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Abstract. To a large extent the present work is far from being conclu-
sive, instead, new directions of research in combinatorial extremal theory
are started. Also questions concerning generalizations are immediately
noticeable.

The incentive came from problems in several fields such as Algebra,
Geometry, Probability, Information and Complexity Theory. Like several
basic combinatorial problems they may play a role in other fields. For
scenarios of interplay we refer also to [9].

1 Introduction: New Problems and Results

A. A New Isoperimetric Problem: Boundaries with Intensity k,
a Counterexample to Keane’s Conjecture

For X = {0, 1} let d be the Hamming distance in Xn =
n∏
1
X and let the pair

Hn = (Xn, d) be the Hamming space.

S(xn) =
{
yn ∈ Xn : d(xn, yn) = 1

}
(1.1)

is the sphere of radius 1 with center xn ∈ Xn.
For any set V ⊂ Xn we define

Γ (V ) =
{
yn ∈ Xn : d(xn, yn) ≤ 1 for some xn ∈ V

}
(1.2)

and
B(V ) = Γ (V ) � V (1.3)

as the (outer) boundary of V. Harper [4] considered

b(n, N) = min
V ⊂Xn,|V |=N

|B(V )| (1.4)

and established his well–known Isoperimetric Theorem (in graphic language also
called “Vertex Isoperimetric Theorem”).

Notice that the points in B(V ) have distance 1 with at least one point of V .
Our generalisation to a boundary of intensity k is

Bk(V ) =
{
yn ∈ Xn

� V, |S(yn) ∩ V | ≥ k
}
. (1.5)

Obviously B1(V ) = B(V ).
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Problem 1: Determine

bk(n, N) � min
V ⊂Xn:|V |=N

|Bk(V )| (1.6)

and the structure of optimal V .
We have not yet solved it, but we introduced related problems 1–4 and solved

problem 2 “ratewise” and problem 3, 4 exactly.
However, we made progress on a problem related to problem 1. For an upset

U we consider Bk(Xn
� U) = Uk �

{
x ∈ U : |S(x) ∩ (Xn

� U)| ≥ k
}

.
M. Keane [Oral communication] defined in the eighties the function

f(n, k) � max
{|Uk| : U upset in Xn

}
2−n

and conjectured that

lim
k→∞

(
sup

n
f(k, n)

)
= 0.

Observation: For k ≥ n
2

f(k, n) =
(

n

k

)
2−n.

Indeed, by the AZ–identity [5] for any A ⊂ 2[n]

∑
X⊂[n]

WA(X)
|X |( n

|X|
) ≡ 1,

where

WA(X) =

∣∣∣∣∣
⋂

X⊃A∈A
A

∣∣∣∣∣ ,
and therefore ∑

|X|≥k

WU (X) ≤ max
�≥k≥n

2

�

(
n

�

)
= k

(
n

k

)

or

2n f(k, n) ≤ 1
k

∑
|X|≥k

WU (X) ≤
(

n

k

)
.

This looks reassuring, however, Keane’s conjecture is false.

Example 1
[n] = Ω1

.∪ Ω2 ∪ · · · ∪ Ωm, |Ωi| = x, m =
n

x
.

A =
{
A ∈ 2[n] : ∃i, s.t. Ωi ⊂ A

}
= U {Ω1, . . . , Ωn

x

}
,

Ux = {B ∈ A : ∃i, s.t. Ωi ⊂ B and Ωj 
⊂ B for all j 
= i},
and

|Ux| =
n

x
· (2x − 1)

n
x −1 = g(x, n), say.
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max
n

g(x, n) is assumed at n = x · 2x − x
1+x log 2 .

Hence, we may assume n = n(x) = x · (2x − 1). For this n we consider

g(x, n)
2n

=
(2x − 1)2

x−1

2x(2x−1)
=
(

2x − 1
2x

)2x−1

=
1(

1 + 1
2x−1

)2x−1

and therefore lim
x→∞

g(x,n)
2n = lim

x→∞

(
1 + 1

2x−1

)−(2x−1)

= e−1. �

B. The Smallest Rich World Problem

Consider
Ik(V ) = {yn ∈ V : |S(yn) ∩ V | ≥ k} (1.7)

and

Problem 2: Determine

rk(n) = min
φ 	=V =Ik(V )

V ⊂Xn

|V |
(

= min
V ⊂Xn, φ 	=V, |Ik(V )|=|V |

|V |
)

. (1.8)

We call an optimal V k–friendly set (or k–best world). We report now the much
more general Problem 7 in [6], which was solved “ratewise” in [7].

For ϕ : X × X → R, X a finite set, define

α = min
x,y∈X

ϕ(x, y), β = max
x,y∈X

ϕ(x, y), (1.9)

and the sum–type function ϕn : Xn ×Xn → R, where ϕn(xn, yn) =
n∑

t=1
ϕ(xt, yt)

for xn = (x1, . . . , x2) and yn = (y1, . . . , y2).
Now for any closed interval �L ⊂ [α, β], any positive real number ρ, and any

positive integer n call a set S ⊂ Xn with the property
∣∣∣∣
{

yn ∈ S :
1
n

ϕn(xn, yn) ∈ �L
}∣∣∣∣ ≥ 2nρ for all xn ∈ S (1.10)

(n, �L, ρ)–good and denote by N(n, �L, ρ) the smallest cardinality of (n, �L, ρ)–good
sets.

For the set
{
yn ∈ S : 1

nϕn(xn, yn) ∈ �L
}

we also write B(xn, �L, S). In the case
α = 0 and �L = [0, β] it is the intersection of S with a ball with center xn and
ϕ–radius β.

Inequality (1.10) says that every point in S has 2nρ points in S in its neigh-
bourhood. In this sense S is a “rich world”. The definition of N(n, �L, ρ) catches
the goal to make the “world small”.

One readily can show that lim
n→∞

1
n log N(n, �L, ρ) exists, because N(n1+n2, �L, ρ)

≥ N(n1, �L, ρ) · N(n2, �L, ρ). We denote the limit by σ(�L, ρ). Its characterisation
requires a few concepts.
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Let (U, X, Y ) be a triple of RV’s with values in U×X ×X . We say that (X, Y )
is a matching through U , if for conditional entropies

H(X |U) = H(Y |U) and H(Y |XU) = H(X |Y U). (1.11)

Finally, we set
Q(�L, ρ) =

{
(X, U) : for some Y (X, Y ) is matched through U, Eϕ(X, Y ) ∈ �L,

and H(Y |XU) ≥ ρ
}

. (1.12)

Theorem AC. [7]
σ(�L, ρ) = min

(X,U)∈Q(�L,ρ)
H(X |U).

Actually, we can bound the cardinality of U by |X |2 + 4.
Furthermore, we can limit the distributions PXY to those with equal marginals.

Remark: Problem 2 relates to the case X = {0, 1}, �L = [k, n] and ϕn as Ham-
ming distance.

C. k–Attractive Sets
In another direction we consider

Ṽk = {yn ∈ Xn :| S(yn) ∩ V | ≥ k}. (1.13)

Clearly,
Ṽk = Bk(V )

.∪ Ik(V ). (1.14)

Analogous to Problem 1 is

Problem 3: Determine

ak(n) � min
φ 	=V :|V |≤|Ṽk|

V ⊂Xn

|V | (1.15)

and the structure of solutions.
An optimal V is called k–attractive set. We call a V with |V | ≤ |Ṽk| a k–

admissible set.

Example 2: Define for k > 1

X k
+ =

{
xk = (x1, . . . , xk) ∈ X k :

k∑
t=1

xt ≡ 0 mod 2
}

and
X k

− = X k
� X k

+.

Notice that for V = X k
+ ∗ (0, 0, . . . , 0) ⊂ Xn we have Ṽk = X k

− ∗ (0, 0, . . . , 0)
and that V is k–admissible.

Moreover, let us write

Zk
+ = X k

+ ∗ (0, 0, . . . , 0), Zk
− = X k

− ∗ (0, 0, . . . , 0) ⊂ Xn (1.16)



On Attractive and Friendly Sets in Sequence Spaces 959

and observe that for any π ∈ Σn, the symmetric group acting on {1, 2, . . . , n},
also π Zk

+ is k–admissible.
Furthermore, for any yn ∈ GF (2)n also Zk

+ + yn is k–admissible. Quite sur-
prisingly, these sets lead to all k–attractive sets.

Theorem 1. For k ≥ 2 the k–attractive subsets of Xn are of the form (π Zk
+) +

yn. In particular for a k–attractive subset V of Xn

|V | = |Ṽk| = 2k−1.

For 1–attractive sets
|V | = 1, |Ṽ1| = n.

D. k–Pairs
We prove Theorem 1 by deriving it from the solution of the somewhat more
general Problem 4:

For A, B ⊂ Xn we call (A, B) a k–pair, if
∑

xn∈B

|A ∩ S(xn)| ≥ k|B|. (1.17)

It is admissible, if |A| ≤ |B|, and it is optimal, if

|A| = min
(A′,B′)admissible k–pair

|A′|.

Determine all optimal k–pairs.

Theorem 2. For k ≥ 2 the optimal k–pairs are of the form

(π Zk
+ + yn, π Zk

− + yn).

The implication of Theorem 1 is readily established.
Clearly, if V is k–admissible, then (V, Ṽk) is an admissible k–pair. The class

of (V, Ṽk) corresponding to attractive V ’s constitute a subclass of the class of
optimal k–pairs. By Theorem 2 and Example 1 these classes are actually equal.

E. Results for Lopsided Sets in Combinatorial Language
Lopsided sets where introduced in [10] in the study of convex sets. There are
several equivalent definitions [11]. We use here the terminology of set theory.

Let S ⊂ 2[n], S∗ = 2[n]
� S. The set S is called lopsided, if for all A ∈ 2[n]

either there exists a B ⊂ [n] � A such that for all C ⊂ A B ∪ C ∈ C
or there exists a B′ ⊂ A such that for all C′ ⊂ [n] � A B′ ∪ C′ ∈ S∗.
When Levon told me that Andreas Dress asked him to prove Theorem 3 below,

which is considered basic for lopsided sets, I told him that he could and should
do it in one afternoon, because this might be helpful for his career.

He followed the suggestion, but his simple proof earned him no benefits.
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Theorem 3. For a set C ⊂ 2[n] define

�L(C) � {Y ⊂ [n] : {Y ∩ C : C ∈ C} = 2Y }.
Then

|C| ≤ |�L(C)|. (1.18)

Obviously �L(C) is a downset for every C ⊂ 2[n] and if C is a downset, then
�L(C) = C. So for downsets there is equality in (1.18).

Recall now the standard push-down operation:
given C ⊂ 2[n] and x ∈ [n] for A ∈ C

T (A, x) =

{
A � {x}, if x ∈ A and A � {x} /∈ C
A otherwise

(1.19)

T (C, x) = {T (A, x) : A ∈ C}. (1.20)

Now readily verify

|T (C, x)| = |C| and �L(T (C, x)) ⊂ �L(C). (1.21)

After finitely many, say m, push–down operations T (C, x1), T ((C, x1), x2), . . .
we get a downset D and by (1.21) |D| = |C| and D = �L(D) ⊂ �L(C), which proves
Theorem 3.

We are going now for equality characterization in (1.18). We already now equality
for downsets.

Symmetrically, if C is an upset, then �L(C) = C̄ = {[n] � C : C ∈ C} and again
there is equality.

Defining push–up operation U analogously to the push–down operation T ,
then by symmetry

|U(C, x)| = |C| and �L(U(C, x)) ⊂ �L(C). (1.22)

We say now that a set A ⊂ 2[n] is accessable for C ⊂ 2[n], if starting from C one
can obtain A by consecutively applying finitely many push–down and push–up
operations. (For example T (C, x1),U(T (C, x1), x2), T (U(T (C, x1), x2), x3), . . . .

By (1.21), (1.22) |A| = |C|, if A is an accessable set for C.

Theorem 4. Let D1, . . . ,Dm ⊂ 2[n] be the downsets accessable for a set C ⊂ 2[n],
then

m⋃
i=1

Di = �L(C). (1.23)

In particular |�L(C)| = |C| if and only if there exists a unique downset accessable
for C.

This result holds, because by (1.21), (1.22) any downset D accessible for C sat-

isfies D ⊂ �L(C) and thus
m⋃

i=1

Di ⊂ �L(C). Further, for any S ∈ �L(C) we get from
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C by down pushing in all x ∈ S̄ downset DS with S ∈ DS and thus equality in
(1.23).

Moreover, if there is exactly one Di, then |�L(C)| = |Di| = |C| and, conversely
the equation |�L(C)| = |C| implies that m = 1, because the union of two or more

sets of cardinality |C| each, would imply
∣∣∣∣

m⋃
i=1

Di

∣∣∣∣ > |C|.
However, in order to understand the structure of C′ with equality in (1.18) it is

important to notice that accessibility is not commutative: if D is accessable
for C, then C needs not be accessable for D.

Example 3: Let n = 3, C = {φ, {1}, {2, 3}, {3}}, then �L(C) = {φ, {1}, {2}, {3}}
and |�L(C)| = |C| = 4. However, C is not accessable for downsets and upsets as
can be checked.

2 Main Auxiliary Old and New Results for the Proof of
Theorem 2

We make essentially use of Harper’s Edge Isoperimetric Theorem ([1], correct
proofs in [2] – [3]). For C ⊂ Xn define

Ø(C) =
{

(xn, yn) : xn ∈ C, yn ∈ Xn
� C, d(xn, yn) = 1

}
. (2.1)

For a number M define

ω(M) = min
C⊂Xn,|C|=M

|Ø(C)|. (2.2)

Theorem (Edge Isoperimetry). The minimum in (2.2) is assumed for a
generalized cylinder.

We recall the definition of a generalized cylinder.
Every positive integer M can uniquely be written in a binary expansion

M = 2n1 + 2n2 + · · · + 2ns , n1 > n2 > · · · > ns ≥ 0. (2.3)

Let us use the picture in (2.4) for the set Xm, then we can present

Z(M) = Xn1 × {0}n−n1

.∪ Xn2 × {0}n−n2 × {1} × {0}n−n1−1

...

as union of the disjoint sets
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n1 000 . . . 0
n2 000100 . . . 0
n3 00100100 . . . 0
n4 0010100100 . . . 0
...

(2.4)

Instead of minimizing the number out(C) = |Ø(C)| of outgoing “edges” we can
equivalently maximize the number int(C) = |I(C)| of internal “edges”, because
all vertices have degree n and thus

out(C) + int(C) = n|C|.
We refer then to the dual form of this optimisation problem.

Define
i(M) = max

C:|C|=M
int(C). (2.5)

For the proof of our Uniqueness Theorem below we need

Lemma 1. For M < 2k necessarily

i(M) < k · M

2
.

Proof: We can calculate i(M) from Theorem H1 using the representation (2.4).
Indeed

i(M) = n1 2n1−1 + n2 2n2−1 + n3 2n3−1 + · · · + ns 2ns−1

+ 2n2 + 2 · 2n3 + · · · + (ns − 1)2ns . (2.6)

For M < 2k necessarily

k ≥ n1 + 1 ≥ n2 + 2 ≥ n3 + 3 ≥ . . . . (2.7)

We have to show that k M > 2 i(M) or that

k(2n1 + 2n2 + · · · + 2ns) > n1 2n1 + n2 2n2 + · · · + ns 2ns

+ 1 · 2 · 2n2 + 2 · 2 · 2n3 + 3 · 2 · 2n4 + . . .

or that

(k−n1)·2n1 +(k−n2)2n2 +· · ·+(k−ns)2ns > 1·(2·2n2)+2(2·2n3)+· · ·+. (2.8)

Now, by (2.7) (k − ni) ≥ i and the RHS in (2.8) does not exceed the LHS
even if we ignore the term (k − ns)2ns , which is positive. Thus (2.8) holds and
the Lemma is proved.

Uniqueness Theorem. Generalized cylinders are up to permutations π ∈ Σn

and additions with xn in GF (2)n the only solutions in Theorem H2 (at least for
M = 2k).

Proof for the case M = 2k: Let C ⊂ Xn be optimal. Then

int(C) = i(M) = k · 2k−1. (2.9)
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Consider

C1 =
{

(x2, . . . , xn) :(1, x2, . . . , xn) ∈ C
}
, C0 =

{
(x2, . . . , xn) :(0, x2, . . . , xn)∈C

}
.

(2.10)
We proceed by induction on n.
We have to show that either C1 = ∅ or C0 = ∅ or that C1 = C0.

Case |C1| = |C0|:
Consider

int(C) = int(C1) + int(C0) + |C1 ∩ C0| ≤ 2i(2k−1) + |C1 ∩ C0|
≤ 2(k − 1)2k−2 + |C1 ∩ C0| = (k − 1)2k−1 + |C1 ∩ C0| = k · 2k−1.

(2.11)

Since int(C) = k · 2k−1, necessarily |C1 ∩ C0| = 2k−1 and thus C1 = C0.

Case |C1| > |C0|:
Here |C1| = 2k−1 + 2�2 + . . . , �2 > 0, and |C0| = 2k − |C1|.

Subcase 2k > |C1| = 2k−1 + 2k−2 + . . . :
Here |C0| ≤ 2k−3 + · · · < 2k−2.

By Lemma 1 int(C1) < k |C1|
2 and int(C0) ≤ (k − 2) |C0|

2 .
Therefore by (2.11)

int(C) < k
|C1|

2
+ (k − 2)

|C0|
2

+ |C0| = k
|C|
2

= k · 2k−1,

which contradicts (2.9).

Subcase 2k > |C1| = 2k−1 + 0 + . . . :
Here |C0| = 2k−2 + · · · < 2k−1.
The estimate of int(C1) is more tricky. We use the representation (2.4) for C1

and obtain

int(C1) ≤ (k − 1)2k−2 + (|C1| − 2k−1) + i(|C1| − 2k−1). (2.12)

Since by Lemma 1 i(|C1|−2k−1) < (k−2) |C1|−2k−1

2 and int(C0) < (k−1) |C0|
2 ,

we have

int(C)< (k−1)

(
2k−2+

|C0|
2

)
+k

|C1| − 2k−1

2
= k

|C0|+|C1|
2

−
[ |C0|

2
−(k − 1)2k−2+k

2k−1

2

]

in contradiction to int(C) = k · 2k−1, because the term in brackets is positive.
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3 Further Auxiliary Results

We use again the dual form and apply it to C = A ∪ B.

Lemma 2. For an admissible k–pair (A, B) we have

|A ∪ B| ≥ 2k. (3.1)

Proof: Let e(A, B) be the number of edges between A and B. Then by our
assumptions

int(C) ≥ e(A, B) ≥ k|B|.
Since also |B| ≥ |A|, therefore also

int(C) ≥ k
|C|
2

. (3.2)

We assume now that (3.1) does not hold and derive a contradiction. If now
M = |C| < 2k, then by (3.2)

i(M) ≥ int(C) ≥ k
M

2
. (3.3)

Next we use this result to derive a lower bound on |A|.
Lemma 3. For an admissible k–pair (A, B) necessarily

|A| ≥ 2k−1.

Proof: For an admissible k–pair (A, B) label the elements in B as b1 . . . br such
that

|A ∩ S(bi)| ≤ |A ∩ S(bi+1)| for i = 1, . . . , r − 1

and define for j = |B| − |A|

B′ = B − {b1, . . . , bj}.

Notice that (A, B′) is an admissible k–pair with |A| = |B′| and thus |A| ≥
|A∪B′

2 . Since by Lemma 2 |A ∪ B′| ≥ 2k, the result follows.

Lemma 4. For an optimal k–pair (A, B) necessarily
(a) |A| = |B| = 2k−1

(b) A ∩ B = ∅.

Proof: We know from Lemma 3 that (Zk
+, Zk

−) is a minimal k–pair and thus
|A| = 2k−1.

Suppose that |B| = 2k−1 + b, b > 0.
Then by the procedure described in the proof of Lemma 2 we can get a

minimal k–pair (A, B′) with |B′| = 2k−1 + 1.
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By assumption

int(A ∪ B′) ≥
∑
b∈B′

|A ∩ S(b)| ≥ k|B′| ≥ k · 2k−1 + k. (3.4)

However, since |A ∪ B′| ≤ 2k + 1 we have

int(A ∪ B′) ≤ i(2k + 1) = k · 2k−1 + 1. (3.5)

Now (3.5) contradicts (3.4) for k ≥ 2. (b) follows with Lemma 2.

Remark: For k = 1
({00 . . .0}, {xn :

∑n
t=1 xt = 1}) is an optimal 1–pair and

(a) does not hold!

4 Proof of Theorem 2

We know already that for an optimal k–pair (A, B) necessarily A ∩ B = ∅,
|A| = |B| = 2k−1. Since also int(A ∪ B) ≥ k|B| = k2k−1 and by Theorem H1

int(A ∪ B) ≤ i(2k) = k · 2k−1, we conclude that

int(A
.∪ B) = k · 2k−1. (4.1)

By the Uniqueness Theorem A∪B is a cylinder Z and w.l.o.g. Z = k 00 . . .0.
Since every element in Z has degree k and |B|k = 2k−1 · k, necessarily

|A ∩ S(b)| = k for all b ∈ B. (4.2)

Now (4.1) and (4.2) imply

e(A, B) = int(A ∪ B), (4.3)

that is, all edges are between the sets (or no edges are in A or in B). Clearly

|B ∩ S(a)| = k for all a ∈ A. (4.4)

Finally, we can assume w.l.o.g. that 00 . . . 0 ∈ B. Then no singleton can be in
B and by (4.2) the first k of the n singletons must be in A.

By the degree condition (4.4) then all doubletons with 1’s in {1, 2, . . . , k}
must be in B, next all tripletons with 1’s in {1, 2, . . . , k} must be in A, etc. This
completes the proof.

Problem 4: How do the results generalize fromX = {0, 1} to X = {0, . . . , α−1}?

5 Further Observations

On large boundaries of intensity k.
We adapt the convention: x = xn.
Recall the definition of Ṽk in (1.13). For 1 ≤ k ≤ n and 0 ≤ N ≤ 2n we define

now
γ(n, N, k) = max

|V |=N
|Ṽk|. (5.1)
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Fact I: γ is not decreasing in N . Unlike Theorem 1 it is here very difficult to
obtain exact results. We discuss therefore some special cases of the function γ.

Case k = 1: For not too large N it is clearly optimal to choose V as a 1–error
correcting code, that is,

min
x,y∈V

d(x, y) ≥ 3. (5.2)

Here |Ṽ | = n|V | and this is optimal.

Case k ≥ 2: The situation is now quite different, because the points in V should
be not too far apart

Fact II: The points in A(V ) =
{
x ∈ V : d

(
V � {x}, x) ≥ 2

}
don’t contribute

to Ṽk for k ≥ 2. We can therefore assume that A(V ) = ∅.

Fact III: Let us associate with V the graph G2 = G2(V ) = (V, E), where

E =
{{x, y} : x, y ∈ V and d(x, y) = 2

}
.

We can assume that G2(V ) is connected, because x ∈ X can have distance 1
only with vertices in the same connected component.

Case k = 2: By induction on n one gets

Lemma 5. If G2(V ) is connected and |V | ≥ 2, then |V | ≤ |Ṽ2|.
We derive now a lower bound on α(n, N, k) for smaller k.

Lemma 6. For k ≤ log N + 1

α(n, N, k) = Ω

(
N · log N

k − 1

)
.

Proof: Being concerned only about the order of growth we make the simpli-
fying assumption

k − 1| log N.

Recall the definition of X k
+ in Section 3 and choose C = log N

k−1 of its copies
X k

+�, 1 ≤ � ≤ L, and define W k = X k
+1 × · · · × X k

+L × {0} × · · · × {0} ⊂ Xn,
where the factor {0} occurs exactly n − L · k times.

Clearly, |W k| = 2(k−1)L = N and for V = W k we have

Ṽk = {x ⊕ ej : x ∈ W k, 1 ≤ j ≤ kL},

where ej has a 1 in the j–th position and 0 otherwise.
Hence |Ṽk| = |W k|kL

k = NL, because X k
+� + ei = X k

+� + �, for k(� − 1) + 1 ≤
i, j ≤ k�.

On a dual form of the vertex isoperimetric theorem in the Hamming
space (Xn, d).
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(A, B) with A, B ⊂ Xn is an (n, d)–pair, if

dH(a, b) ≥ d for a ∈ A, b ∈ B.

It was shown in [AK] that

max
{|A||B| : (A, B) is (n, d)–pair

}

is assumed for (A, B) =
{
an

t Xn : w(an) ≤ �
}

,
{
bn ∈ Xn : w(bn) ≥ d + �

}
with a

suitable �.
Here we show that � =

⌈
n−d

2

⌉
.

Lemma 7. For every n ∈ N, 0 ≤ d ≤ n, and 0 ≤ � ≤ n the values fn,d(�) =(
�∑

i=0

(
n
i

))( n∑
i=d+�

(
n
i

))
satisfy

fn,d

(⌈
n − d

2

⌉)
≥ fn,d(�).

Proof: By symmetry it suffices to show that fn,d(�) ≤ fn,d(�+1), if n ≥ 2�+1+d,
that is,

(
�∑

i=0

(
n

i

))( n∑
i=d+�

(
n

i

))
≤
(

�∑
i=0

(
n

i

))( n∑
i=d+�+1

(
n

i

))

iff (
�∑

i=0

(
n

i

))(
n

d + �

)
≤
(

n

� + 1

)( n∑
i=d+�+1

(
n

i

))
. (5.3)

We prove inequality (5.3), by induction on n for all �, d with n ≥ 2� + 1 + d.
For n = 2, that is, � = 0, (5.3) obviously holds. Therefore we assume (5.3) to

be true for n′ < n. We consider first the cases � = 0, and n = 2� + 1 + d.

a) d = 1: (
�∑

i=0

(
n

i

))(
n

� + 1

)
≤
(

n

� + 1

)( n∑
i=�+2

(
n

i

))
.

b) � = 0:

(
n

0

)(
n

d

)
=
(

n

d

)
≤
(

n

1

)( n∑
i=d+1

(
n

i

))
= n

(
n

d + 1

)
+

n∑
i=d+2

(
n

i

)
.

Since
(
n
d

) ≤ n
(

n
d+1

)
(∗) holds for � = 0.
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c) n = 2� + 1 + d implies

(
�∑

i=0

(
n

i

))(
n

d + �

)
=

(
�∑

i=0

(
n

i

))(
n

� + 1

)
=

(
n∑

i=d+�+1

(
n

i

))(
n

� + 1

)
.

Let now � ≥ 1, d ≥ 2, n ≥ 2� + d + 2:

(
�∑

i=0

(
n

i

))(
n

d + �

)
=

(
�∑

i=0

(
n − 1

i

)
+

�−1∑
i=0

(
n − 1

i

))((
n − 1
d + �

)
+
(

n − 1
d + � − 1

))

=

(
�∑

i=0

(
n − 1

i

))(
n − 1
d + �

)
+

(
�∑

i=0

(
n − 1

i

))(
n − 1

d + � − 1

)
+

(
�−1∑
i=0

(
n − 1

i

))(
n − 1
d + �

)

+

(
�−1∑
i=0

(
n − 1

i

))(
n − 1

d + � − 1

)

≤
(

n − 1
� + 1

)( n−1∑
i=d+�+1

(
n − 1

i

))
+
(

n − 1
� + 1

)( n−1∑
i=d+�

(
n − 1

i

))
+
(

n − 1
�

)( n−1∑
i=d+�+1

(
n − 1

i

))

+
(

n − 1
�

) n−1∑
i=d+�

(
n − 1

i

)

=
((

n − 1
� + 1

)
+
(

n − 1
�

))( n−1∑
i=d+�+1

(
n − 1

i

)
+

n−1∑
i=d+�

(
n − 1

i

))
=
(

n

� + 1

)( n∑
i=d+�+1

(
n − 1

i

))
.

Remark: The result must be known and also have a simpler proof!

6 Concluding Conjectures

On k–pairs
We consider

α(n, N, k) = max
{|B| : A, B ⊂ Xn, |A| ≤ N, (A, B) is k–pair

}
.

Conjectures
The following constructions give the “asymptotic” value of α(n, N, k):

a.) If N =
(

m
k−1

)
and 2(k − 1) < m ≤ n, then A =

(
[m]
k−1

) × ([n−m]
0

)
, B =(

[m]
k

)× ([n−m]
0

)
α(n, N, k) = N · m−k+1

k m = 2k = n?
b.) If N =

(
k
j

)
+
(

k
j−2

)
with 2 ≤ j ≤ k

2 , then α(n, N, k) ∼ N j
k−j+1 .

Use B =
(

[k]
j−1

)× ([n−k]
0

)
, A =

((
[k]
j

) ∪ ( [k]
j−2

))× ([n−k]
0

)
.
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On edge isoperimetry
For A ⊂ Xn define EA =

{
(x, y) : x, y ∈ A, x ⊕ y = ei for some i

}
, where

ei = (0, 0, . . . , 1, 0, . . . , 0), with “1” in component i. Then

f2(N) = max
A⊂Xn

|A|=N

|EA|f2(2k) = k · 2k by Harper and f2(N) ≤ N log N. (6.1)

Define now Er(A) =

{
(x1, x2, . . . , xr) : xi ∈ A,

r⊕
j=1

xj = ei for some i

}
and

fr(N) = max
A⊂Xn

|A|=N

|Er(A)|.

We can write Er(A) =
.⋃

x∈A

Bx, where

Bx =

⎧⎨
⎩(x, x2, . . . , xr) :

r⊕
j=2

xj = ei ⊕ x

⎫⎬
⎭ and

|Bx| =

∣∣∣∣∣∣

⎧⎨
⎩(x2, . . . , xr) :

r⊕
j=2

xj = ei

⎫⎬
⎭
∣∣∣∣∣∣ ≤ fr−1.

Consequently fr(2k) = (2k)r−1 · k (Harper’s cylinder).

Conjecture

fr(N) ≤ Nfr−1(N) ≤ · · · ≤ N r−2f2(N) ≤ N r−1 log N.
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