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1 Introduction

In order to put the present model and our results into the right perspectives we
describe first key steps in multiuser source coding theory.

We are given a discrete memoryless double source (DMDS) with alphabets X ,
Y, and generic variables X , Y , i.e., a sequence of independent replicas (Xt, Yt),
t = 1, 2, . . . of the pair of random variables (X, Y ) taking values in the finite
sets X and Y, respectively.

I. Slepian and Wolf considered the problem of encoding the source output
blocks Xn � X1 . . . Xn resp. Y n � Y1 . . . Yn by two separate encoders in
such a way that a common decoder could reproduce both blocks with small
probability of error. They proved that such an encoding is possible with rates
(R1, R2) if and only if

R1 ≥ H(X |Y ), R2 ≥ H(Y |X), R1 + R2 ≥ H(X, Y ). (1.1)

II. It may happen, however, that what is actually required at the decoder is
to answer a certain question concerning (Xn, Y n). Such a question can of
course be described by a function F of (Xn, Y n). The authors of [5] are
interested in those functions for which the number kn of possible values of
F (Xn, Y n) satisfies

lim
n→∞

1
n

log kn = 0. (1.2)

This means that the questions asked have only “a few” possible answers.
For example, Xt and Yt may be the results of two different quality control
tests performed on the ith item of a lot. Then for certain purposes, e.g., for
determining the price of the lot, one may be interested only in the frequencies
of the various possible pairs (x, y) among the results, their order, i.e., the
knowledge of the individual pairs (Xt, Yt), being irrelevant. In this case kn ≤
(n + 1)|X ||Y|, and (1.2) holds. A natural first question is whether or not it
is always true in this case that, for large n, arbitrarily small encoding rates
permit the decoder to determine F (Xn, Y n).

The authors of [5] also consider other choices of F and first obtain the
following result. For every DMDS with

H(X |Y ) > 0, H(Y |X) > 0

there exists a binary question (function F with only two possible values)
such that in order to answer this question (determine F (Xn, Y n)) one needs
encoding rates as specified in (1.1).

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 535–546, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



536 R. Ahlswede and Z. Zhang

As a matter of fact, almost all randomly selected functions F are of this
kind. Since the reason for this unexpected phenomenon might be that ran-
domly selected functions are very irregular, we next study more regular func-
tions. A function F of special interest is the joint composition (joint type) of
the two source blocks hinted at in the quality control example. In this respect
our main result is that for determining the joint type of Xn and Y n when Y n

is completely known at the decoder, Xn must be encoded with just as large a
rate as if Xn were to be fully reproduced except for (exactly specified) singu-
lar cases. Actually, this analogous result is proved in [5] for a class of functions
F which include, in addition to the joint type, the Hamming distance and —
for alphabet size at least three — the parity of the Hamming distance.

As a consequence of these results one obtains that in the case of encoding
both Xn and Y n, the rates must satisfy

R1 ≥ H(X |Y ), R2 ≥ H(Y |X), (1.3)

in order that the joint type or the Hamming distance of Xn and Y n can
be determined by the decoder. In particular, it follows that for a DMDS
with independent components (i.e., when X and Y are independent random
variables (RV’s)) nothing can be gained in rates, if instead of (Xn, Y n) only
the joint type or the Hamming distance of Xn and Y n is to be determined
by the decoder. For a DMDS with dependent components such a rate gain
is possible, although it remains to be seen whether this always happens and
to what extent. At present a complete solution to this problem is available
only in the binary symmetric case. In fact, it readily follows from a result of
Körner and Marton, that our necessary conditions (1.3) are also sufficient.
Let us emphasize that their result concerns “componentwise” functions F

F (Xn′, Y n) �
(
F1(X1, Y1), F1(X2, Y2), . . . , F1(Xn, Yn)

)
, (1.4)

where F1 is defined on X × Y.
In the binary symmetric case (i.e. Pr{X = Y = 0} = Pr{X = Y = 1},

Pr{X = 0, Y = 1} = Pr{X = 1, Y = 0}), they proved for the particular
F with f1(x, y) � x + y (mod 2) that (R1, R2) is an achievable rate pair
for determining F (Xn, Y n) if and only if (1.3) holds. Now observe that the
types of Xn and of Y n can be encoded with arbitrarily small rates and that
those two types and the mod 2 sum F (Xn, Y n) determine the Hamming
distance and also the joint type of Xn, Y n.

Notice that the problem of F–codes is outside the usual framework of rate–
distortion theory except for “componentwise” functions F , cf. (1.4). Still, a
complete description of the achievable F rate region, e.g., for F (x, y) �
Px,y, may be as hard a problem as to determine the achievable rate region
for reproducing Xn, Y n within a prescribed distortion measure. We draw
attention to the fact that for the latter problem it is also the projection of
the achievable rate region to the R1–axis which could be determined (Wyner–
Ziv, [10]).
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III. The authors of [9] consider a new model: identification via compressed data.
To put it in perspective, let us first review the traditional problems in tradi-
tional rate–distortion theory for sources. Consider the diagram shown in Fig 1,

�� �binary data of
rate R

encoder decoder

Fig. 1. Model for source coding

where {Xt}∞t=1 is an independent and identically distributed (i.i.d.) source
taking values in a finite alphabet X . The encoder output is a binary sequence
which appears at a rate of R bits per symbol. The decoder output is a
sequence {X̂n}∞n=1 which takes values in a finite reproduction alphabet Y. In
traditional source coding theory, the decoder is required to recover {Xt}∞t=1

either completely or with some allowable distortion. That is, the output
sequence {X̂t}∞t=1 of the decoder must satisfy

1
n

n∑

i=1

Eρ(Xt, X̂t) ≤ d (1.5)

for sufficiently large n, where E denotes the expected value,

ρ : X × Y → [0, +∞)

is a distortion measure, and d is the allowable distortion between the source
sequence and the reproduction sequence. The problem is then to determine
the infimum of the rate R such that the system shown in Fig. 1 can operate in
such a way that (1.5) is satisfied. It is known from rate distortion theory that
the infimum is given by the rate distortion function of the source {Xt}∞1 .

Let us now consider the system shown in Fig. 2,

encoder decoder�binary data of
rate R

� �

�

0 or 1

Fig. 2. Model for joint source coding and identification

where the sequence {Yt}∞1 is a sequence of i.i.d. random variables taking val-
ues from Y. Knowing Y n, the decoder is now required to be able to identi-
fy whether or not the source sequence Xn and the sequence Y n have some
prescribed relation F in such a way that two kinds of error probabilities, the
probabilities for misacceptance (false identification) and the probabilities for
misrejection, satisfy some prescribed conditions. In parallel with rate distor-
tion theory, we consider in this paper the following relation F defined by:
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n−1
n∑

t=1

ρ(Xt, Yt) ≤ d. (1.6)

That is, the values Xn and Y n are said to have relation F if (1.6) is satisfied.
The problem we are interested in is to determine the infimum of the rate R
such that the system shown in Fig. 2 can operate so that the error probability
of misrejection, that is the decoder votes for 0 even though F holds, and
the error probability of misacceptance, that is the decoder votes for 1 even
though F does not hold, satisfy constraints on the error exponents α and β,
say. So the goal of the decoder is to identify whether Xn is close to Y n (in
the sense of relation F ) or not. The encoder is cooperative.

It must be remarked that in this model the minimum achievable rate is
shown to always equal zero, if we only require that the two kinds of error
probabilities go to zero as n goes to infinity. So the exponential decay of
error probabilities makes the problem meaningful. The regions of pairs of
exponents (α, β) are studied as functions of rate R and fidelity criterion d
for general correlated sources. Complete characterizations are obtained, if
Xn and Y n are independent.

IV. Now we come to our new model of estimating the joint empirical distrib-
ution (joint type) not exactly like in [5], but within some accuracy only.
This “computational” aspect was motivated by [9]. Furthermore the help of
randomization was understood in [6] and [7].

We consider the following model. The encoder knows a word xn ∈ Xn and
the receiver knows a word yn ∈ Yn. The encoder sends information of at most
� bits to the receiver, who uses these bits and his own observation yn ∈ Yn

to estimate the joint type. The question is how accurate the estimate can
be. It can be formalized as follows:

A randomized encoding is a pair E =
{M, Q(·|·)}, where

M = {1, 2, . . . , M}, M = 2k, and Q(·|xn) ∈ P(M), xn ∈ Xn. (1.5)

Here and elsewhere P(·) denotes the set of probability distributions (ab-
breviated as PD) or probability vectors of a set in brackets.

The decoder uses a decoding function

g : M×Yn → P(X × Y). (1.6)

Next we describe performance criteria for the code C = (E , g). For any
two PD’s P = (P1, . . . , Ps) and Q = (Q1, . . . , Qs) define the norms

‖P − Q‖1 =
s∑

i=1

|Pi − Qi|, (1.7)

‖P − Q‖2 =

√√
√
√

s∑

i=1

|Pi − Qi|2, (1.8)
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and the “individual errors” based on them for the code C = (E , g)

e
(i)
C (xn, yn) =

∑

j∈M
Q(j|xn)‖g(j, yn) − Pxnyn‖i (i = 1, 2). (1.9)

This leads to two notions of maximal errors of the code (C, g)

e
(i)
C = max

xn,yn
e
(i)
C (xn, yn); (i = 1, 2). (1.10)

Finally, we get the best possible maximal errors (for parameters n and
M)

e(i)(n, M) = min
C:|M|=M

e
(i)
C . (1.11)

We mention two other kinds of criteria for the measurement of the esti-
mation error.

Let J be a RV with distribution Pr(J = j) = Q(j|xn) and use the RV’s

Δ
(i)
xnyn(J) = ‖g(J, yn) − Pxnyn‖i (1.12)

to define
e
(i)
C (xn, yn, δ) = Pr

(
Δ

(i)
xnyn(J) > δ

)
; i = 1, 2; (1.13)

and

e
(i)
C (xn, yn, ε) = min

{
δ : Pr

(
Δ

(i)
xnyn(J) > δ

)
< ε

}
; i = 1, 2. (1.14)

Actually, all these definitions lead to similar results and we start here with
e
(2)
C (xn, yn, ε) for which we define

eC(ε) = max
xn,yn

e
(2)
C (xn, yn, ε) (1.15)

and
e(n, M, ε) = min

C:|M|=M
eC(ε). (1.16)

An appropriate scaling

α(D, ε) = sup
n,M : log log M

log n <D

− log e(n, M, ε)
log n

(1.17)

leads to a striking result.

Theorem
α(D, ε) = D for all ε ∈ (0, 1). (1.18)
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2 Direct Coding Theorem

We use the following simple coding method. Label the members of
(
[n]
�n

)
, the set

of all �n–element subsets of [n] = {1, 2, . . . , n}. The sender randomly selects one
such subset and transmits its label and the components of xn within this subset
to the receiver. The receiver uses the joint type of yn and xn within this subset
as the estimate of the joint type.

We now evaluate the performance of this method. First we count the number

L of subsets where (xn, yn)’s local joint type is at least
√

�−1
n log2

n away from
the true type.

For this we need the definitions

n(x, y) := Pxnyn(x, y)n, (2.1)

�(x, y) := local frequencies of (xn, yn) in �n–subset considered (2.2)
and

→
� :=

(
�(x, y)

)
(x,y)∈X×Y. (2.3)

Clearly
∑

x,y
�(x, y) = �n.

Now

L =
∑

→
� :
∑

x,y| �(x,y)
�n

−n(x,y)
n |2> log2 n

�n

∏

x,y

(
n(x, y)
�(x, y)

)

and

L ·
(

n

�n

)−1

≤ O(nab−1) max
→
� :
∑

x,y| �(x,y)
�n

−n(x,y)
n |2> log2 n

�n

√
�n

∏

x,y

√
�(x, y)

· exp

{
∑

x,y

n(x, y)h
(

�(x, y)
n(x, y)

)
− nh

(
�n

n

)}

(2.4)

by Stirling’s formula.
This can be bounded from above by using the following auxiliary result.

Lemma. Let positive integers n(x, y), �(x, y), �, n satisfy

∑

x∈X ,y∈Y
n(x, y) = n,

∑

x∈X ,y∈Y
�(x, y) = �, �(x, y) ≤ n(x, y) for x ∈ X , y ∈ Y.

Then

θ �
∑

x∈X ,y∈Y
n(x, y)

[
h

(
�(x, y)
n(x, y)

)
−h

(
�

n

)]
≤− n

2ab�

∑

x∈X ,y∈Y
n(x, y)

(
�(x, y)
n(x, y)

−�

n

)2

,

where a = |X |, b = |Y|.
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Proof. For γ(x, y) � �(x,y)
n(x,y) − �

n obviously
∑

x,y
n(x, y)γ(x, y) = 0. With C � �

n we

can now write

θ =
∑

x,y

n(x, y)
[
h
(
C + γ(x, y)

)− h(C)
]
.

By Lagrange’s interpolation formula

h
(
C + γ(x, y)

)− h(C) = h′(C)γ(x, y) +
h′′(ξ(x, y))

2
γ2(x, y),

where ξ(x, y) is between C and C + γ(x, y).
Thus

θ =
∑

x,y

n(x, y)h′(C)γ(x, y) +
∑

x,y

n(x, y)
h′′(ξ(x, y))

2
γ2(x, y)

=
∑

x,y

n(x, y)
h′′(ξ(x, y))

2
γ2(x, y)

≤
∑

x,y:γ(x,y)≤0

n(x, y)
h′′(ξ(x, y))

2
γ2(x, y)

=
∑

x,y:γ(x,y)≤0

n(x, y)
(
− 1

2ξ(x, y)(1 − ξ(x, y))

)
γ2(x, y)

≤
∑

x,y:γ(x,y)≤0

n(x, y)
(
− 1

2C

)
γ2(x, y)

= − n

2�

∑

x,y:γ(x,y)≤0

n(x, y)γ2(x, y).

Clearly, the claimed inequality follows from the identity

μ � min
ρ:
∑

x,y
n(x,y)ρ(x,y)=0

∑

x,y:ρ(x,y)≤0

n(x, y)ρ2(x, y)

∑

x,y
n(x, y)ρ2(x, y)

=
1
ab

, (2.5)

which remains to be proved.
Obviously, the optimizing ρ has the properties:

1. |{(x, y) : ρ(x, y) > 0
}| = 1

2. There exists a constant ν such that ρ(x, b) ≤ 0 implies ρ(a, b) = ν.

These two properties imply

μ =
(ab − 1)

(
a

ab−1

)2

a2 + (ab − 1)
(

a
ab−1

)2 =
1
ab

.

�
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We apply now the Lemma to upper bound the exponent in the exponential
function and get

L ·
(

n

�n

)−1

≤O(nab−1) max
→
� :
∑

x,y| �(x,y)
�n

−n(x,y)
n |2> log2 n

�n

√
�n

∏

x,y

√
�(x, y)

· exp

⎧
⎨

⎩
− n

2ab�n

∑

x∈X ,y∈Y
n(x, y)

⎫
⎬

⎭

(
�(x, y)
n(x, y)

− �n

n

)2

≤ max
→
� :
∑

x,y| �(x,y)
�n

−n(x,y)
n |2> log2 n

�n

O(nab)

· exp

{

−μ

2
n

�n

∑

x,y

n(x, y)

}(
�(x, y)
n(x, y)

− �n

n

)2

= max
→
� :
∑

x,y| �(x,y)
�n

−n(x,y)
n |2> log2 n

�n

O(nab)

· exp

{

−μ

2

∑

x,y

n · �n

n(x, y)

}(
�(x, y)

�n
− n(x, y)

n

)2

≤O(nab) exp
{
−μ

2
log2 n

}
→ 0 as n → ∞.

Now the number of bits needed for sending an element of
(
[n]
�n

)
is log

(
n
�n

)
and for

sending the �n bits is �n. This amounts to a total number of log
(

n
�n

)
+ �n bits.

The accuracy achieved is �n log2 n.
Therefore we get

log δ

log n
=

log �n

log n
+

2 log log n

log n

and

log log M

log n
=

log(�n log n + �n)
log n

=
log �n

log n
+

log(log n + 1)
log n

.

If �n 	 log n, then
log δ

log n
≈ log log M

log n

and the direct part is proved.

3 Converse of Coding Theorem (Proof in Binary Case,
Exercise in General Case)

Let C = (E , g) be a (D, α, n) code and let

M(xn, yn) =
{
m ∈ M : ‖g(m, yn) − Pxnyn‖2

2 ≤ exp
{
α log n + o(log n)

}}
.
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We have
Q
(M(xn, yn)|xn

)
> 1 − ε.

Select now nβ codewords independently at random according to the PD Q(·|xn).
Abbreviate the random code

(
Xn

1 (xn), . . . , Xn
nβ (xn)

)
as B(xn) and use F̃ (·|xn)

to denote the uniform distribution on B(xn).

Pr
(

F̃
(M(xn, yn)|xn

)
<

1
2

+ ε

)
≈

∑

k>( 1
2−ε)nβ

(
nβ

k

)
εk(1 − β)nβ−k

≈ exp
{
−nβD

(
1
2
− ε

∥
∥
∥
∥ε
)

� λnβ .

A yn is called irregular with respect to xn for a particular B(xn) or F̃ (·|xn) iff
F̃
(M(xn, yn|xn)

)
< 1

2 + ε.
The average number of irregular yn is 2n−λnβ

. Therefore a choice of B(xn)
exists such that the number of irregular yn’s is at most 2n−λnβ

.
According to this principle we make choices for every xn. So we get a whole

family
(
F̃ (·|xn)

)
xn∈Xn , where each member has at most 2n−λnβ

irregular yn’s.
Now we use a constant weight error correcting code of cardinality 2γn and of

minimum distance μn, where γ, μ are constants (independent of n).
Let xn

1 and xn
2 be two codewords of this code. We prove that for suitable β,

B(xn
1 ) �= B(xn

2 ). Actually, we count the number of yn’s with

(
∑

x,y

(
nxn

1 yn(x, y) − nPxn
2 yn(x, y)

)2
) 1

2

≥ 2nα+o(1).

For this define

A =
{
t ∈ [n] : x1t = 1 and x2t = 0

}
, B =

{
t ∈ [n] : x1t = 1 and x2t = 1

}
,

C =
{
t ∈ [n] : x1t = 0 and x2t = 1

}
, and D=

{
t ∈ [n] : x1t =0 and x2t = 0

}
.

This number of yn’s exceeds

2|B|+|D| ∑

|u−v|>2n
1
2 α+o(1)

(|A|
u

)(|C|
v

)
=2|B|+|D| ∑

�>2n
1
2 α+o(1)

(|A| + |C|
|A| − �

)
= 2n−μnα+o(1)

.

Now, if B(xn
1 ) = B(xn

2 ), then those yn must be irregular for at least one of
xn

1 , xn
2 . Hence 2n−μnα+o(1) ≤ 2n−λnβ

and thus α ≥ β + o(1). Finally Mnβ ≥ 2rn

implies M ≥ 2rn1−β ≥ 2n1−α−o(1)
. The converse is proved in the binary case.

4 Other Problems

A. The existing work on statistical inference (hypothesis testing and estima-
tion in [4] and [3]) under communication constraints uses a “one shot” side
information. It seems important to introduce and analyze interactive models.
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B. Permutation invariant functions
A function F , defined on Xn ×Yn, is called permutation invariant iff for all
permutations π of the set {1, 2, . . . , n}

F (xn, yn) = F (πxn, πyn), (4.1)

where xn = (x1, x2, . . . , xn)

πxn = (xπ(1), xπ(2), . . . , xπ(n)) (4.2)

and yn, πyn are defined analogously.

Permutation invariant functions are actually functions of the joint empirical
distribution Pxnyn of the sequences xn and yn, where for all x ∈ X , y ∈ Y

Pxnyn(x, y) = |{t : xt = x, yt = y}|n−1. (4.3)

Examples of permutation invariant functions include, but are not limited to,
sum–type functions fn,

fn(xn, yn) =
n∑

t=1

f(xt, yt), (4.4)

such as the Hamming distance function. In identification problems, we can be
interested in Boolean functions. When the problem is permutation invariant,
we need to study permutation invariant Boolean functions. If we estimate
the joint empirical distribution of xn and yn. Then

(
Pxnyn(x, y)

)
x∈X ,y∈Y is

a permutation invariant vector–valued function on Xn × Yn.

C. Approximation of continuous permutation invariant functions
Let F be a continuous function defined on the compact set P(X ×Y). Define

F̂ (xn, yn) = F (Pxnyn). (4.5)

If the task of the receiver is not to estimate Pxnyn , but to compute F̂ (xn, yn),
what is then the trade–off between the computation accuracy and the “com-
munication rate” D?

This problem is closely related to the joint empirical distribution estima-
tion problem — actually, it generalizes it.

D. Classification Problem
Let {A0,A1} be a partition of Xn × Yn and let both sets in this partition
be permutation invariant. If in the model treated in this paper the task of
the receiver is to determine whether or not (xn, yn) ∈ A0, then this is a new
“classification” problem.

In case we want to determine this exactly, then we have to transmit for
“most” partitions almost all bits of xn to the receiver. We introduce now a
model, which allows a much lower rate.

Let d1(P, P ′) = ‖P −P ′‖1 be the L1–distance of P and P ′ in P(Xn×Yn).
For A ⊂ Xn × Yn and δ > 0 let

Γδ(A)=
{
(xn, yn)∈Xn×Yn :d1(Pxnyn , Px′ny′n)≤δ for some (x′n, y′n)∈A},

and for permutation invariant A ⊂ Xn × Yn let
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N(A) = |{Pxnyn : (xn, yn) ∈ A}|.

Now, for ε > 0, find maximal δ0, δ1 ≥ 0 such that

N
(
Γδ0(A0) ∩A1

)

N(A1)
≤ ε, (4.6)

N
(
Γδ1(A1) ∩A0

)

N(A0)
≥ ε. (4.7)

Finally, let
g : M×Yn → {0, 1}

be a binary–valued function such that for all (xn, yn) ∈ A0 � Γδ1(A1)

Q
(
g(J, yn) = 0|xn

) ≥ 1 − ε

and for all (xn, yn) ∈ A1 � Γδ0(A0)

Q
(
g(J, xn) = 1|xn

) ≥ 1 − ε.

What is the minimum number of bits �log M� needed? This problem is also
closely related to the joint empirical distribution estimation problem.
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