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1 Introduction

We continue the investigation of Part I, keep its terminology, and also
continue the numbering of sections, equations, theorems etc.
Consequently we start here with Section 6. As mentioned in Section 4 we present
now criteria for a triple (r, t, p) to be k–admissible. Then we consider the f–
complexity (extended now to k–ary alphabets) Γk(F) of a family F . It serves
again as a performance parameter of key spaces in cryptography. We give a lower
bound for the f–complexity for a family of the type constructed in Part I. In the
last sections we explain what can be said about the theoretically best families
F with respect to their f–complexity Γk(F). We begin with straightforward
extensions of the results of [4] for k = 2 to general k by using the same Covering
Lemma as in [1].

But then we give an improvement (also of the earlier results) with respect to
balancedness with the help of another old Covering Lemma from [1]. Finally this
will again be improved by a more recent result on edge–coverings of hypergraphs
from [2]. This has become a basic tool in Information Theory, for instance in
the Theory of Identification. In the present context it gives families with a very
strong balancedness property. A quantum theoretical analogue became a key tool
for quantum channels [3]. It invites to investigate our cryptographical concepts
in the quantum world.

2 Sufficient Criteria for k–Admissibility

We have shown in Part I that the assumption on the k–admissibility in Theorem
2 cannot be dropped. Thus in order to be able to use the construction in Theorem
2, we need criteria for a triple (r, t, p) to be k–admissible. We will prove three
sufficient criteria of this type:

Theorem 3

(i) If k, r, t ∈ N, 1 ≤ t ≤ k, p is a prime and r < p, then the triple (r, t, p) is
k–admissible.

(ii) If k, r, t ∈ N, p is a prime and

(4t)r < p, (7.1)

then (r, t, p) is k–admissible.
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(iii) If k ∈ N, k ≥ 2, the prime factorization of k is k = qα1
1 . . . qαs

s (where
q1, . . . , qs are distinct primes and α1, . . . , αs ∈ N), and p is a prime such
that each of q1, . . . , qs is a primitive root modulo p, then for every pair
r, t ∈ N with r, t < p, the triple (r, t, p) is k–admissible.

Note that in the special case k = 2 this theorem gives Theorem 2 in [6].

Proof

(i) Assume that contrary to the assertion, there are k, r, t ∈ N and a prime p
so that

1 ≤ t ≤ k, (7.2)

r < p, (7.3)

and the triple (r, t, p) is not k–admissible, i.e., there is an A ⊂ Zp and a
k–set B whose elements belong to Zp such that |A| = r, |B| = t (multiple
elements counted with their multiplicity) and the number of solutions of
(3.1) is divisible by k for all c ∈ Z.

Consider any c ∈ A + B (A,B are non–empty, thus A + B is also non–
empty). Since for this c (3.1) has at least one solution and the number of
solutions is always divisible by k, thus (3.1) must have at least k solutions.
On the other hand, clearly (3.1) may have at most |B| = t solutions so that
we must have

|B| = t ≥ k. (7.4)

It follows from (7.2) and (7.4) that

|B| = t = k. (7.5)

Since B is a k–set, the multiplicity of each element is ≤ k − 1. Thus it
follows from (7.5) that B must have at least two distinct elements: say,
bo, bo + d ∈ B, d �= 0. Every element of A + bo must have (at least) k
representations in the form (3.1) whence, by (7.5), it follows easily that
they also have a representation in the form (a + bo + d) with a ∈ A whence
A+ bo = A+ bo + rd for all r ∈ N, thus A+ bo = A+ bo + s for any s ∈ Zp,
in particular for any s ∈ A + bo. Hence, A + bo is an additive subgroup of
Zp thus A = A + bo = Zp which contradicts |A| = r and (7.3).

(ii) The proof is nearly the same as the proof of Theorem 2, (ii) in [6]. Thus we
will omit most of the details here, we will present only those critical steps
where a slight modification is needed.

Assume that r, t, p satisfy (7.1), A ⊂ Zp, B is a k–set whose elements
belong to Zp, |A| = r and |B| = t (multiple elements counted with their
multiplicity). It suffices to show that then there is a c ∈ Zp for which the
number of solutions of (3.1) (the b’s counted with multiplicity) is greater
than 0 and less than k. To show this, it suffices to prove that there are
m ∈ N, c′ ∈ Zp such that (m, p) = 1, and the number of solutions of

ma + mb = c′, a ∈ A, b ∈ B (7.6)
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is greater than 0 and less than k. Again, the proof of this is based on
Lemma 3 in [6]. We start out from this lemma, and we proceed in the same
way as in [6]. In particular, we define m, bi, bj , r1, rk, an, av in the same way.
Then again, the numbers

mbi + rk = mbj + mav

and
mbj + r1 = mbj + mau

do not have any further representations in form (7.6). Since B is a k–set,
the multiplicity of both bi and bj is less than k. Thus these numbers have
more than 0 and less than k representations in form (7.6) (counting the b’s
with multiplicity) which completes the proof.

(iii) From a practical point of view this seems to be the most important of the
three criteria. Namely, this criterion enables us to control even correlations
of very high order provided that there are “many” primes p such that each
of q1, . . . , qs is a primitive root modulo p. Partly because of the impor-
tance of this criterion, partly in order to help to understand the notion of
k–admissibility and the related difficulties better, we will give a detailed
discussion of this case in the next section. This discussion will lead not only
to the proof of criterion (iii), but it will also provide negative examples. We
will also show that, most probably, there are “many” primes p of the type
described in (iii).

3 k–Good Primes: Negative Examples

Definition 5. A number m ∈ N is said to be k–good if for any pair r, t ∈ N with
r < m, t < m, the triple (r, t, m) is k–admissible. If for all r < m, t < m the
triple (r, t, m) is (k, k)–admissible, then m is said to be (k, k)–good.

Theorem 4. If k ∈ N, k ≥ 2, the prime factorization of k is k = qα1
1 . . . qαs

s

(where q1, . . . , qs are distinct primes and α1, . . . , αs ∈ N) and p is an odd prime
such that each of q1, . . . , qs is a primitive root modulo p, then p is k–good.

Proof of Theorem 4. We will need the following lemma:

Lemma 4. If p is an odd prime and q is a prime which is a primitive root
modulo p, then the polynomial xp−1 + xp−2 + · · ·+ x + 1 is irreducible over Fq.

Proof of Lemma 4. This is a trivial consequence of Theorem 2.47 in [11, p. 62].
We will prove the assertion of Theorem 4 by contradiction: assume that con-

trary to the statement of the theorem, there is a set A ⊂ Zp and a k–set B whose
elements belong to Zp so that

|A| = r < p, |B| = t < p (8.1)

and the sum A + B has property Pk.
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If C is a multiset whose elements belong to Zp, then let QC(x) denote the
polynomial

∑

c∈C
xs(c) where s(c) denotes the least non–negative element of the

residue class c modulo p, and the elements c of C are to be taken with their
multiplicity (so that if c occurs with multiplicity M in C, then there is a term
Mxs(c) appearing in QC(x)). Clearly we have (xp − 1) | xuQC(x) − QC+u(x) (in
Z[x]), if C is a multiset of elements of Zp and u ∈ Zp. It follows that (xp − 1) |(
QA(x)QB(x) − QA+B(x)

)
:

QA(x)QB(x) = QA+B(x) + (xp − 1)G(x) with G(x) ∈ Z[x]. (8.2)

Write QB(x) =
p−1∑

j=0

vjx
j so that the vj ’s are the multiplicities of the elements

j ∈ Zp in B. It follows that 0 ≤ vj ≤ k − 1 for all 0 ≤ j ≤ p − 1, and since

|B| =
p−1∑

j=0

vj > 0,

we have
(v0, v1, . . . , vp−1) ≤ k − 1.

It follows that there is an i with 1 ≤ i ≤ s, qαi

i � (v0, v1, . . . , vp−1). Write

qβ
i ‖(v0, v1, . . . , vp−1) (8.3)

so that
0 ≤ β < αi. (8.4)

Then every coefficient of QB(x) is divisible by qβ
i . Since A + B has property

Pk, the coefficients of QA+B(x) are divisible by k and thus also by qβ
i . Thus

by (8.2), every coefficient of (xp − 1)G(x) must be also divisible by qβ
i . Since

the polynomial xp − 1 is primitive (a polynomial ∈ Z[x] is said to be primitive
if the greatest common divisor of its coefficients is 1), and by Gauss’ lemma
the product of primitive polynomials is also primitive, thus it follows that the
coefficients of G(x) are also divisible by qβ

i . Thus we may simplify (8.2) so that
we divide the coefficients of QB(x), QA+B(x) and G(x) by qβ

i :

QA(x)

(
1

qβ
i

QB(x)

)

=

(
1

qβ
i

QA+B(x)

)

+ (xp − 1)

(
1

qβ
i

G(x)

)

. (8.5)

Since this equation holds over Z, it also holds over Zqi , i.e., in other words,
we may consider (8.5) modulo qi. The coefficients of QA+B(x) are divisible by
qαi

i , thus by (8.4), the polynomial 1

qβ
i

QA+B(x) is the zero polynomial. Since

(xp−1 + xp−2 + · · · + 1) | (xp − 1), thus it follows from (8.5) that

(xp−1 + xp−2 + · · · + 1) | QA(x)

(
1

qβ
i

QB(x)

)

.
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By Lemma 4 the polynomial xp−1 + xp−2 + · · · + 1 is irreducible over Fqi .
Thus it follows that either

(xp−1 + xp−2 + · · · + 1) | QA(x) (8.6)

or

(xp−1 + xp−2 + · · · + 1) |
(

1

qβ
i

QB(x)

)

; (8.7)

note that by (8.3), the polynomial 1

qβ
i

QB(x) is not the 0 polynomial. Since by the

definitions of QA(x) and QB(x) these polynomials are of degree at most p − 1,
it would follow from (8.6) and (8.7) that QA(x), resp. QB(x), is a (non–zero)
constant multiple of xp−1 + xp−2 + · · · + 1, whence |A| ≥ p, resp. |B| ≥ p. This
contradicts (8.1) which completes the proof of Theorem 4.

In Section 4 we mentioned that there are negative examples with sums A+B
having property Pk, i.e., examples for primes p which are not k–good. Now we
will present examples of this type.

First we recall that in the special case k = 2 in [6] we proved that a prime p is
2–good if and only if 2 is a primitive root modulo p. There we presented several
examples for sums A+ B possessing property P2 (so that for the corresponding
primes p, 2 is not a primitive root modulo p). Some of these examples follow:

Example 1. If p = 7, A = {0, 1, 3} and B = {0, 1, 2, 4}, then A + B possesses
property P2 so that the triples (3, 4, 7) and (4, 3, 7) are not 2–admissible.

Example 2. If p = 17, A = {0, 3, 4, 5, 8} and B = {0, 3, 4, 5, 6, 9}, then A + B
has property P2 so that (5, 6, 17) and (6, 5, 17) are not 2–admissible.

Example 3. If p = 31, A = {0, 2, 5} and B = {0, 2, 4, 5, 6, 8, 9, 13, 14, 15, 16, 17,
20, 21, 23, 26}, then A + B has property P2, thus (3, 16, 31) and (16, 3, 31) are
not 2–admissible.

One might like to present similar negative examples for other k (and p) values
as well. To find examples of this type, one has to consider the proof of Theorem
4. We obtain that for fixed k and p, we have to look for non–trivial factorization
of xp − 1 over Zk of the form

xp − 1 = Q1(x)Q2(x) (8.8)

with
Q1(x) =

∑

a∈A
xa and Q2(x) =

∑

d∈D
tdx

d.

(Here “non–trivial” means that both Q1(x) and Q2(x) have at least 2 terms.)
If we find a factorization of this form, then defining B so that it contains the

elements d ∈ D each with multiplicity td, the sum A + B possesses property
Pk so that the triple (|A|, |B|, p) is not k–admissible. The difficulty is that not
only we have to find a non–trivial factorization of form (8.8), but also there
is the additional restriction that all the coefficients of Q1(x) must be 0 or 1.
This is the reason for that if k is a prime, then for k > 2 we can give only a
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sufficient condition for p being k–good. On the other hand, combining the proof
of Theorem 4 and the argument above, we can prove that if k is a prime then a
prime p is (k, k)–good if and only if k is a primitive root modulo p. (In [6] we
proved this in the special case k = 2.)

Example 4. If p = 13, then we have

x13 − 1 = (1 + x + x4 + x6)(2 + x + 2x2 + x3 + 2x5 + x7)

over Z3. It follows that, writing A = {0, 1, 4, 6}, B = {0, 0, 1, 2, 2, 3, 5, 5, 7}, the
sum A+B possesses property P3, so that (4, 9, 13) is not 3–admissible, and thus
p = 13 is not 3–good.

If we have a negative example for a certain k ∈ N and prime p, and k | k′,
then one can use this example to construct negative examples for k′ and p. E.g.,
starting out from Example 3, we obtain the following negative example for k = 6
and p = 31:

Example 5. If p = 31, A = {0, 2, 4, 5, 6, 8, 9, 13, 14, 15, 16, 17, 20, 21, 23, 26} and
B = {0, 0, 0, 2, 2, 2, 5, 5, 5}, then A + B has property P6, thus (16, 9, 31) is not
6–admissible.

Finally, we will study the following question: is it true that for any k ∈ N, k ≥ 2
there are infinitely many k–good primes? Based on Theorem 4 and considering
the work related to Artin’s conjecture [8], [9] one would expect that the answer is
affirmative, however, this is certainly beyond reach at the moment. On the other
hand, we can prove that the affirmative answer would follow from Schinzel’s
Hypothesis H [15], [16] (see also [7, p. 21]) which generalizes the twin prime
conjecture:

Hypothesis H. If k ∈ N, F1, . . . , Fk are distinct irreducible polynomials in Z[x]
(with positive leading coefficients) and the product polynomial F = F1 . . . Fk has
no fixed prime divisor, then there exist infinitely many integers n such that each
Fi(n) (i = 1, . . . , k) is a prime.

Theorem 5. If Hypothesis H is true, then for any primes q1 < · · · < qs there are
infinitely many primes p so that each of q1, . . . , qs is a primitive root modulo p.

Proof of Theorem 5. Let r1, . . . , rt be the odd primes amongst q1, . . . , qs (i.e.,
{r1, . . . , rt} = {q1, . . . , qs} � {2}). For i = 1, . . . , t, let ui denote an arbitrary
quadratic non–residue modulo ri. Consider the linear congruence system

4x + 1 ≡ u1 (mod r1)
...

4x + 1 ≡ ut (mod rt).

Clearly, each of these linear congruences can be solved, and the moduli are
coprime, thus this system has a unique solution modulo r1 . . . rt. Let po be a
positive element of this residue class so that

4po + 1 ≡ ui (mod ri) (for i = 1, . . . , t). (8.9)
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Write

F1(n) = po + nr1 . . . rt

and
F2(n) = 4F1(n) + 1 = (4po + 1) + 4nr1 . . . rt.

We will show that F = F1F2 has no fixed prime divisor. F2(n) is always odd
and r1 . . . rt is odd, thus F1(n) is odd infinitely often, whence F1(n)F2(n) is also
odd infinitely often. For i = 1, 2, . . . , t, the number ui is a quadratic non–residue
modulo ri, thus ui cannot be congruent to 0 or 1 modulo ri. By (8.9), it follows
that

4F1(n) ≡ 4po ≡ ui − 1 �≡ 0 (mod ri)
and

F2(n) ≡ 4po + 1 ≡ ui �≡ 0 (mod ri)

so that
(
ri, F1(n)F2(n)

)
= 1 for all i. Finally, if v is a prime different from each

of 2, r1, . . . , rt, then
F1(n)F2(n) ≡ 0 (mod v) (8.10)

is a quadratic congruence which has at most 2 solutions modulo v. Since v > 2,
there is at least one residue class modulo v which does not satisfy (8.10), so for
all n from this residue class v � F1(n)F2(n).

Thus, indeed, F1F2 has no fixed prime divisor, the polynomials F1, F2 ∈ Z[x]
are linear and thus irreducible in Z[x], and their leading coefficients are positive,
so that all the conditions in Hypothesis H hold. Since now this hypothesis is
assumed to be true, there are infinitely many n ∈ N so that both

z = F1(n) = po + nr1 . . . rt (8.11)

and
p = F2(n) = 4z + 1 = (4po + 1) + 4nr1 . . . rt (8.12)

are primes. We will show that for such an n large enough, each of 2, r1, . . . , rt is
a primitive root modulo p = p(n).

Since p − 1 = 4z and z is a prime, all the positive divisors of p − 1 are
1, 2, 4, z, 2z and 4z. Thus if (g, p) = 1 and g is not a primitive root modulo p,
then we must have either

g4 ≡ 1 (mod p) (8.13)

or
g

p−1
2 ≡ 1 (mod p). (8.14)

Since now p is assumed to be large, (8.13) does not hold for g = 2, r1, . . . , rt.
Thus if one of these numbers is not a primitive root modulo p, then it must
satisfy (8.14) whence, by Euler’s lemma,

(
g

p

)

= +1
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(where
(

g
p

)
denotes the Legendre symbol). Thus it suffices to show that

(
g

p

)

= −1 for g = 2, r1, . . . , rt. (8.15)

By (8.12) we have p = 4z + 1 where z is an odd prime, and thus p is of form
8k + 5, whence (8.15) follows if g = 2. If g = ri, 1 ≤ i ≤ t, then by the quadratic
reciprocity law we have

(
ri

p

)

= (−1)
ri−1

2 · p−1
2

(
p

ri

)

. (8.16)

By (8.12), p−1
2 = 2z is even and thus

(−1)
ri−1

2 · p−1
2 = +1. (8.17)

Moreover, by (8.9) and (8.12) we have

p ≡ 4p0 + 1 ≡ ui (mod ri)

whence, by the definition of ui,
(

p

ri

)

=
(

ui

ri

)

= −1. (8.18)

(8.15) with ri in place of g follows from (8.16), (8.17) and (8.18), and this
completes the proof of Theorem 5.

4 Extension of the Notion of f–Complexity and a
Construction with High f–Complexity

In [4] we introduced the notion of f–complexity (“f” for family) of families of
binary sequences. This notion can be generalized easily to families on k symbols:

Definition 6. If A is a set of k symbols, N, t ∈ N, t < N , (ε1, . . . , εt) ∈ At,
i1, . . . , it are positive integers with 1 ≤ i1 < · · · < it ≤ N , and we consider
sequences EN = (e1, . . . , eN) ∈ AN with

ei1 = ε1, . . . , eit = εt, (9.1)

then (ei1 , . . . , eit ; ε1, . . . , εt) is said to be a specification of EN of length t or a
t–specification of EN .

Definition 7. The f–complexity of a family F of sequences EN ∈ AN on k
symbols is defined as the greatest integer t so that for any t–specification (9.1)
there is at least one EN ∈ F which satisfies it. The f–complexity of F is denoted
by Γk(F). (If there is no t ∈ N with the property above, we set Γk(F) = 0.)
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Note that the special case k = 2 of this definition is the notion of f–complexity
of families of binary sequences introduced in [4].

One might like to show that the family constructed in Theorem 2, or at least
a slightly modified version of it, is also of high f–complexity. Unfortunately, we
have been able to prove only a partial result in this direction: we can handle only
the case when k, the size of the alphabet, is a prime number (this, of course,
includes the binary case). We will explain the difficulties arising in the case of
composite k later. We hope to return to this case in a subsequent paper, and
there we will present other constructions where the f–complexity can be handled
also for composite k.

Theorem 6. Assume that k, p are prime numbers, χ is a (multiplicative) char-
acter modulo p of order k (so that k | p − 1), H ∈ N, H < p. Consider all the
polynomials f(x) ∈ Fp[x] with the properties that

0 < deg f(x) ≤ H (9.2)

and
in F̄p the multiplicity of each zero of f(x) is less than k. (9.3)

For each of these polynomials f(x), consider the sequence Ep = Ep(f) =
(e1, . . . , ep) of k–th roots of unity defined as in Theorem 2:

en =

{
χ
(
f(n)

)
for

(
f(n), p

)
= 1

+1 for p | f(n).

Then we have
δ(Ep) < 11Hp1/2 log p. (9.4)

Moreover, if � ∈ N and

(i) either
(4H)� < p (9.5)

(ii) or k is a primitive root modulo p and � < p,

then also
γ�(Ep) < 10�Hkp1/2 log p (9.6)

holds. Finally, we have
Γk(F) ≥ H. (9.7)

Proof of Theorem 6. The proof is a combination and extension of Theorem 1
in [4] and Theorem 2 above, thus we will leave some details to the reader.

In order to prove (9.4), we argue in the same way as in the proof of (3.2) in
the proof of Theorem 2. Again we set g(x) = f(u + xv) and χ1 = χt with

1 ≤ t ≤ k − 1. (9.8)
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Then by (9.3) the multiplicity of the zeros of g(x) is less than k, and since
the order of χ is k and k is now a prime number, it follows from (9.8) that the
character χ1 is also of order k. Thus by Lemma 2, again (3.16) holds with H in
place of h, and then we may complete the proof of (9.4) in the same way as the
proof of (3.2) was completed.

Similarly, in order to prove (9.6), we argue as in the proof of (3.3) in the proof
of Theorem 2. We define B, f1(x) and G(x) as there: f(x) = Bf1(x), f1(x) is
unitary,

G(x) = f1(x + d1)t1 . . . f1(x + d�)t� (9.9)

with
0 ≤ t1, . . . , t� ≤ k − 1, (t1, . . . , t�) �= (0, . . . , 0), (9.10)

and again we get that (3.25) and (3.26) hold, and it suffices to show that the
analogue of Lemma 3 holds.

Lemma 5. If k, f, H, � are defined as in Theorem 6, then G(x) has at least one
zero (in F̄p) whose multiplicity is not divisible by k.

Indeed, assuming that Lemma 5 holds, the proof of (9.6) can be completed in
the same way (with H in place of h) as the proof of (3.3) using Lemma 3. Thus
it remains to prove Lemma 5.

Proof of Lemma 5. We argue as in the proof of Lemma 3, i.e., we consider
the same equivalence relation as there, then we write f1(x) as the product of
irreducible polynomials over Fp, and finally we group these factors so that in
each group the equivalent irreducible factors are collected. However, there is a
crucial difference with Lemma 3: while in Theorem 2 we assumed that f(x) has
no multiple zero, now this condition is relaxed to the weaker condition (9.3).
It follows that now the irreducible factors may have an exponent not exceeding
k − 1. So now a typical group of equivalent irreducible factors looks like ϕ(x +
a1)s1 , . . . , ϕ(x + ar)sr where

1 ≤ s1, . . . , sr ≤ k − 1. (9.11)

Then writing G(x) in (9.9) as the product of irreducible polynomials over Fp,
all the polynomials ϕ(x + ai + dj) with 1 ≤ i ≤ r, 1 ≤ j ≤ � occur amongst the
factors, and for fixed i, j such a factor occurs with exponent exactly sitj . Since
now k is a prime, thus it follows from (9.10) and (9.11) that

if sitj > 0 then k � sitj . (9.12)

The conclusion of Lemma 5 fails, i.e., the multiplicity of each of the zeros of
G(x) is divisible by k if and only if each of the factors ϕ(x + ai + dj) occurs
with an exponent divisible by k. This is so if and only if the following holds: if A
denotes the k–set whose elements are a1, . . . , ar, each ai taken with multiplicity
si, and B denotes the k–set whose elements are d1, . . . , d�, each dj taken with
multiplicity tj , then A+B possesses property Pk. Take any of the groups formed
by the equivalent irreducible factors (by (9.2) there is at least one such group),
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and consider the corresponding sum A + B with property Pk. Then (|A|, |B|, p)
is not a (k, k)–admissible triple, and here we have

|A| =
r∑

i=1

si ≤
r∑

i=1

(k − 1) = r(k − 1) ≤ (deg f1)(k − 1) ≤ H(k − 1)

and

|B| =
�∑

j=1

tj ≤ �(k − 1).

It remains to show that assuming either (i) or (ii) (in Theorem 6), this is
impossible.

(Observe that now we are studying (k, k)–admissibility instead of the k–
admissibility occurring in the proof of Theorem 2; this is the price paid for
relaxing the condition on the zeros of the polynomial f(x) which is necessary
for controlling the f–complexity. It is much more difficult to control (k, k)–
admissibility than k–admissibility, since if we study (k, k)–admissibility then the
set A in the sums A + B considered also can be a multiset, thus we have more
flexibility in constructing negative examples. Indeed, when k is composite, and
both A and B can be k–sets, then it is easy to give negative examples of the
type described in Example 5; this is why we cannot control the f–complexity
for composite k.)

Assume first that (i) holds. Let Ā and B̄ denote the set of the distinct elements
of A, resp. B: Ā = {a1, . . . , ar}, B̄ = {d1, . . . , d�}. Then by (9.2) and (9.5) we
have

(4r)� ≤ (4 deg f1)� = (4 deg f)� ≤ (4H)� < p

so that (9.1) in Theorem 3, (ii) holds with r and � in place of t, resp. r. Thus
the argument in the proof of Theorem 3, (ii) can be used with k = 2, and then
we obtain that there is a c ∈ Zp which has a unique representation in the form

dj + ai = c, dj ∈ B̄, ai ∈ Ā.

It follows that, considering also multiplicities,

ai + dj = c, ai ∈ A, d� ∈ B
has exactly sitj( > 0) solutions. By (9.12), this contradicts the assumption that
A + B has property Pk which completes the proof in this case.

Assume now that (ii) holds. Then we use the notations of the proof of The-

orem 4, so that, by (9.11), QA(x) =
r∑

i=1

six
s(ai) ∈ Fk[x], by (9.10) QB(x) =

�∑

j=1

tjx
s(dj) ∈ Fk[x], and, since A + B possesses property Pk, QA+B(x) = 0 in

Fk[x]. Again, (8.2) holds, whence it follows that xp−1 + xp−2 + · · · + x + 1 di-
vides QA(x)QB(x). Since it is now assumed that k is a primitive root modulo p,
thus by Lemma 4 the polynomial xp−1 + xp−2 + · · · + x + 1 is irreducible over
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Fk. It follows that xp−1 + xp−2 + · · · + x + 1 divides either QA(x) or QB(x), so
that either QA(x) or QB(x) is a constant multiple of this polynomial, but this
is impossible by r ≤ deg f ≤ H < p and � < p, and this completes the proof of
(9.6). It remains to prove (9.7).

As in [4], we use

Lemma 6. If T is a field and g(x) ∈ T [x] is a non–zero polynomial, then it can
be written in the form

g(x) =
(
h(x)

)k
g∗(x) (9.13)

where the multiplicity of each zero of g∗(x) (in F̄p) is less than k.

Proof of Lemma 6. The special case k = 2 of this lemma was stated and
proved in [4] as Lemma 1, and the general case presented here can be proved in
the same way, thus we leave the details to the reader.

To prove (9.7), we have to show that for any specification of length H :

ei1 = ε1, . . . , eiH = εH (i1 < · · · < iH), (9.14)

there is a polynomial f(x) ∈ Fp[x] which satisfies (9.2) and (9.3) so that Ep =
Ep(f) ∈ F , and this sequence Ep = Ep(f) satisfies the specification (9.14).

By H < p, there is an integer iH+1 with 0 < iH+1 ≤ p, iH+1 /∈ {i1, . . . , iH}.
Let ε0 be a k–th root of unity with

ε0 �= 1, (9.15)

and set
εH+1 = ε0ε1. (9.16)

Denote the distinct k–th roots of unity by ϕ1, . . . , ϕk, let v1, . . . , vk be integers
with

χ(vi) = ϕi (for i = 1, . . . , k),

and define y1, . . . , yH+1 by

yi = vz where z = z(i) is defined by ϕz = εi. (9.17)

By the well–known interpolation theorem, there is a unique polynomial g(x) ∈
Fp[x] with

deg g(x) ≤ H (9.18)

and
g(ij) = yj for j = 1, . . . , H + 1. (9.19)

(This polynomial can be determined by using either Lagrange interpolation or
Newton interpolation.) By Lemma 6 (with T = Fp), this polynomial g(x) can
be written in the form (9.13). Let

f(x) = g∗(x). (9.20)
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Then by Lemma 6, (9.3) holds. It follows from (9.13), (9.18) and (9.20) that

deg f(x) = deg g∗(x) ≤ deg g(x) ≤ H. (9.21)

By (9.17) and (9.19) we have

g(ij) = yj = vz(j)

so that
χ
(
g(ij)

)
= χ(vz(j)) = ϕz(j) (�= 0) (9.22)

and thus (
g(ij), p

)
= 1 for j = 1, . . . , H + 1. (9.23)

By (9.13), (9.17), (9.20), (9.22) and (9.23) we have

χ
(
g(ij)

)
= χ

((
h(ij)

)k)
χ
(
g∗(ij)

)
= χ

(
f(ij)

)
= ϕz(j) = εj for j = 1, . . . , H + 1.

(9.24)
It follows from (9.15), (9.16) and (9.24) that

χ
(
f(i1)

) �= χ
(
f(iH+1)

)

and thus f(x) is not constant, i.e.,

deg f(x) > 0. (9.25)

(9.2) follows from (9.21) and (9.25). Finally, it follows from (9.24) and the
definition of Ep(f) that Ep(f) satisfies the specification (9.14) and this completes
the proof of the theorem.

5 On the Cardinality of a Smallest Family Achieving a
Prescribed f–Complexity and Multiplicity

We introduce first k–ary extensions of two quantities studied in [4].

Definition 8. For positive integers j ≤ K ≤ N, M and the alphabet A =
{a1, . . . , ak} set

S(N, j, M, k) = min
{|F| : F ⊂ AN , ∀(ε1, . . . , εj) ∈ Aj and 1 ≤ i1 < · · · < ij ≤ N

there are at least M members EN = (e1, . . . , eN ) of F
with j–specification (ei1 , . . . , eij ; ε1, . . . , εj)

}
.

(10.1)

We also say for the F ’s considered here that they cover every j–specification
with multiplicity ≥ M .

In particular for M = 1 and j = K we get

S(N, K, k) � S(N, K, 1, k) = min
{|F| : F ⊂ AN , Γk(F) = K

}
, (10.2)
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which counts how many sequences EN ∈ AN are needed to cover all K specifi-
cations, that is, to have f–complexity Γk(F) = K.

Finding this number can be formulated as a covering problem for the hyper-
graph

HH(N, K, k) =
(V(N, K, k), E(N, k)

)
,

where E(N, k) = AN is the edge set and the vertex set V(N, K, k) is defined as
the set of K–specifications for AN or, equivalently, as set of (N−K)–dimensional
subcubes of AN and thus

|V(N, K, k)| =
(

N

K

)

kK , |E(N, k)| = kN (10.3)

EN ∈ E(N, k) contains specification V if and only if EN“∈”V . We derive now
bounds on S(N, K, k) and use (as in [4] for k = 2)

Lemma 7. (Covering Lemma 1 of [1]) For any hypergraph (V , E) with

min
v∈V

deg(v) ≥ d (10.4)

there exists a covering C ∈ E with

|C| ≤
⌈ |E|

d
log |V|

⌉

.

Theorem 7. The cardinality S(N, K, k) of a smallest family F ⊂ AN with

f–complexity Γk(F) = K satisfies

kK ≤ S(N, K, k) ≤ kK log
(

N

K

)

kK ≤ kKK log N (K ≥ k3).

Proof: Application of Lemma 7 to our hypergraph HH(N, K, k) yields with
d = kN−K a family F with Γk(F) ≥ K,

|F| ≤
⌈

kN

kN−K
log

(
N

K

)

kK

⌉

≤ kKK log N (K ≥ k3)

and thus the upper bound for S(N, K, k).
On the other hand one edge EN covers exactly

(
N
K

)
K–specifications and

therefore by (10.3) necessarily as lower bound we have

S(N, K, k) ≥ kK .

We explained already in [4] that in order to make it difficult for an eaves-
dropper to identify a key EN ∈ F , when he has observed j positions, we must
leave him many options. This can be achieved by constructing a family F of
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high f–complexity Γk(F). Indeed for j < Γk(F) the multiplicity Mj(F), that is,
the least multiplicity of every j–specification satisfies

Mj(F) ≥ kΓk(F)−j, (10.5)

because a j–specification can be extended to as many Γk(f)–specifications with
the same support. Therefore

min
F :Γk(F)≥K

Mj(F) ≥ kK−j (10.6)

and thus

S(N, j, kK−j , k) ≤ S(N, K, k) ≤ kKK log N (K ≥ k3). (10.7)

On the other hand, since |V(N, j, k)| =
(
N
j

)
kj and an edge EN covers exactly

(
N
j

)
j–specifications, necessarily

S(N, j, kK−j , k) ≥ kK−j

(
N

j

)

kj

(
N

j

)−1

= kK . (10.8)

Quite surprisingly, for K log N small relative to kK the two bounds are very
close to each other. The fact that S(N, K, k) and therefore f–complexity contains
almost complete information about the quantity S(N, j, kK−j , k) measuring mul-
tiplicity for the eavesdropper demonstrates the usefulness of our complexity mea-
sure. We summarize these findings.

Theorem 8. The cardinality S(N, j, kK−j , k) of a smallest family F ⊂ AN

which covers every j–specification with multiplicity ≥ kK−j satisfies for all j ≤
K ≤ N

kK ≤ S(N, j, kK−j , k) ≤ S(N, K, k) ≤ kKK log N (K ≥ k3).

6 Balanced Families with Prescribed f–Complexity

Definition 9. A family F ⊂ AN with f–complexity Γk(F) = K is said to be
c–balanced for some constant c ∈ N, if no K–specification is covered by more
than c sequences EN ∈ F .

We improve now Theorem 7 by adding c–balancedness.

Theorem 9. For c = log |V(N, K, k)| = log
(

N
K

)
kK ≤ K log N (K ≥ k3) the

smallest c–balanced family F ⊂ AN with f–complexity Γk(F) = K has a cardi-
nality meeting the bounds on S(N, K, k) in Theorem 7.

Proof: We replace Lemma 7 by a lemma on balanced coverings.
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Definition 10. A covering C � {E1, . . . , EL} of a hypergraph HH = (V , E) is
called c–balanced for some constant c ∈ N, if no vertex occurs in more than c
edges of C.

Lemma 8. (Covering Lemma 3 of [1, Part II]) A hypergraph HH = (V , E) with
maximal and minimal degrees dmax � max

v∈V
deg(v) and dmin � minv∈V deg(v) > 0

has a c–balanced covering C = {E1, . . . , EL} if

(a) L ≥ 
|E|d−1
min · log |V|� + 1

(b) c ≤ L ≤ c|E|d−1
max

(c) exp
{
−D

(
λ‖ dmax

|E|
)

L + log |V|
}

< 1
2 for λ � c

L

(Here D denotes the Kullback–Leibler divergence.)

Using Lemma 8 with dmin = dmax = d = kN−K and

c = log |V| = log |B(N, K, k)| = log
(

N

K

)

kK ≤ K log N (K ≥ k3)

we get a c–balanced covering of said cardinality.

Remark: Using Theorem 9 also the bounds in Theorem 8 can be obtained in a
c–balanced way with c = K log N by the previous reasoning.

Next we go for improvements of the balancedness property. It is known from
probability theory that for large deviations the following inequality holds:

For a sequence Z1, Z2, . . . , ZL of independent, identically distributed random
variables with values in [0, 1] and expectation EZi = μ for 0 < ε < 1

Pr

{
1
L

L∑

i=1

Zi /∈ [
(1 − ε)μ, (1 + ε)μ

]
}

≤ 2 exp
(

−L
ε2μ

2�n2

)

.

This can be used to establish another balancedness property, which also gives
a bound from below, but in exchange most, but not necessarily all, vertices
satisfy it. This suggests to apply a more recent auxiliary result.

Lemma 9. [2] Let HH = (V , E) be an e–uniform hypergraph (all edges’ cardi-
nalities equal e) and P a probability distribution on E. Consider a probability
distribution Q on V: Q(v) �

∑

E∈E
P (E)1

e1E(v).

Fix ε, τ > 0, and define the set of vertices V0 =
{
v ∈ V : Q(v) < τ

|V|
}

⊂ V,

then there exist edges E(1), . . . , E(L) ∈ E such that for

Q̄(v) � 1
L

L∑

i=1

1
e
1E(i)(v)

(i) Q(V0) ≤ τ
(ii) (1 − ε)Q(v) ≤ Q̄(v) ≤ (1 + ε)Q(v) for all v ∈ V � V0

(iii) L ≤
⌈
|V|
e

2�n2 log(2|V|)
ε2τ

⌉
.
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We apply this lemma now to the e–uniform hypergraph HH(N, K, k), whose
edges have cardinality e =

(
N
K

)
. First notice that

L ≤
(

N
K

)
kK

(
N
K

)
3

ε2τ
log

(
N

M

)

kK =
3

ε2τ
kK log

(
N

K

)

kK ≤ 3
ε2τ

kKK log N(K ≥ k3).

Except for the constant 3
ε2τ this is our previous bound.

Next choose as P the uniform PD on E(N, k). Then for all vertices v ∈
V(N, K, k)

Q(v) =
∑

EN∈E(N,k)

k−N

(
N

K

)−1

1EN (v) = k−N

(
N

K

)−1

deg(v)

= k−N

(
N

K

)−1

kN−K =
1

(
N
K

)
kK

(11.1)

and for v ∈ V � V0

(1 − ε)Le Q(v) ≤
L∑

i=1

1e(i)(v) ≤ (1 + ε)Le Q(v)

and for τ = 3/4

(1 − ε)
4
ε2

K log N ≤
L∑

i=1

1E(i)(v) ≤ (1 + ε)
4
ε2

K log N. (11.2)

This implies the uniformity property

1 − ε

1 + ε
≤ min

v,v′∈V�V0

(
L∑

i=1

1E(i)(v)

) (
L∑

i=1

1E(i)(v′)

)−1

≤ max
v,v′∈V�V0

(
L∑

i=1

1E(i)(v)

) (
L∑

i=1

1E(i)(v′)

)−1

≤ 1 + ε

1 − ε
. (11.3)

By choosing τ small most vertices are in V � V0.
Now comes a surprise. Our hypergraph has strong symmetries and by (11.1)

Q(v) is independent of v. Therefore for τ = 3/4 < 1 V0 = φ and (11.3) holds
for all vertices. We have established

Theorem 10. For every ε ∈ (0, 1) there is a family F ⊂ AN with f–complexity
ΓK(F) = K, kK ≤ |F| ≤ 4

ε2 kK log N(K ≥ k3) such that for every K–specification
the number of sequences EN ∈ F which cover this specification lies between
4(1−ε)

ε2 K log N and 4(1+ε)
ε2 K log N .
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7 Conclusion

We have constructed large families of sequences of k symbols with strong
pseudorandom properties. We have also introduced and studied the notion of
f–complexity of families of sequences on k symbols, and we have shown that
the f–complexity of the family constructed by us is large if k, the size of the
alphabet is a prime number but we have not been able to control the case when
k is composite. We have also shown what are essentially minimal cardinalities of
families with prescribed complexity and which additional multiplicity properties
they may have.

One might like to construct families of large complexity for com-
posite k as well; we will return to this problem in a subsequent paper.

References

1. R. Ahlswede, Coloring hypergraphs: A new approach to multi–user source coding,
Part I, J. Combinatorics, Information and System Sciences 4, 1, 76–115, 1979; Part
II, J. Combinatorics, Information and System Sciences 5, 3, 220–268, 1980.

2. R. Ahlswede, On concepts of performance parameters for channels, this volume.
3. R. Ahlswede and A. Winter, Strong converse for identification via quantum chan-

nels, IEEE Trans. on Inform., Vol. 48, No. 3, 569–579, 2002.
4. R. Ahlswede, L.H. Khachatrian, C. Mauduit, and A. Sárközy, A complexity mea-

sure for families of binary sequences, Periodica Math. Hungar., Vol. 46, No. 2,
107–118, 2003.

5. J. Cassaigne, C. Mauduit, and A. Sárközy, On finite pseudorandom binary se-
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