.g., say |β0〉 and |β1〉 to
|000〉 and |100〉 respectively. That is, choose L1(E) = span(|β0〉, |β1〉), where span(·) is
the subspace spanned by the states (or the subset of states) in the bracket. Then choose
L2(E) = span(|βi〉 : i = 0, 1, 2, 3). Thus ℓmax = 3 and

P
(

L1(E)
)

+ P
(

L2(E)
)

=
1

2
(1 − p) + (1 − p) =

3

2
(1 − p). (22)

Code B: Take any two vectors from the m vectors |αj〉, j = 0, 1, . . . , m−1, say |α0〉 and |α1〉
and choose L1(E) = span(|α0〉, |α1〉) and L2(E) = span{|βi〉 : i = 4, 5, 6, 7}. Thus Lmax = 3
and

P
(

L1(E)
)

+ P
(

L2(E)
)

=
2

m
p + p =

m + 2

m
p.

By comparing the right hand side of (22) and this formula, we conclude that code A (code
B) is better iff p < 3m

5m+4

(

p > 3m
5m+4

)

as 3
2
(1 − p) > m+2

m
p iff p < 3m

5m+4
.

At first we choose p = 3
5
, then for all m, the code B is better than code A, as 3m

5m+4
< 3

5
= p.

However in the case m > 6, the subspace span{|β0〉, |β1〉} achieves the maximal probability
of 2–dimensional subspaces, 1

5

(

> 6
5m

)

, and so one obtains the code A if one performs the
first greedy algorithm.

Secondly we choose p = 6
11

. Then for sufficiently large m, we have that p = 6
11

< 3m
5m+4

since
3m

5m+4
→ 3

5
as m → ∞.

In this case the code A is better than code B. However for all m, one will obtain the code B
when one performs the second greedy algorithm, because by the choice p = 6

11
, span{|βi〉 :

i = 4, 5, 6, 7} achieves the maximal probability 6
11

(

> 5
11

)

of 4 dimensional subspaces.

Thus we conclude that no greedy algorithm is always able to find the optimal codes.

Recalling dimH = d, dimS = d′ and dℓmax−1 < d′ ≤ dℓmax, we have that in order to embed
S to the ℓth tensor power of H, ℓ must be at least ℓmax. In other words, the length of the
code is ℓmax if one wants to encode the source space S to a block code with minimum length.

So by Theorem 1
ℓmax−1
∑

ℓ=1

P
(

Lℓ(E)
)

is the reduced part of length gained by using a variable

length code. We say the source is compressible if it is positive and otherwise the source is

11



incompressible. Notice 0 ≤ P
(

Lℓ(E)
)

≤ P
(

Lℓ+1(E)
)

≤ 1. In the case that P
(

Lℓ∗(E)
)

= 1

for an ℓ∗ ≤ ℓmax − 1, we have that for R0 in (18) R0 ≤ ℓ∗ −
ℓ∗−1
∑

ℓ=1

P
(

Lℓ(E)
)

.

Intuitively this means one can encode S without error to the dℓ∗–dimensional subspace
Lℓ∗ , which is isomorphic to H⊕ℓ∗ up to the difference of a null probability set. The other

extremal case is sup
L∈Ld(S)

ℓmax−1
∑

ℓ=1

P (Lℓ) = 0, which is equivalent to having the probabilities of

all subspaces of S, whose dimensions are not larger than dℓmax−1, be zero. In this case the
source is incompressible. So Theorem 1 has the following consequence.

Corollary 1. A source S is incompressible iff the probabilities of all subspaces whose di-
mension are not larger than dℓmax−1 are zero.

Notice that here the compression rates and compressibility are based on the codes in [2]. In
the following sections we discuss more general and more efficient codes. We shall see
that for these codes Corollary 1 still holds. We conclude this section with an observation.

2.3 Base Length of Codewords are not Measurable

We know that there does not exist a blind quantum zero–error source code because by
Observation I one can not perform a length measurement to learn the lengths of codewords.
Then a question naturally arises: Would a blind encoder be possible under the assumption
that the encoder has many states identifying the output of the source? We assume that
these states are output by a “multiple identity” quantum source because one cannot copy
an unknown state. Then the encoder may encode the identical states, send one of the
identical codewords to the decoder and measure the rest to learn the base length of the
codeword (when the decoder needs only one output state). Thus a blind code with classical
helping channel would exist if the encoder might learn the base length from the outcome of
measurement. But the following observation shows that in general one can never obtain the
base length of an unknown codeword by a measurement.

Observation II: There is no measurement to measure the base length of unknown codewords
without error.

The observation actually is an immediate consequence of the well–known fact that non–
orthogonal states cannot be reliably distinguished (e.g. c.f. p87 of [11]). To see this let us
consider two codewords |w1〉 = |100〉 and |w2〉 = a|100〉 + b|010〉, (a, b > 0 a2 + b2 = 1) of
a quantum binary canonical code of maximum length 3. Since |w1〉 and |w2〉 have different
base lengths i.e. L(|w1〉) = 1 6= 2 = L(|w2〉), one could distinguish them correctly if there
were a measurement to measure their base lengths without error. But in fact, it is not
possible to distinguish them since they are not orthogonal.

Thus from the Observation II, we know that only a visible encoder can be considered even in
the case, where a quantum source is able to output many indentical states simultaneously.

12



3 Lossless Quantum Data Compression with Classical

Helper

We know that the following two assumptions are necessary for lossless quantum data com-
pression.

(1) Visible quantum encoding: The encoder knows the output state of the quantum source.

(2) The classical helper: There is a classical channel connecting the encoder and the de-
coder such that the encoder can send classical information to the decoder.

Here we assume that the encoder and decoder each consist of two components, namely a
quantum and a classical component and the quantum operators that are used in the quantum
component of the encoder and the decoder are linear isometric. A classical variable–length
code can be used in classical components. As the encoding is visible, the encoder may
choose his quantum operators in quantum components and the codeword of the classical
variable–length code according to the output of the quantum source. The decoder may
choose his quantum operator according to the received classical codewords. Our constraint
on the quantum operators may seem too strong compared to using to quantum operations,
which are linear, completely positive and trace–preserving on density operators. But it turns
out that one cannot do better than our coding scheme under our constraint even when one
relaxes the constraint.

In [2] K. Boström and T. Felbinger use the classical channel to send the base lengths of
the codewords. Our main motivation in the paper is to find a more efficient way to use the
classical helper.

Example 2: Let dimH = 2, dimS = 4 and S0 and S1 be two orthogonal subspaces of
S of dimension 2. P is a probability distribution over S such that P (S1) = P (S2) = 1

2
.

Suppose the source outputs a state in A ⊂ S with the probability P (A). For an example
of a “continuous” source one may assume P is uniformly distributed on S0 ∪ S1 and for an
example of a discrete quantum source one may assume P is uniformly distributed on a set
of states

{|ui〉 : i = 0, 1, 2, . . . , m − 1} ∪ {|vj〉 : j = 0, 1, 2, . . . , m − 1},

where |ui〉 ∈ S0, |vj〉 ∈ S1, and m ≥ 3. But we shall see that the assumption for assigning
the probabilities to the particular states makes no difference. Now ℓmax = 2 and it is easy
to see the maximum probability of 2–dimensional subspaces of S is 1

2
. So by Theorem 1,

the best quantum compression rate with classical helping channel informing the base length
is 3

2
. Additionally the encoder has to send one bit to the decoder to inform him about the

base length.

In the source under consideration the probability is concentrated on S0 ∪ S1. Therefore
the encoder can compress the quantum source more efficiently. One can simply choose two
arbitrary unitary operators U0 and U1, one mapping from S0 to H and the other from S1 to
H. In the case that a state |s〉 ∈ Si for i = 0 or 1, is output from the source, the encoder
encodes it to Ui|s〉 by using operator Ui and sends i to the decoder via the classical channel.

13



Then the decoder who knows i decodes the quantum codeword by using U−1
i and obtains

U−1
i Ui|s〉 = |s〉. For this code the quantum compression rate is 1 and the encoder sends one

bit via the classical channel. It is therefore a better code.

Using this idea, many such examples, including ones with more complicated sources can be
found. The simple example above is sufficient to lead us to the following coding scheme. To
simplify the notation we assume that the source is discrete. Let H and S be complex Hilbert
spaces of dimensions d and d′ respectively. Assume the quantum source outputs a state
|u〉 ∈ S with probability P (u), where P is a probability distribution with a finite support
U . Without loss of generality we assume that S = span{|u〉 : u ∈ U}, because otherwise we
may replace S by span{|u〉 : u ∈ U}.

Coding Scheme 2:

(I) Partition U properly into {Uj : j = 0, 1, . . . , J − 1} for an integer J . For each j find
the minimum ℓj such that there is an dℓj–dimensional subspace Sj of S, containing
span{|u〉 : u ∈ Uj}. We write Lq(Uj) = ℓj.

(II) For all j ∈ {0, 1, . . . , J − 1}, arbitrarily choose a unitary operator Uj from Sj to H⊗ℓj .

(III) Suppose a |u〉 ∈ S is output by the quantum source and assume that |u〉 ∈ Sj . Then the
encoder encodes |u〉 to a codeword |w(u)〉 , Uj |u〉 ∈ H⊗Lq(Uj) by using the operator Uj .
We say |u〉 is encoded to a quantum codeword |w(u)〉 of length Lq(|w(u)〉) = Lq(Uj).
Then the encoder sends j by a classical variable–length code e.g., a Huffman code, for
a classical source outputing j ∈ {0, 1, 2, . . . , J − 1} with probability Q(j) = P (Uj), to
the decoder via the classical channel.

(IV) Finally the decoder who has the quantum codeword |w(u)〉 = Uj |u〉 and knows j from
the classical channel, reconstructs the output state |u〉 by applying the operator U−1

j

to |w(u)〉.

The reader can generalize the scheme to the general source. The reader also may easily
verify that the condition in Corollary 1 is still sufficient and necessary for compressibility by
using the more general scheme below.

Also it is not hard to see that Coding Scheme 2 is the most general under the two assumptions
(visible encoding and classical helper) at the beginning of this section i.e., there is no better
code than the best codes constructed by the Coding Scheme 2.

To see this let us assume the encoder encodes the output states into classical messages in
a finite set, say {0, 1, . . . , J − 1}, by a mapping ϕ and sends the value of ϕ via a classical
channel. Let the inverse image of j under the mapping ϕ be ϕ(j)−1 = {|u〉 : ϕ(|u〉) = j}
and set Uj = {u : |u〉 ∈ ϕ(j)−1} . The encoder has to send the output states of the quantum
source to tensor powers of Hilbert space H, we allow the use of any linear mapping to
do it, but two output states in the same inverse image ϕ(j)−1 must be sent to different
quantum codewords, because the compression is lossless. In other words the restriction of
the “quantum” encoder must be injectivity. On the other hand the decoder has to treat the
quantum codewords of all output states which are in ϕ(j)−1 in the same tensor power space
of H, say H⊗ℓ since his only classical knowledge is j.
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Obviously dℓ ≥ dim
[

span{|u〉 : u ∈ Uj}
]

must hold because the restriction on ϕ−1 is injective.
Thus we obtain a code constructed by Coding Scheme 2 by letting Sj be the inverse image
of the quantum encoder.

We call a code constructed by Coding Scheme 2 a quantum–classical or q−c variable–length
code, and its two components, quantum and classical component, respectively, and speak of
lossless quantum data compression with a classical helper.

Next we point out that the compression in steps (II), (III) and (IV) of Coding Scheme 2
can not be improved except by choosing a better classical variable–length code in step (III).
So the key step is the first step. That is, the quality of a compression based on the two
assumptions at the beginning of this section depends only on how to partition U according
to d, d′ and the probability distribution P .

Coding Scheme 1 is a special case of Coding Scheme 2 obtained through assigning ϕ−1(j) =
{|u〉 : u ∈ Uℓ} = Lℓ(E) as defined in the proof of Theorem 1. We note that there is no rate
limit to the classical channel in [2]. We have to count the rate of the classical channel since
otherwise the encoder may send the index u for all output states via the classical channel
and the quantum part of compression is not needed at all.

We denote by Lc(Uj) the length of the codeword to which the classical message is encoded
by the classical variable–length code in step (III) of the Coding Scheme 2 when |u〉 ∈ Uj .
Then the classical and quantum components of the compression rate are

Rc =
J−1
∑

j=0

P (Uj)Lc(Uj) (23)

and

Rq =
J−1
∑

j=0

P (Uj)Lq(Uj) (24)

respectively. By the Shannon Source Coding Theorem [15], [4], [5], with the notation

Q ,
{

Q(j) = P (Uj) : j = 0, 1, . . . , J − 1
}

,

(23) is bounded by
(log a)−1H(Q) ≤ Rc < (log a)−1H(Q) + 1 (25)

if an optimal classical variable–length code is used, where a is the size of the alphabet of
the classical channel. To reduce the classical component of the rate, one has to reduce
the Shannon entropy H(Q), which amounts to reducing the number of subsets J . But
the reduction of the number of subsets will increase the dimensions of subspaces Sj , which
increases the quantum component of the rate. Similarly reducing the quantum component
of the rate will increase its classical component of the rate.

We note that for j 6= j′ the intersection of Sj ∩ Sj′ is not necessarily {0} and an output
state |u〉 may be in different Sj ’s even in a good code for a source which is not so good (see
section 4). When a state |u〉 ∈ Sj ∩Sj′ , j 6= j′, one can put |u〉 in Uj or Uj′ without changing
the list {Lq(Uj′′) : j′′ = 0, 1, . . . , J − 1} of the length of quantum codewords. To reduce
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the classical components of the rate, one should put |u〉 into a Uj such that |u〉 ∈ Sj and
P (Uj) achieves max

j′:|u〉∈Sj′

P (Uj′) to reduce the Shannon entropy H(Q). On the other hand,

to reduce the quantum component of the rate one should put |u〉 into a Uj such that Sj

has the minimum dimension among the Sj′ ’s containing |u〉. The two actions often tend to
opposite directions as the lower dimensional space typically contains smaller subsets of U
and smaller subsets often have smaller probabilities. In the model of [2] (c.f. Subsection
1.5.3 and Section 2) the classical component of the rate is not counted and we therefore
always put |u〉 into a subspace of lowest possible dimension. This may increase the cost of
using the classical channel.

4 Von Neumann Entropy Bound

In this section we consider a discrete quantum source i.e. the distribution of the source has
a finite support set U , and derive a lower bound on the compression rates of q − c variable–
length codes in term of von Neumann entropy. To simplify the notation, we assume that the
codewords of classical components take values in a finite set X of cardinality |X | = dimH =
d. For a given q − c variable–length code, we define {Uj}

J−1
j=0 and {Sj}

J−1
j=0 as in the previous

section. Then we have

Theorem 2: For any q − c variable–length code,

Rq + Rc ≥ (log d)−1S(ρ), (26)

where S(ρ) is the von Neumann entropy of the state,

ρ ,
∑

u∈U

P (u)|u〉〈u|, (27)

and equality holds iff the following conditions hold simultaneously.

(i) For the probability Q in (25) i.e. Q(j) = P (Uj),

Rc = (log d)−1H(Q). (28)

(ii) For all j 6= j′

Sj ⊥ Sj′ , (29)

and

(iii) for all j ∈ {0, 1, . . . , J − 1}

P (Uj)
−1
∑

u∈Uj

P (u)|u〉〈u| = d′−1
j Pj , (30)

where d′
j = dimSj and Pj is the projector onto the subspace Sj.
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Proof: Denote by U∗
j = span{|u〉 : u ∈ Uj}, d∗

j = dimU∗
j , and ρj = P (Uj)

−1
∑

u∈Uj

P (u)

|u〉〈u| =
∑

u∈Uj

P (u|Uj)|u〉〈u|. Then we have

d∗
j ≤ d′

j = dimSj (31)

with equality iff
U∗

j = Sj . (32)

Moreover by the property of von Neumann entropy that is maximized uniquely by the
“uniform” state I/d̃, where I and d̃ are identity operator and the dimension of the Hilbert
space containing the state, we obtain

S(ρj) ≤ log d∗
j (33)

and equality holds iff
ρj = d∗−1

j P∗
j , (34)

where P∗
j is the projector onto the subspace U∗

j . Then it follows from (31) – (34) that

S(ρj) ≤ log d′
j = ℓj log d (35)

and equality holds iff (32) and (34) hold or in other words (30) holds. The equality in (35)
holds because by the definitions of ℓj and Sj dimSj = dℓj .

Next we notice that by the definition of ρj ,

ρ =

J−1
∑

j=0

Q(j)ρj , (36)

where
Q(j) = P (Uj). (37)

We use a well–known inequality for von Neumann entropy e.g., see P. 518 [11] to obtain

S(ρ) ≤ H(Q) +
J−1
∑

j=0

Q(j)S(ρj), (38)

with equality iff
U∗

j ⊥ U∗
j′ for all j 6= j′. (39)

Finally we combine (23), (25), (35), (38) with the notation Lq(|w(u)〉) = ℓj for |u〉 ∈ Uj and
obtain

Rq + Rc

(1)

≥ (log d)−1H(Q) +
J−1
∑

j=0

Q(j)Lq(Uj)
(2)

≥ (log d)−1H(Q) +
J−1
∑

j=0

Q(j)(log d)−1S(ρj)

= (log d)−1

[

H(Q) +
J−1
∑

j=1

Q(j)S(ρj)

]

(3)

≥ (log d)−1S(ρ), (40)
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where (1) holds by (23) and (25); (2) holds by (35) with Lq(|w(u)〉) = ℓj for |u〉 ∈ U ; and
(3) holds by (38). That is (26).

The equality holds in (26) iff the inequalities (1) – (3) in (40) hold with equalities, which
is true iff (28), (30) and (39) hold or equivalently (28), (29) and (30) simultaneously hold.
Thus the proof is complete. �

By the above theorem, we see that the von Neumann entropy as a lower bound of compres-
sion rate seldom is tight. It is also not hard to construct a quantum source such that the
gap between the minimum achievable rate and von Neumann entropy is very large. This is
completely different from the Shannon entropy as a lower bound to the classical compression
rate. We therefore doubt whether von Neumann entropy fits lossless quantum data compres-
sion. In the next section we present more reasons for this, but first we look at gaps between
the compression rates and von Neumann entropy.

We fix an arbitrary q − c variable–length code and let

∆ , (Rq + Rc) − (log d)−1S(ρ), (41)

∆c , Rc − (log d)−1H(Q), (for Q in (37)), (42)

∆q,1(j) , (log d)−1 log d′
j − (log d)−1 log d∗

j (for d′
j, d

∗
j in (31)) (43)

∆q,1 ,

J−1
∑

j=0

Q(j)∆q,1(j), (44)

∆q,2 , (log d)−1

(

H(Q) +

J−1
∑

j=0

Q(j)S(ρj)

)

− (log d)−1S(ρ), (for ρj , ρ in (36)), (45)

∆q,3(j) , (log d)−1 log d∗
j − (log d)−1S(ρj), (46)

and

∆q,3 ,

J−1
∑

j=1

Q(j)∆q,3(j). (47)

Then by (24), (41) – (47) and
d′

j = dLq(Uj) (48)
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we obtain that

∆ =
[

Rc − (log d)−1H(Q)
]

+

[

J−1
∑

j=0

Q(j)Lq(Uj) −

J−1
∑

j=0

Q(j)(log d)−1 log d∗
j

]

+

[

(log d)−1

(

H(Q) +
J−1
∑

j=0

Q(j)S(ρj)

)

− (log d)−1S(ρ)

]

+

[

J−1
∑

j=0

Q(j)(log d)−1 log d∗
j −

J−1
∑

j=0

(log d)−1Q(j)S(ρj)

]

= ∆c +

J−1
∑

j=0

Q(j)
[

(log d)−1 log d′
j − (log d)−1d∗

j

]

+ ∆q,2 + ∆q,3

= ∆c + ∆q,1 + ∆q,2 + ∆q,3. (49)

We now analyse the differences from an information theoretical point of view.

∆c :The difference ∆c in (42) is the gap between the rate of classical variable length and
Shannon entropy. It cannot be avoided. It is not too serious because in the case that the
classical component of the q − c variable–length code is an optimal classical variable–length
code, the gap satisfies ∆c < 1.

∆q,1 :The gap ∆q,1 in (42) and (43) is due to the fact that U∗
j ’s may not well match a

tensor power of Hilbert space H and it vanishes when d∗
j = dimU∗

j is a power of d = dimH
for all j ∈ {0, 1, . . . , J}. Similar to classical coding, one looses rate when one encodes
a set of messages whose size is not a power of d to a set of codewords of block length
from an alphabet of cardinality d. Clearly it cannot be avoided, but this is not serious,
because according to step (I) of Coding Scheme 2 one may always choose an Lq(Uj) such
that dLq(Uj)−1 < d∗

j ≤ dLq(Uj) = d′
j for all j and so the gap ∆q,1 < 1.

∆q,2 :We have seen that ∆q,2 vanishes iff (29) holds for all j 6= j′. ∆q,2 may be very
large if the Sj ’s are far away from being pairwise orthonormal. Denote by X (Q; {ρj})
the Holevo quantity of quantum channel {ρj}

J−1
j=0 with classical input distribution Q, i.e.

X (Q; {ρj}) = S(ρ) −
J−1
∑

j=0

Q(j)S(ρj), where ρ =
J−1
∑

j=0

Q(j)ρj .

Then ∆q,2 = (log d)−1
[

H(Q) − X (Q(j); {ρj})
]

. It is well–known that Holevo’s bound [8] is
a lower bound of the information about the input of the receiver of a quantum channel with
classical input obtained by performing a measurement and max

P
X (P ; {ρj}) is the capacity

of the classical quantum channel for classical information ([9] and [13]).

So roughly speaking (log d) ∆q,2 plays a role of conditional entropy of a classical input of a
quantum channel given the output, and it reflects the uncertainty of subspaces Sj containing
a given state in S. (The uncertainty is zero exactly when (29) holds.) The larger the gap
∆q,2 is, the less information about the classical component of a q − c variable–length code
is carried by the quantum component. In other words ∆q,2 is large, if the overlaps of the
subspaces Sj are significant. In particular ∆q,2 never vanishes for the canonical codes in
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Subsection 2.1 (and consequently for the code in Section VII of [2]). Even worse, one may
construct a quantum source such that the gap ∆q,2 for an optimal q− c variable–length code
is larger than any given number. The following is an example:

Example 3: Let U = {ui,k : i = 0, 1, . . . , I−1; k = 0, 1, . . . , K−1} be such that {|u〉 : u ∈ U}
is a basis of Hilbert space S.

Let S∗
i = span{|ui,k〉 : k = 0, 1, . . . , K − 1}. Suppose that a quantum source outputs a state

|u〉, u ∈ U , with probability P (u) = 1
IK

. We assume dimH = d = 2 and both I and K are
powers of 2. We show in the next section that for an optimal code

Rq + Rc = H(P ) = log IK. (50)

Now let {|u0,k〉 : k = 0, 1, . . . , K−1} be an orthonormal basis of the subspace S∗
0 , and denote

ρi =
K−1
∑

k=0

1
K
|ui,k〉〈ui,k| for i = 0, 1, . . . , I − 1 and ρ =

I−1
∑

i=0

1
I
ρi. Then S(ρ0) = log K.

Next, fix the rate of classical component Rc = log I. In order to obtain an optimal q − c
variable–length code, one has to choose J = I and Si = S∗

i in Coding Scheme 2. Therefore
by (45),

∆q,2 =

(

log I +

I−1
∑

i=0

1

I
S(ρi)

)

− S(ρ). (51)

However, if we choose |ui,k〉 sufficiently close to |u0,k〉 for i = 1, 2, . . . , I − 1 and k =
0, 1, . . . , K − 1 (in ℓ2–distance or in trace distance 1

2
tr
∣

∣|u0,k〉〈u0,k| − |ui,k〉〈ui,k|
∣

∣), then ρi

for i = 1, 2, . . . , I − 1 and ρ are sufficiently close to ρ0 in trace distance.

Consequently by Fannes inequality [6] (the continuity of von Neumann entropy) S(ρ) and
S(ρi) for i = 1, 2, . . . , I − 1 are sufficiently close to S(ρ0) = log K.

Thus by (50) (for Q(i) = P (S∗
i )) H(Q) +

I−1
∑

i=0

Q(i)S(ρi) is sufficiently close to Rq + Rc and

by (51) ∆q,2 is sufficiently close to log I.

∆q,3 :The gap ∆q,3 is even worse: One may make S(ρj) in (46) arbitrarily small by

choosing ρj = (1 − ε)|uj,0〉〈uj,0| +
d∗j−1
∑

k=1

ε
d∗j−1

|uj,k〉〈uj,k| for arbitrarily small ε and |uj,k〉 for

j = 0, 1, 2, . . . , J − 1 in Example 3 and so ∆q,3 may be arbitrarily close to the rate of quan-
tum component Rq. Clearly the gap is the cost paid for the case that the decoder has no
other knowledge except that which is received from the classical helper. As the quantum
datum is locally incompressible, he has to treat ρj as the worst local state d∗−1

j P∗
j (in (34)).

That is, the farther ρj is from d∗
jPj , the larger the gap ∆q,3 is.

Given the gaps ∆q,2 and ∆q,3, a question arises: Does von Neumann entropy fit lossless
quantum data compression?
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5 Linear Independent Discrete Quantum Sources:

Return to Shannon Entropy

In this section we examine a special family of quantum sources. We call a discrete quantum
source linearly independent, or LIDQS for short, if the support set of distribution P of the
source is a set of linearly independent (not necessarily orthogonal) states {|u〉 : u ∈ U} of
the source space S. As in the previous sections, we assume that the input alphabet of the
classical channel has cardinality d = dimH and denote it by D = {0, 1, . . . , d − 1}. Let
{|y〉 : y ∈ D} be an orthonormal basis of H, and let {Uj}

J−1
j=0 and {Sj}

J−1
j=0 be as in Coding

Scheme 2 for a q − c variable–length code for the LIDQS. Then

|Uj | ≤ dimSj = dimH⊗Lq(Uj) = dLq(Uj) (52)

since {|u〉 : u ∈ Uj} is a set of independent states. Therefore we can map |u〉 : u ∈ Uj to a
sequence in DLq(Uj) by an injector Ψj. Let j be encoded to a classical codeword ϕ(j) in the
classical variable–length code in the step (III) of Coding Scheme 2. For u ∈ U let

c(u) =
(

ϕ(j)Ψj(u)
)

(53)

if u ∈ Uj , and let ℓc(u) be the length of c(u). Then {c(u) : u ∈ U} is a classically uniquely
decodable variable–length encoding of the elements of U to sequences with alphabet D. So
by the classical source coding theorem (e.g. see [4] and [5]) we have that

∑

u∈U

P (u)ℓc(u) ≥ (log d)−1H(P ), (54)

with equality iff for all u ∈ U (with P (u) > 0)

ℓc(u) = − log P (u). (55)

By (53), we obtain
ℓc(u) = Lc(Ui) + Lq(Ui), (56)

if u ∈ Ui and so by (54)
Rq + Rc ≥ (log d)−1H(P ) (57)

with equality iff for all u ∈ Uj and all j

− log P (u) = Lc(Uj) + Lq(Uj). (58)

Now we assume that (57) holds with equality and consequently so does (58). Recalling that
Q(j) = P (Uj) in (25), under our assumption we obtain

Rq ≤ (log d−1)
(

H(P ) − H(Q)
)

= −(log d−1)





J−1
∑

j=0

∑

u∈Uj

P (u) log
P (Uj)

P (u)



 , (59)
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by combining the first inequality in (25) with (57). (Note that under our assumption (57)
is now an equality.) Moreover (58) implies that the value of probability P (u) depends on u
according to which Uj u lies in, or in other words for all u ∈ Uj

P (u) =
P (Uj)

|Uj|
. (60)

Thus by (24), (52), (59), and (60) we have that

Rq ≤ −(log d)−1
J−1
∑

j=0

P (Uj) log |Uj | ≤
J−1
∑

j=1

P (Uj)Lq(Uj) = Rq. (61)

That means all inequalities in (59) and (61) must be equalities, which is equivalent to
Lc(Uj) = −(log d)−1 log P (Uj) for all j and Lq(Uj) = −(log d)−1 log |Uj | for all j.

Proposition 1. For all q − c variable–length codes for a given LIDQS,

Rq + Rc ≥ (log d)−1H(P )

with equality iff for all j

Lc(Uj) = −(log d)−1 log P (Uj), Lq(Uj) = −(log d)−1 log |Uj |,

and for all u ∈ Uj ,

P (u) =
P (Uj)

|Uj|
.

Proof: We have shown the lower bound and the “only if” part. The “if” part can be shown
by a simple calculation (omitted).

Since in general von Neumann entropy may be smaller than Shannon entropy, the proposition
shows that for LIDQS the von Neumann entropy is in general not tight. It provides a sharper
bound. The reason to use Shannon entropy for an LIDQS is that we can model it as a classical
source coding problem. That is, q − c variable–length coding for an LIDQS is equivalent
to a classical source coding problem, where the encoder can send messages via two classical
noiseless channels, one of which can send variable–length codes (with rate Rq) and another
can only send block codes (with rate Rc).

Proposition 1 provides another reason for which one might doubt whether von Neumann
entropy fits lossless quantum data compression, where what “fits” means is guided by Clas-
sical Information Theory. Shannon entropy fits both lossy data compression and lossless
data compression well because for both compressions it equals the optimal rate for a discrete
memoryless source.

The well–known Schumacher quantum data compression theorem [12] and the alternative
fidelity version in [10] show that in an analogous sense von Neumann entropy fits lossy
quantum data compression well. Now let us consider lossless quantum data compression.
Let U be an index set of states and P be a probability distribution. Then a memoryless
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quantum source outputs a sequence of states |un〉 for un = (u1, . . . , un) ∈ Un with probability

P n(un) =
n
∏

i=1

P (ui). By Proposition 1, we have that for LIDQS with rq , 1
n

J−1
∑

j=1

P (Uj)Lq(Uj)

and rc , 1
n

J−1
∑

j=1

P (Uj)Lq(Uj),

rq + rc ≥ H(P ). (62)

Obviously (62) is asymptotically achieved by choosing Uj = {|u〉 : un ∈ T n
p } (where j runs

over all n–types). Since the Shannon entropy may be larger than the von Neumann entropy,
for lossless quantum data compression of memoryless quantum sources von Neumann entropy
in general is not achievable. This is a basic difference between classical and quantum data
compression.

6 Future Research

To conclude, we present some problems for future research. The first problem is to determine
the achievable rates of q−c variable–length codes for a discrete memoryless quantum source.
It is not hard to show that (Rq, Rc) is achievable (for Rq, Rc in (62)) iff

Rq + Rc ≥ lim
δ↓0

lim
n↑∞

1

n
log dim span

(

{|un〉 : un ∈ T n
P,δ}
)

, (63)

where T n
P,δ is the set of δ–typical sequences (see [5]), and the limits on the right hand side

of (63) exist. But this is a “non–single–letter” bound or non–computable bound in the
terminology of Classical Information Theory. The problem is to find a tight single–letter
bound. We shall discuss the problem in a separate paper.

In Sections 4 and 5 we have seen that von Neumann entropy in general does not well fit
lossless quantum data compression. On the other hand, to the best of our knowledge, almost
all information quantities applied in quantum information theory are in terms of or closely
related to von Neumann entropy. A challenging problem is to find a quantity with good and
simple properties which better fits lossless quantum data compression.

Another problem is to study the identification problem analogous to [1] for the classical
helper. (The same question seems to be not appropiate for quantum components because of
observations I and II).

Finally, it is worth investigating connections to [7], which we became aware of after the
present work was done.
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