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Abstract. It is well–known that search problems with a stochastic re-
sponse matrix acting independently for the questions can be equivalently
formulated as transmission problems for a discrete memoryless channel
(DMC) with feedback.

This is explained in Chapter 3 of the book Search Problems by R.
Ahlswede and I. Wegener (Wiley 1987, translation of Suchprobleme,
Teubner 1979).

There also Ahlswede’s coding scheme for the DMC and also for the
arbitrarily varying channel (AVC) achieving the capacities are described.
The latter can be viewed as a robust model for search.

In this paper we analyse this robust model with a time delay for
the noiseless feedback. In the terminology of search this means that the
answers are given with delay.

We determine the (asymptotically) optimal performances, that is,
find the capacities, for the cases where the delay is constant and
linear in the blocklength. Finally we also give the corresponding re-
sults for the DMC with zero–error probability.

Keywords: Search, noisy responses, liers, delay, feedback, list codes,
0–error capacity.

1 Introduction

Delay is an essential property in human interactions and especially also in engi-
neering systems for instance those with control or communication aspects. There
have been already in the 70ties studies on delay and overflow in data compression
schemes (e.g. Wyner [22], Jelinek [19]). Recently searching with delayed answers
was considered by Cicalese, Gargano, and Vaccaro ([11], [12]) in the combinato-
rial model dealing with lies as considered by Renyi, Berlekamp, and Ulam (see
Deppe [16]).

It is well–known that feedback (even without delay) does not increase the
capacity of a DMC. This was first proved by Shannon [21], who also found a
formula for the zero error capacity of the DMC. This is a special case of the
result by Ahlswede [2] on the AVC for maximal probability of error, which was
completed by Ahlswede and Cai [7] omitting a convexity assumption and pro-
viding a condition for positivity of the capacity (a “trichotomy”). Here feedback
(without delay) increases the capacities. This is also true of the easier case of
average probability of error, which can be found in [4], [8].

Our first result (in Section 4) concerns the situation where the delayed feed-
back has a delay time upperbounded by a constant d. With a simple coding
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scheme for delayed feedback we show that in this case the capacities of all
memoryless channels with non–delayed feedback can be achieved. Actually it
is relevant here that we can do time sharing.

Next when the delay time increases linearly with the length of codes we ob-
tain characterizations of the zero–error capacity of a DMC (Section 5) and the
average–error capacity of an AVC (Section 6).

Finally we draw attention to future study of identification codes for the DMC,
for which Ahlswede and Dueck [9] found the capacity in case of delayed feedback.
It exceeds the capacity in the absence of feedback.

Furthermore we shall investigate the AVC for maximal probability of error,
where feedback increases capacity.

In Section 2 we introduce the necessary notation and definitions. Results, on
which this work is based are stated in Section 3.

2 Notation and Definitions

Let K be an abstract channel. Then we denote by C0(K), C0,f (K), and C0,�(K, L)
its zero–error capacity, zero–error capacity with feedback, and zero–error capac-
ity for list codes with list size L. For a given arbitrarily varying channel W , we
denote by CR(W), Ca(W), Ca,f (W), and Ca,�(W , L) its average–error capacities
for random correlated codes (c.f. [4], [6], or [10], [14] for its definition), ordinary
deterministic codes, codes with feedback and list codes with list size L.

Let X be our input alphabet and let Y be our output alphabet. We define a
code with d time delayed noiseless feedback of length n, or shortly a d–feedback
code of length n as a set of functions {f (n,d)

m : m ∈ M} from Yn−d to Xn such
that for all yn−d = (y1, y2, . . . , yn−d) ∈ Yn−d,

f (n,d)
m (yn−d) =

(
f

(d)
m,1, f

(d)
m,2, . . . , f

(d)
m,d, f

(d)
m,d+1(y1), f

(d)
m,d+2(y

2), . . . , f (d)
m,n(yn−d)

)
,

(1)

where yi = (y1, y2, . . . , yi) and M is a finite set corresponding to the set of
messages. That is, for all m ∈ M f

(d)
m is a vector valued function and its first d

components are constant in X , independent of yn−d and for t = d+1, d+2, . . . , n,
its t–th component f

(d)
m,t is a function mapping yt−d to X . The information

theoretical meaning is the following. At time t, the encoder sends a letter from the
input alphabet X according to the value of the t–th component of the function
f

(n,d)
m , if he wants to send the message m to the receiver (decoder), and at the

same time the channel outputs a letter yt ∈ Y according to the probabilistic
rule given the channel K and the inputs. This output yt arrives via a noiseless
channel at the encoder at time t + d. Thus at time t = 1, 2, . . . , d, there is no
feedback available, and so the encoder only can choose an input letter according
to the message, which he wants to send. At time d + 1, the feedback starts to
arrive at the encoder. At time t = d + 1, d + 2, . . . , n, the encoder has received
the first t− d outputs yt−d = (y1, y2, . . . , yt−d) and he may associate them with
the message to choose the input letter.
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We shall consider two cases. In one case the delay time d is a constant and
in the other it increases linearly with the code length. It seems to us that the
first is more meaningful from a practical point of view and that the second
is more interesting from a mathematical point of view. The capacities are de-
fined in the standard way and we denote them in the two cases by C

(d)
f (K) and

C̃
(δ)
f (K), respectively, where δ = d

n for the second case. Analogously the zero–

error capacities in these two cases are denoted by C
(d)
0,f and C̃

(δ)
0,f (K), respectively.

These 4 capacities are non–increasing in d or δ. In particular, when d = 0, a d–
delay feedback code is an ordinary feedback code. Similarly we define C̃

(δ)
a,f for

AVC W .

3 Known Results

In this section we report a few known results, which we will use in our proofs
in Sections 5 and 6. The average–error capacity for AVC was determined by R.
Ahlswede and the key tool in his proof is the following elimination technique.

Lemma 1. (Ahlswede [4]) For an AVC W, an integer γ ∈ [n2,∞), any ε, λ̄ > 0
for sufficiently large n, there exists a random correlated code of length n assigned
to a set of codes of cardinality γ with average probability of error smaller than
λ and rate larger than CR(W) − ε.
Next there are results for list decoding.

Lemma 2. (Elias [17]) Given a discrete memoryless channel W and denote
by Cf,0(W ) its zero–error capacity with (non–delayed) feedback. Then for all
ε > 0 and sufficiently large n, there exists a code with list decoding of list size
L = L(ε, W ) (depending on ε, W but independent of n) such that the rate of code
is larger than Cf,0(W ) − ε.

Lemma 3. (Ahlswede–Cai [6]) For AVC W, and ε, λ̄ > 0, there exists an L =
L(ε, λ,W) such that for all sufficiently large n (independent of L), there exists
a code with average probability of error smaller than λ̄ and rate larger than
CR(W) − ε.
The previous lemma was remarkably improved.

Lemma 4. (Blinovsky–Narayan–Pinsker [10]) For the AVC W, there exists a
constant L = L(W) such that the average–error capacity for list codes with size
of list L Ca,�(W , L) = CR(W).

4 Codes with Delayed Constant Time Feedback

In this section we present a simple coding scheme to show that the constant time
delay for feedback does not effect capacities or rate regions for all memoryless
channels for regardless of the error concepts (zero–error, maximal–error, average
error). This includes for instance arbitrarily varying channels, two way channels,
multiple access channels, broadcast channels, interference channels and all other
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channels in the books [13] and [14], regardless whether their capacities or rate–
regions are known or unknown! The coding scheme is based on the following two
observations.

1. For memoryless channels the optimal rates of codes converge to capacity.
That is, the rates of optimal codes are arbitrarily close to the capacity if the
lengths of codes are sufficiently long. (For multi–user channels, all points in
the capacity regions can be approached by codes of sufficiently long lengths.)

2. For memoryless channels output statistics at time t only depends on the
inputs at time t (and the state at time t for arbitrarily varying channels).

For simplicity of notation we present the coding scheme for two terminal channels
and leave its obvious extension to any multi–user channel to the reader.

Let {fn
m : m ∈ M} be a code with non–delayed feedback of length n whose rate

is close to the capacity. Now we construct a code
{
f

(nd,d)

md : md = (m1, m2, . . . , md)
∈ Md

}
by concatenating the code {fn

m : m ∈ M} as follows. For t = τn + i, 0 ≤
τ ≤ d1, 1 ≤ i ≤ n and f

(nd,d)

md,t
in (1) (i.e. the tth component of f

(nd,d)

md ) we set

f
(nd,d)

md,t
= fmτ+1,i for fn

m = (fm,1, fm,2, . . . , fm,n).
Then the new code has the same rate as the original code with no time delayed

feedback and by the observation 2 its probability of error is not larger than d
times the probability of error of the original code.

Obviously the memorylessness assumption, which implies observation 2, is
essential and in general the coding scheme cannot be applied to a channel with
memory.

5 Zero–Error Capacity for a DMC with Linear Increasing
Delay Time for Feedback

In this section we consider the case where for a δ ∈ [0, 1) the output of a given
DMC at time t (t ≤ n−�nδ�) arrives at the encoder at time t+�nδ� via noiseless
feedback.

Theorem 1. For all DMC’s W , and δ ∈ [0, 1),

C̃
(δ)
f,0(W ) = (1 − δ)Cf,0(W ) + δC0(W ). (2)

Proof

a) Converse Part
Let us consider zero–error codes for the following communication system and
denote the capacity by C

∗(δ)
f,0 (W ). An encoder sends messages to a decoder

with a zero–error code with feedback of length n via W and for the time
t < n − �nδ�, the output of the channel at time t immediately arrives at
the encoder via noiseless feedback and the feedback is shut down at time
n − �nδ�. Obviously the output of the channel at time t ≥ n − �nδ� can
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never arrive at the encoder if the feedback delays �nδ� units of time. There-
fore �nδ�–feedback code may always be simulated by a code for the above
communication system. Consequently

C̃
(δ)
f,0(W ) ≤ C

∗(δ)
f,0 (W ). (3)

On the other hand we may apply Shannon’s well known approach in the con-
verse proof of his zero–error coding theorem with feedback [21] and conclude
that in the worst case the encoder may not reduce the messages to a list of
size smaller than M2−n(1−δ)C0,f (W ) by sending the first n−�nδ� components
of the input, if the initial message set size is M . Since the feedback is shut
down at time n−�nδ� and the decoder has to determine the message in the
last �nδ� units of time without error, M2−n(1−δ)Cf,0(W ) must not be larger
than 2nδC0(W ). That is

C
∗(δ)
f,0 (W ) ≤ (1 − δ)Cf,0(W ) + δC0(W ), (4)

which together with (3) yields the converse.
b) Direct Part

We prove the direct part by the following coding scheme which consists of
three blocks. Let ε be an arbitrarily small but positive constant.

1) Our first block of the coding scheme has length n
(
1 − δ − ε

3

)
. By Lem-

ma 2, there exists a constant L depending only on the channel and ε
such that for sufficiently large n, there exists a zero–error code of length
n

(
1 − δ − ε

3

)
and rate Cf,0(W )− ε

3 with list decoding of list size L. The
encoder uses such a code in the first block. Then the decoder knows that
the message falls in a list of size L after the transformation. But at this
moment the encoder does not know the list and to learn the list he has
to wait for the feedback.

2) The second block has length �nδ�. During the time he is waiting for the
feedback, the encoder may use a zero–error code of length �nδ� to sent
nδ

(
C0(W ) − ε

3

)
bits to the decoder.

3) After �nδ� units of time, the outputs of the whole first block arrive at
the encoder and so he learns the list. Now the time for the last block
only leaves n ε

3 units. But it is sufficient, if n is sufficiently large, because
the size of the list is a constant L. So the encoder may use a zero–error
code of length ε

3n to inform the decoder about the message in the list
he sends to the decoder.

In the first two blocks the encoder sends n
(
1 − δ − ε

3

) (
Cf,0(W ) − ε

3

)
bits

and nδ
(
C0(W ) − ε

3

)
bits, respectively. So totally the rate of the code is

(
1 − δ − ε

3

) (
Cf,0(W ) − ε

3

)
+ δ

(
C0(W ) − ε

3

)

= (1 − δ)Cf,0(W ) + δC0(W ) − ε

3

[
Cf,0(W ) + 1 − ε

3

]
.

This completes the proof of the direct part.
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6 Average–Error Capacity for an AVC with Linear
Increasing Delayed Time Feedback

We have learnt from [8] that the average–error capacity of codes for an AVC
with non–delayed feedback is equal to the capacity of random correlated codes
and one cannot expect that a code with delayed feedback is better than a code
with non–delayed feedback.
So for all AVC W

C̃
(δ)
a,f (W) ≤ Ca,f (W) = CR(W). (5)

We shall show that C̃
(δ)
a,f actually is equal to CR(W) and consequently the linear

time delay makes no difference for feedback. That is

Theorem 2. For all AVC, δ ∈ [0, 1)

C̃
(δ)
a,f (W) = CR(W). (6)

In order to prove Theorem 2, it is sufficient for us to present a coding scheme as-
ymptotically achieving CR(W). Before presenting it, let us briefly review the idea
in the proof of the direct part of the coding theorem for AVC [4]. R. Ahlswede
first reduced the size of a domain of a random correlated code for an AVC to
O(n2) by the elimination technique. Then the encoder may randomly choose a
code from this domain and inform the decoder about this choice by a code of
size n2 � 2no(1) in the case that the channel has positive capacity. This gives a
deterministic code, since we may regard the choice as a message sent to the de-
coder. In the case that the capacity of a channel is zero it still works if the sender
and decoder have other resources to obtain common randomness e.g., the (non–
delayed) feedback [8]. Along this line in our coding scheme the encoder should
use an arbitrarily short block to generate randomness at the output. However
the randomness does not arrive at the encoder before �nδ� units of time later.
During the waiting time, the encoder may send more messages by a list code.
To wait for the list via the feedback, the encoder needs another �nδ� units of
time. So totally the waiting time is 2nδ. Consequently this naive coding scheme
requires the assumption that δ < 1

2 .
However, we observe that the common randomness is not necessarily to be

generated by feedback, even if the capacity is zero. In fact the randomness can
be sent by a (short) list code in the second block such that the encoder may
use a correlated code in the next block until the outputs of the first two blocks
come via feedback. Then he may use the common randomness generated by the
first block and inform the decoder where the message sent in the second block
locates in the list. So, totally the waiting time is around nδ units.

Proof of Theorem 2: Now we formally prove the theorem by the following
coding scheme. For fixed ε > 0, we choose ε′, ηi > 0, i = 0, 1, 2 such that

1 −
2∑

j=0

ηj > δ, (7)
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where ε′, η0, η2 are chosen arbitrarily small (depending on ε and will be specified
later). Then we choose as set of messages a cartesian product

M = Mr ×M1, (8)

with
|Mr| = 2nη1(CR(W)−ε′) (9)

and

|M1| = 2
n
(
1−

2∑

j=0
ηj

)
(CR(W)−ε′)

. (10)

Then our code consists of four blocks.

1) The first block has length nη0. We use it to build common randomness as in
[8]. The difference is that in our case the common randomness is built �nδ�
units of time later whereas it is built immediately in the model [8].

2) The second block has length nη1. In this block the encoder sends message
mr ∈ Mr by a list code of constant list size, if the message, which he wants
to send is (mr, m1) ∈ Mr ×M1 = M. By (9) and Lemmas 3 or 4, the code
with arbitrarily small average probability of error exists.

3) The third block has length n

(

1 −
2∑

j=0

η1

)

. In this block the encoder uses a

random correlated code with the domain (of the random code) Mr and rate
CR(W)− ε′. The existence of the code follows from Lemma 1. The encoder
sends m1 ∈ M1 to the decoder by the mrth code in the domain Mr, if he
wants to send (mr, m1) to the decoder. He can do it by (10).

4) There are nη2 units of time left for the last block. By (7) the outputs of the
first two blocks have arrived at the encoder before the last block is started.
So the common randomness generated by the first block has been built and
the list of the code in the second block has come to encoding. The encoder
can use a code obtained by the elimination technique of Lemma 1 to inform
the decoder which message in the list he sends in the second block. Since the
size of the list is a constant, η3 can be chosen arbitrarily small.

5) The encoder knows the message mr is in a list, but does not know which one
it is at the end of the second block. Then he does nothing but waits for the
end of the transmission. At end of the last block the decoder learns mr from
the last block. Then he knows which code is used in the third block and so
he is able to decode m from the code in the third block. Finally he obtains
(mr, m1).

The probability of error, clearly may be arbitrarily small and by (8) – (10)
the rate is

η1

(
CR(W)−ε′

)
+

(

1 −
2∑

j=0

ηj

)

(CR−ε′)=
[
1−(η0+η1)

](
CR(W)−ε′

)
< CR(W)−ε,

if we choose ε′ and η0, η2 sufficiently small. So our proof is complete, since
the converse trivially follows from (5).
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Finally we note that although an algorithm of coding for feedback without
delay based on [1] was studied in [20], it is a long way to find efficient algorithms
of our coding schemes for AVC and zero–error codes with delayed feedback. This
is so because our coding schemes contain correlated random codes and zero–error
codes whose structures are unknown.
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