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Information Theoretic Models in Language

Evolution

R. Ahlswede, E. Arikan, L. Bäumer, and C. Deppe�

Abstract. We study a model for language evolution which was intro-
duced by Nowak and Krakauer ([12]). We analyze discrete distance spaces
and prove a conjecture of Nowak for all metrics with a positive semidefi-
nite associated matrix. This natural class of metrics includes all metrics
studied by different authors in this connection. In particular it includes
all ultra-metric spaces.

Furthermore, the role of feedback is explored and multi-user scenarios
are studied. In all models we give lower and upper bounds for the fitness.

1 Introduction

The human language is used to store and transmit information. Therefore there is
a significant interest in the mathematical models of language development. These
models aim to explain how natural selection can lead to the gradual emergence
of human language. Nowak and coworkers ([12], [13]) created a mathematical
model, in which they introduced the fitness of a language as a measure for the
communicative performance of a signalling system. In this model the signals can
be misinterpreted with certain probabilities. In this case it was shown that the
performance of such systems is intrinsically limited, meaning that the fitness can
not be increased over a certain threshold by adding more and more signals to the
repertoire of the communicators. This limitation can be overcome by concatenat-
ing signals or phonemes to form words, which increases significantly the fitness.

In the model the signals are elements of a given distance space. The fitness of
the distance space is then defined as the supremum of the fitness values taken
over all languages. In [13] and [5] the fitnesses of different metric spaces were
investigated. Nowak conjectures that the fitness of a product-space is equal to
the product of the fitnesses of the individual spaces. In the following we will refer
to this conjecture as product conjecture.

In this paper we analyze discrete distance spaces. We prove the product con-
jecture for this model under assumptions which are sufficiently general so that
the result includes all the models of metric spaces considered before in [12], [13]
and [5].

We also show in this model that Hamming codes asymptotically achieve the
maximal possible fitness.
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This model for simple signalling systems and their fitness suggests the in-
vestigations of other classical information theoretical problems in this context.
We will start this direction of research by considering feedback problems and
transmission problems for multiway channels. In the feedback model that we
introduced we show that feedback-fitness can be bigger than the fitness without
feedback.

In [14] a relation between Shannon’s noisy coding theorem and the fitness of
a language is shown. They show that Shannon’s error probability is inversely
proportional to the fitness function.

2 Definitions, Notations and Known Results

We consider a special case of a model which was introduced in [13]. In this model
a group of individuals can communicate about a given number of objects. We
denote this set of objects by

O = {o1, . . . , oN}.
These are objects of the environment, other individuals, concepts or actions.
Each object is mapped to a sequence of signals by the function

r : O → Xn.

We represent each signal-sequence by a sequence of length n, where X is the set
of all possible signals in the language. We call a signal-sequence, which describes
an object, a word of the language. It is possible, that several objects are mapped
to the same word. We assume that we have a distance function

d : X × X → R+

and (X , d) forms a distance space. We always write X for the distance space, if
it is clear which distance function we use. If d satisfies, in addition, the following
triangle inequality: d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X and d(x, y) = 0
holds only for x = y, then (X , d) is called a metric space.

We denote by xt for 1 ≤ t ≤ n the t-th letter of a word xn, thus xn =
(x1, . . . , xn). The distance between two words is defined by dn(xn, yn) =

∑n
t=1

d(xt, yt), where xn, yn ∈ Xn.
As in [13] we define the similarity of two words by s : Xn ×Xn → R+, where

s(xn, yn) = exp(−dn(xn, yn)).

We call a family
L = {xn(i) : i = 1, . . . , N}

with xn(i) = r(oi) a language for N objects in Xn. Note that in this way it is
allowed to use the same word in order to describe different objects.

The probability of understanding yn when xn was signalled is given by

p(xn, yn) =
s(xn, yn)

∑N
i=1 s(xn, xn(i))

.
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We assume that successful communication is of benefit to speaker and listener.
Thus for each correct transmitted word for the i-th object both get a payoff ai,
which defines the value of this object. We assume here that ai = 1 for all i.

With this restriction we define the fitness of a language L of length N in Xn

by

F (L,Xn) =
N∑

i=1

p(xn(i), xn(i)).

The fitness of the distance space Xn is then defined as the maximal possible
value of the fitness of all languages in Xn. Thus

F (Xn) = sup{F (L,Xn) : L language in Xn}.
If we restrict the languages to be for a fixed number N of objects we define
correspondingly:

F (Xn, N) = sup{F (L,Xn) : L language in Xnfor N objects}.
The next statement shows how the fitness values behave if we form languages

of product type.
Let L be a language in the space X then the product language Ln is defined

as the n-fold Cartesian product of L, i.e., Ln = ×n
k=1Lk, with Lk = L for all

k and the elements of the family Ln consist of all possible concatenations of n
words from L.

Proposition 1. Let L be a language in the space X . Then

F (Ln,Xn) = F (L,X )n

and therefore
F (Xn) ≥ F (X )n.

In [13] the authors considered three models for X .

1. X = [0, a] ⊂ R and d(x, y) = |x − y|,
2. X = [0, 1) ⊂ R and d(x, y) = min{|x − y|, 1 − |x − y|},
3. X = {0, d} and d(x, y) =

{
0 , if x=y
d , else

For the model 1 they obtained the

Theorem (NKD, [5])

1. F ([0, a]) = 1 + a
2 .

2. F ([0, a] × [0, b]) = F ([0, a])F ([0, b]).
3. F ([0, a]n) =

(
1 + a

2

)n
.

Motivated by some experiments and this result Nowak formulated the following

Conjecture 1 (Product conjecture). Let (X , d) be a metric space, then

F (Xn) = (F (X ))n.
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3 The Product Conjecture

Let (X , d) be a finite distance space. For a language L with N words (of length 1,
that is letters) from X we introduce a language vector λ = (λx)x∈X , with

λx =
Number of occurences of the word x

N
,

so that λ is a probability distribution (PD) on X . With these definitions we can
denote

F (L,X ) = F (X , λ) =
∑

x

λx∑
y λye−d(x,y)

.

For the fitness of the space X we can write

F (X ) = max
λ

F (X , λ).

For a PD λ on X , let λn denote the product-form distribution on Xn with
marginals λ.

Property 1 now takes the form F (Xn, λn) = F (X , λ)n and F (Xn) ≥ F (X )n.
The product conjecture states that equality holds here for any metric space.

Supposition. In the following we shall assume, unless stated otherwise, that

(i) the diameter D(X ) of the set X , defined as the maximum of d(x, y) over
all pairs (x, y) in X , is finite, and

(ii) the matrix [e−d(x,y)]x,y∈X is positive semi-definite (psd.),

that is a self-adjoint square matrix with A = AT (Hermitian matrix) and all
of whose eigenvalues are nonnegative. In our case all matrices are Hermitian
because they are symmetric. We shall prove the product conjecture for such
spaces. Recall that dn(xn, yn) =

∑n
t=1 d(xt, yt) is of sum-type.

We note that if [e−d(x,y)]x,y∈X , is psd., then [e−dn(xn,yn)]xn,yn∈Xn is psd.
This follows from the fact that [e−dn(xn,yn)] is the nth tensor power of [e−d(x,y)].

3.1 A Lower Bound on F (X )

Since F (X ) ≥ F (X , λ) for all PDs λ on X , we obtain a lower bound on F (X )
for any choice of λ. Let λ∗ be a PD that achieves the minimum in

min
λ

∑

x

∑

y

λxλye−d(x,y). (1)

Since by assumption the matrix [e−d(x,y)] is psd., the necessary and sufficient
conditions for λ∗ to achieve this minimum are given by the Karush-Kuhn-Tucker
conditions, namely,

∑

y

λ∗
ye−d(x,y) ≥ c, for all x with equality if λ∗

x > 0, (2)
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where c is a constant whose value can be found by multiplying the two sides of
the inequality by λ∗

x and summing over x,

c =
∑

x

λ∗
x

∑

y

λ∗
ye−d(x,y). (3)

It turns out that the parameter R0(X ) defined by

R0(X ) = − log c (4)

plays a crucial role here. In terms of this parameter, we notice that

F (X , λ∗) =
∑

x

λ∗
x

1
e−R0(X )

= eR0(X ). (5)

This gives us the following lower bound.

Proposition 2. Under our Supposition for a space X ,

F (X ) ≥ eR0(X ), (6)

where
R0(X ) = − logmin

λ

∑

x

∑

y

λxλye−d(x,y). (7)

As an example we note that for X as Hamming space, X = {0, 1} with

d(x, y) =
{

0 , if x=y
1 , else ,

R0(X ) = log[2/(1 + e−1)] and the lower bound is

F (X ) ≥ 2
1 + e−1

. (8)

For use in the next section we note that R0(Xn) = nR0(X ). This follows by
observing that the optimality conditions (2) written for the space Xn are sat-
isfied by a product-form distribution with marginals equal to λ∗. (We note the
similarity of this result to the “parallel channel theorem” in [7], Chapter 5).

3.2 An Upper Bound

The following upper bound combined with the above lower bound establishes
the product conjecture.

Proposition 3. For all n ≥ 1

F (Xn) ≤ enR0(X )+o(n).

Before proving this proposition, let us show that the product conjecture follows
as a consequence.
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Theorem 1. For spaces satisfying our Supposition, the fitness function is given
by F (Xn) = enR0(X ).

Proof: Suppose to the contrary that for some m, F (Xm) ≥ emR0(X )+ε for some
ε > 0. Then, by the fact that F ((Xm)k) ≥ (F (Xm))k, we have F (Xmk) ≥
ekm(R0(X )+ε/m). Since ε/m is not an o(m) term, this contradicts Proposition 2.
Hence, we must conclude that for all m ≥ 1, F (Xm) ≤ emR0(X ). Since the
reverse inequality F (Xm) ≥ emR0 has already been established, the conclusion
follows. �

Proof of Proposition 2: Fix n ≥ 1 arbitrarily. Let λ be any PD on Xn. Let
S be the support set of λ. For each x ∈ S, define

Ax =
∑

y

λye−d(x,y)

Note that for all x ∈ S
e−nD ≤ Ax ≤ 1

where D = D(X ) is the diameter of X which is finite by assumption. Fix δ > 0
arbitrarily and put K = �nD/δ�. For k = 1, . . . , K define

Sk = {x ∈ S : e−kδ < Ax ≤ e−(k−1)δ}
Note that these sets form a partition of S. So, we may write and justify afterwards

F (Xn, λ) =
K∑

k=1

∑

x∈Sk

λx
1

Ax
(9)

=
∑

k

λ(Sk)
∑

x∈Sk

λx

λ(Sk)
1

Ax
(10)

≤
∑

k

λ(Sk)
eδ

∑
x∈Sk

λx

λ(Sk)Ax

(11)

=
∑

k

λ(Sk)
eδ

∑
x∈Sk

λx

λ(Sk)

∑
y∈S λye−d(x,y)

(12)

≤
∑

k

λ(Sk)
eδ

∑
x∈Sk

λx

λ(Sk)

∑
y∈Sk

λye−d(x,y)
(13)

=
∑

k

eδ

∑
x∈Sk

λx

λ(Sk)

∑
y∈Sk

λy

λ(Sk)e
−d(x,y)

(14)

≤
∑

k

eδ

e−nR0(X )
(15)

= KeδenR0(X ) (16)

In (10) we have used λ(Sk) =
∑

x∈Sk
λx. Inequality (11) follows by the following

argument. For shorthand put px = λx/λ(Sx) and recall that, for all x ∈ Sk,
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e−kδ < Ax ≤ e−(k−1)δ. Then,

∑

x∈Sk

px
1

Ax
≤

∑

x∈Sk

px
1

e−kδ
(17)

=
1

∑
x∈Sk

pxe−kδ
(18)

≤ eδ

∑
x∈Sk

pxAx
(19)

In line (15), we used the assumption (ii) that the distance matrix is psd., hence
R0(Xn) = nR0(X ). The remaining inequalities are self-explanatory. Now, we
may choose δ =

√
n, say, then K ≈ √

n, and we have

F (Xn, λ) ≤ enR0(X )+o(n).

Since the upper bound holds uniformly for all PDs λ, the fitness of the space is
also upper-bounded by enR0(X )+o(n). This completes the proof. �

Remark 1

1. It does not follow from the above results that F (X , λ) is a concave function
of λ.

2. The proof can possibly be extended to any distance space with a bounded
distance function but generalization to arbitrary distance spaces is not at all
obvious.

3. The assumption about the positive semidefiniteness of the distance matrix
appears to be essential. The Hamming metric, the metrics |x−y| and (x−y)2

defined on real spaces satisfy this constraint, as we show in the next section.

3.3 A Connection Between Fitness and Parameters of
Communication Channels

It is noteworthy that the Nowak fitness has an interesting relationship to pairwise
error probabilities in noisy channels. Given a discrete memoryless channel W :
A → B, the Bhattacharyya distance (B-distance) between two input letters
a, a′ ∈ A is defined as

dB(a, a′) = − log
∑

b∈B

√
W (b|a)W (b|a′).

The cutoff rate parameter of the channel is defined as

R0(W ) = − log min
λ

[
∑

a∈A

∑

a′∈A
λaλa′e−d(a,a′)

]

,

where the minimum is over all PDs λ = {λa : a ∈ A}.
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To illustrate the connection between fitness and channel coding, let X = {0, 1}
with d the Hamming metric. The Hamming distance d(x, y) for any x, y ∈ X
equals the B-distance dB(x, y) of a binary symmetric channel W : X → X with
crossover probability ε chosen so that dB(0, 1) = 1, i.e.,

√
4ε(1 − ε) = e−1. For

W chosen this way, the cutoff rate of the BSC equals R0(W ) = log[2/(1 + e−1)].
Thus, the R0(X ) that appears as the exponent in the fitness growth rate for space
(X , d) can be identified as the cutoff rate R0(W ) of the associated BSC W .

This type of association between the metrics considered by Nowak et al. and
B-distances of DMC’s can be established in certain other cases as well. E.g., the
metric |x−y| is the B-distance for an exponential noise channel W : X → X+N ,
where X ≥ 0 is the channel input and X + N is the channel output with N
equal to an independent exponentially distributed random variable with intensity
μ = 2 (mean 1/2). Likewise, the metric (x − y)2 can be interpreted as the B-
distance for a Gaussian noise channel. Whenever a distance d can be associated
with the B-distance of a channel, the matrix [e−d(x,y)] is a Gramm matrix and
hence psd. Thus, the product conjecture holds for such distances on finite spaces.

This association between the fitness model and noisy communication channels
is significant in that it explains the confoundability of phonemes as the result of
the phonemes being sent across a noisy channel. This association also helps in-
terpret Nowak’s formula in terms of well-studied concepts in information theory,
such as pairwise error probabilities and average list sizes in list-decoding.

3.4 Embedding of Distance Spaces

Let (X, d) and (X ′, d′) be two distance spaces. Then (X, d) is said isometrical-
ly embeddable into (X ′, d′) if there exists a mapping Φ (the isometric embed-
ding) from X to X ′ such that d(x, y) = d′(Φ(x), Φ(y)) for all x, y ∈ X . For
any p ≥ 1, the vector space Rm can be endowed with the lp-norm defined by

||x||p = (
∑m

k=1 |xk|p)
1
p for x ∈ Rm. The associated metric is denoted by dlp .

The metric space (Rm, dlp) is abbreviated as lmp . A distance space is said to
be lp-embeddable, if (X, d) is isometrically embeddable into the space lmp for
some integer m ≥ 1. We call a distance space psd., if the corresponding matrix
[e−d(x,y)] is psd.

Lemma 1. If a distance space is psd., then all distance subspaces are also psd.
Furthermore all distance spaces, which can be isometrically embedded in a sub-
space of a psd. distance space are psd.

Proof: If [e−d(x,y)] is psd., then for all non-zero vectors x in Rn we have

xT [e−d(x,y)]x ≥ 0.

This property remains if we delete a finite number of columns and rows of
[e−d(x,y)]. Therefore the remaining space is still psd. �

With the help of this lemma it is possible for us to establish the product con-
jecture for an arbitrary distance space whenever it is possible to embed it in
a larger distance space which is psd. The following theorems of Vestfried and
Fichet are very useful.



Information Theoretic Models in Language Evolution 777

Theorem 1 (V, [16]). Any separable ultrametric space is l2-embeddable.

Theorem 2 (F, [6]). Any metric space with 4 points is l1-embeddable.

We describe now in a proposition situations where this technique applies. Re-
call that in an ultra-metric space for any three points a, b, c holds d(a, b) ≤
max(d(a, c), d(c, b)).

Proposition 4. 1. All ultra-metric spaces are psd.
2. All finite metric spaces with up to 4 elements are psd.
3. There exist some metric spaces with 5 elements which are not psd.
4. For every distance space there exists a scaling, such that the space becomes psd.

Proof: 1. follows from the theorem of Vestfried and Lemma 1.
2. follows from the theoremofFichet.To show3. consider the followingmetric space
on five points: Let for i �= j d(i, j) = a if i, j ∈ {1, 2, 3} and d(i, j) = a

2 otherwise.
Then if 0 < a < 7.07 ·10−6 the corresponding matrix is not psd. 4. follows, because
the matrix [e−αd(x,y)] converges for α → ∞ to the identity matrix. �

4 A Hamming Code Is a Good Language

In the previous section we have shown that the product conjecture is true in
particular for the Hamming model. The optimal fitness is attained at λ =
( 1
2n , . . . , 1

2n ). But this means, that one has to use all possible words in the lan-
guage to achieve the optimal fitness. In general the memory of the individuals
is restricted. For this reason we look for languages, which use only a fraction of
all possible words, but have large fitness.

We consider simple and perfect codes: The Hamming codes ([8]). A q-ary
block-code of length n is a map c from a finite set O to {0, 1, . . . , q−1}n. c(o) with
o ∈ O is called a codeword and C = {c(o) : o ∈ O} is called the code. Thus we can
view each code as a language. There exists a lot of work about codes (see [11]).
A special class of codes are the t-error correcting block-codes. These codes have
the property that for two different codewords the Hamming-distance is larger
than 2t+1. For a block-code of length n the weight-distribution (A0, A1, . . . , An)
and the distance distribution (B0, . . . , Bn) are defined. Ai denotes the number
of codewords of weight i and Bi is the number of ordered pairs of codewords
(u, v) such that d(u, v) = i divided by the number of messages. We summarize
the properties of the single-error-correcting Hamming-codes.

Proposition 5. 1. Hamming codes exist for the lengths 2k − 1.
2. Their number of codewords is N = 22k−1−k. The minimal distance is 3.
3. The weight distribution is the same for each word.

In [9] and [10] it is shown that the weight distribution is very easy to calculate.
Let (A0, A1, . . . , An) be the distance-distribution of the Hamming-code C, then
we define the Hamming weight enumerator by

WC(x) =
n∑

i=0

Aix
i.
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Theorem 3 (McW, [9],[10]). Let (A0, A1, . . . , An) be the distance-distribution
of the Hamming-code C, then the Hamming weight enumerator of this code is
given by

W (x) =
1

n + 1

(
(1 + x)n + n(1 − x)(1 − x2)

n−1
2

)
.

With FH(n) we denote the fitness of a Hamming Code of length n.

Theorem 2. The fitness of theHamming code approaches asymptotically the opti-
mal fitness. Not only limn→∞ 1

nFH(n)=limn→∞ 1
nF (Xn) and limn→∞

FH(n)
F (Xn) = 1,

but even the stronger condition

lim
n→∞FH(n) − F (Xn) = 0

holds.

Proof

The fitness of the Hamming code can be expressedusing the weight enumerator W .

FH(n) =
22k−1−k

W (exp(−1))
=

2n−log2(n+1)

W (exp(−1))
.

We now show that the difference F (Xn) − FH(n) goes to zero.

F (Xn) − FH(n) =
(

2
1 + exp(−1)

)n

− 2n−log2(n+1)

W (exp(−1))

=
(

2
1 + e−1

)n

− 2n−log2(n+1)

1
n+1 (1 + e−1)n + n(1 − e−1)(1 − e−2)

n−1
2

=
(

2
1 + e−1

)n

− 2n

(1 + e−1)n + n(n + 1)(1 − e−1)(1 − e−2)
n−1

2

=
2nn(n + 1)(1 − e−1)(1 − e−2)

n−1
2

(1 + e−1)2n + (1 + e−1)nn(n + 1)(1 − e−1)(1 − e−2)
n−1

2

≤ 2nn(n + 1)(1 − e−1)(1 − e−2)
n−1

2

(1 + e−1)2n
,

=

(
2
√

(1 − e−2)
)n

n(n + 1)(1 − e−1)

((1 + e−1)2)n √
(1 − e−2)

.

The last term goes to zero if n goes to infinity, because

2
√

1 − e−2

(1 + e−1)2
< 1,

(2
√

1−e−2

(1+e−1)2 < 0.995). Since the difference is always positive the proof is
complete. �
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Next we show that ratewise the fitness of the Hamming space is attained if
we choose the middle level as a language.

Suppose that n is even and let the language L consist of all words xn with
exactly n

2 ones, i.e. w(xn) = n
2 . If we fix any word from this language then there

are
(n

2
j

)2
words in L at a distance of 2j, (j = 0, . . . , n

2 ). Therefore the fitness of
L is

F (L,Xn) =

(
n
n
2

)

∑n
2
j=0

(n
2
j

)2
e−2j

.

Let j�(n) denote the j for which the summand in the denominator is maximal
and let τ�(n) = j�(n)

n . Then we can estimate the rate of the fitness of L as
follows. Let ε > 0.

1
n

log F (L,Xn) =
1
n

log
(

n
n
2

)

− 1
n

log

n
2∑

j=0

(n
2

j

)2

e−2j

≥ 1
n

log
(

n
n
2

)

− 1
n

log

(

(
n

2
+ 1)

( n
2

j�(n)

)2

e−2j�(n)

)

=
1
n

log
(

n
n
2

)

− 1
n

log
(n

2
+ 1

)
− 1

n
2

log
( n

2

2τ�(n) · n
2

)

+ 2τ�(n) log(e),

which we can bound further for sufficiently large n by

≥ 1 − 0 + min
τ

{−h(2τ) + 2τ log(e)} − ε, (20)

where h is the binary entropy function, h(τ) = −τ log τ − (1 − τ) log(1 − τ).
We can find the minimum of the convex function −h(2τ)+2τ log(e) by looking

at the root of the first derivative. The first derivative is 2 log(2τ)−2 log(1−2τ)+
2 log(e), which is zero for τ = 1

2(1+e) . Substituting this in (20) we can conclude
that for sufficiently large n

1
n

log F (L,Xn) ≥ 1 − log(1 + e−1) − ε.

The opposite inequality 1
n log F (L,Xn) ≤ 1 − log(1 + e−1) is also true because

we know from Theorem 1 that for the Hamming space F (Xn) =
(

2
1+e−1

)n

.
Therefore we can summarize our result in the following theorem.

Theorem 3. Let L be the language in the Hamming space Xn that consists of
all words of weight n

2 . Then the fitness of the language L is ratewise optimal, i.e.,

lim
n→∞

1
n

log F (L,Xn) − 1
n

log F (Xn) = 0.



780 R. Ahlswede et al.

Theorem 4. Let c be a fixed integer and L be the language in the Hamming
space Xn that consists of all words of weight n

2 with � c
2� fixed position with

0’s and  c
2� fixed positions with 1’s. Then the fitness of the language L is also

ratewise optimal, i.e.,

lim
n→∞

1
n

log F (L,Xn) − 1
n

log F (Xn) = 0.

Proof: We assume that n and c are even. Following the same idea as in
Theorem 3 we get for ε > 0.

1
n

log F (L,Xn) =
1
n

log
(

1
2c

(
n
n
2

))

− 1
n

log

n−c
2∑

j=0

(n−c
2

j

)2

e−2j

≥ 1
n

log
(

1
2c

(
n
n
2

))

− 1
n

log

(

(
n − c

2
+ 1)

( n−c
2

j�(n)

)2

e−2j�(n)

)

=
1
n

log
(

1
2c

(
n
n
2

))

− 1
n

log
(

n − c

2
+ 1

)

− 1
n
2

log
( n−c

2

2τ�(n) · n
2

)

+ 2τ�(n) log(e),

which we can bound further for sufficiently large n by

≥ 1 − 0 + min
τ

{−h(2τ) + 2τ log(e)} − ε. (21)

�

5 A Language with Noiseless Feedback

In this section we consider a language with noiseless feedback. The channel
model is well known in Information Theory ([3], [2]). It can be described in our
language model as follows. Individual A signalled a letter (word of length 1) and
is informed which letter individual B understood (because of some reaction of
B). Individual A has a special strategy for each object. After n repetitions of
this procedure B notices some object with a certain probability. We denote the
set of objects like before by O = {o1, . . . , oN}.

The functions
stj(oi, y

j−1)

for j = 1, . . . , n define the next signal given by the speaker if he wants to speak
about object i and the listener understands yn ∈ {0, 1}n. Thus

stj : O × {0, 1}j−1 → {0, 1}.
We define the set of error vectors by

E = {0, 1}n.

This is the set of all possible error vectors. Let en = (en(1), . . . , en(n)) ∈ E ,
if en(t) = 1 then an error happened at the t-th position, otherwise en(t) = 0.
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We set 0n = (0, . . . , 0) a vector of length n. The error vector and the strategy
determine what the the speaker says. Thus we have a function

st : O × E → {0, 1}n

where st(oi, e
n) is defined by

(st1(oi), st2(oi, st1(o1)+e1 = y1), . . . , stn(oi, stn−1(on−1, y
n−2)+en−1 = yn−1)).

We define the feedback-language as Lst = (st(ot, 0n))N
t=1. We need a distance-

function to define the fitness in this case. We define the similarity for two words
as follows. s(xn, yn) = e−t, where

t =
{

min{w(en) : st(oi, e
n) ⊕ en = yn} if ∃yn : st(oi, e

n) ⊕ en = yn

0 otherwise
.

The feedback fitness of a strategy is defined as

F f (st,Xn) =
|Lst|∑

t=1

∑

en:st(ot,en)∈L

1
∑

en:st(ot,en)∈L s(st(ot, 0n), st(ot, en))

and the fitness is defined as the maximal possible value of the fitness of all
strategies in Xn. Thus

F f (Xn) = sup
st

{F f(st,Xn)}.

This is a generalization of the model without feedback. If the speaker just ignores
the feedback, we get the same model like before. We write F f for all fitness
definitions, if we consider the fitness with feedback.

Proposition 6

F (Xn) = F (Xn,Xn) = F f (Xn,Xn).

Proof: The property holds because, if we use all possible words of a language,
all similarities between the words occur in the fitness formula in the summands
just in another order. �

Now we will give an example where the feedback-fitness is bigger than the usual

fitness. For the case n = 3 we know that F ({0, 1}3) =
(

2
1+exp(−1)

)3

. We will
show now that the fitness can be increased with feedback. We give an example
for a feedback-language with seven objects and a bigger fitness.

Example: Strategy f : Map the i-th object to the binary representation of i. If
a 1 is understood as a 0 start saying 0.
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o1 o2 o3 o4 o5 o6 o7

t = 0 001 010 011 100 101 110 111
000 000 000 000 000 000 000

t = 1 011 110 111 101 100 111 110
101 011 010 110 111 100 100
100 001 001 001 001 001 001

t = 2 010 111 110 010 010 010 010
111 100 100 111 110 101 101

t = 3 110 101 101 011 011 011 011

Obviously Lst = {0, 1}n\0n.
It holds F f (L∗) = 3, 19 > F (Xn,Xn). Our strategy can be generalized and

gives a lower bound for the feedback fitness.

Proposition 7

F f (Xn) ≥ 2n − 1
(∑n

j=0

(
n
j

)
e−j

)
− e−1

.

Proof: Use the generalization of the strategy in the example and the result
follows. �

It is also possible to give a trivial upper bound.

Proposition 8

F f (Xn, N) ≤ N

1 + (N − 1)e−n
.

Proof: The smallest possible similarity between two different words is e−n. Thus
we assume that all similarities of all possible words are as small as possible and
get the upper bound for the fitness. �

6 List-Language

In a “list-language”, we divide the words of a language L into lists (subfamilies).
For example words about food, words about danger e.t.c.. The goal of the listener
is just to find out about which list the speaker speaks. To simplify the situation
we assume that all words of the language L belong to exactly one list, all lists
are of the same size l and we look only at languages with l|N , (N = |L|). In
general, if |L| = l · k + r with r < l, we have r lists of size l + 1 and k− r lists of
size l, i.e., here we assume that r = 0 and call such a language an l-list-language.

We denote the lists by Li for i = 1, . . . , k. We set L(xn) = Li, if the word xn

belongs to the list Li.
In a list-language the individuals get some profit, if the listener understands

the list of the speaker. Therefore we define

F l(L,Xn) =
∑

xn∈L

∑

yn∈L(xn)

p(xn, yn).
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Then naturally the question of the best l-list-language arises:

F l(Xn) = sup{F l(L,Xn) : L is l − list − language in Xn}.
Next we calculate the fitness of list-languages in a special case, namely that

of constant similarity. Let C > 0 be a constant and let d be the following metric
on X

d(x, y) =
{

0 , if x=y
C , else .

In this case the following proposition holds.

Proposition 9. F l(L,X ) ≤ F (L,X ) + l − 1

Proof

F l(L,X ) =
∑

x∈L

∑

y∈L(x)

exp(−d(x, y))
∑

z∈L exp(−d(x, z))

= F (L,X ) +
∑

x∈L

∑

y∈L(x),y 	=x

exp(−d(x, y))
∑

z∈L exp(−d(x, z))

= F (L,X ) +
Nexp(−C)(l − 1)

1 + (N − 1)exp(−C)
≤ F (L,X ) + l − 1.

�

7 Multi-access-Language

In this section we will consider the following situation. Two individuals speak
simultaneously. There is some interference and one individual wants to under-
stand both. We look at two models. In the first model the speakers use the same
language, in the second model they use different languages. Such models are well
known in Information Theory. They were introduced in [1].

7.1 Model I

In this model X = {0, 1} and Y = {0, 1, 2}. The individuals can only speak
words which contain the signals 0 and 1. The listener understands 0 if both
use the signal 0. He understands 1, if one individual uses the signal 0 and the
other the signal 1 and he understands 2 if both use the signal 1. The listener
understands some word in Yn. We search now for a language with the biggest
multi-access-fitness. This model is known in information theory as the binary
adder channel.

We set d((xn, yn), (vn, wn)) = dH(xn + yn, vn + wn), where xn + yn = (x1 +
y1, . . . , xn + yn) and define the fitness of a multi-access-adder-language as

FA(L,Xn) =
N∑

i=1

N∑

j=1

p((x(i)n, y(j)n), (x(i)n, y(j)n)).
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The probability and the similarity are defined as before. We will consider an
example for n = 2. The language contains all elements of {0, 1} exactly once.
Thus we get the following table:

r(o1) = 00 r(o2) = 01 r(o3) = 10 r(o4) = 11
r(o1) = 00 00 01 10 11
r(o2) = 01 01 02 11 12
r(o3) = 10 10 11 20 21
r(o4) = 11 11 12 21 22

Now we have for example d((01, 01), (10, 01)) = d(02, 11) = 2. The fitness of this
language is FA(L,Xn) ≈ 2.83.

Proposition 10
FA(Xn) ≤ F ({0, . . . , 2|X |}.

We know consider a generalization of this model. The speaker uses two different
languages over the same distance space. We search for two languages which have
the biggest common multi-access-fitness.

FA(L,M,Xn) =
m∑

i=1

k∑

j=1

p((x(i)n, y(j)n), (x(i)n, y(j)n)).

For example let L = (00, 01, 10, 11) and M = (00, 11). Then we get the following
table.

00 01 10 11
00 00 01 10 11
11 11 12 21 22

The fitness of this language is FA(L,M) = 2, 71.

7.2 Model II

In this model X = Y = {0, 1} and d((xn, yn), (xn, yn)) = dH(xn ⊕ yn, xn ⊕ yn),
where ⊕ is the sum modulo |X | = 2 in all components. All other definition are
the same. Let us look at our example:

00 01 10 11
00 00 01 10 11
01 01 00 11 10
10 10 11 00 01
11 11 10 01 00

All words are contained four times in the table. Thus this language attains the
maximum, because the product conjecture holds. This can be generalized.

Theorem 5. The optimal fitness for the adder model II is attained, if the lan-
guage consists of all possible codewords.
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Another configuration with the same fitness as the previous example:

00 01
00 00 01
10 10 11

If we allow two different languages for the two speakers, we find more config-
urations, which attain the optimal fitness.

Let us look at our example:

00 01 10 11
00 00 01 10 11

8 Broadcast to Two Different Languages

In this section we will consider the following situation. We have two individuals
with two different languages L = (x(1), . . . , x(N)) and M = (y(1), . . . , y(N)) on
the same distance space (X , d), such that x(i) describes the same object as y(i)
for all i = 1, . . . , N . Our goal is to find a good language for a third individual,
which wants to communicate with both of them simultaneously. In Information
Theory this kind of models were introduced in [4].

We define the fitness between two languages as

F (L,M) =
N∑

i=1

exp(−d(x(i), y(i)))
∑N

j=1 exp(−d(x(i), y(j))
.

There exists also examples in human language, where both people can speak
in their own language and understand each other. An example is a conversation
between a Swede and a Dane, who both speak in their language.

We define the fitness of a broadcast-language N as

FB (N , (L,M) ,Xn) =
1
2

(F (N ,L) + F (N ,M)) .

Proposition 11

FB (N , (L,M) ,Xn) ≥ 1
2

max{F (L,Xn) + 1, F (M,Xn) + 1}.

9 Language Without Multiplicity

In all previous sections we allowed multiplicity of words. That means the indi-
viduals were allowed to use one word for more than one object. We will show
that in the case without multiplicity there are examples, where the fitness of a
product space is bigger than the product of the fitnesses of the single spaces.

Again we consider the set of objects

O = {o1, . . . , oN}
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and now each object is mapped to a sequence of signals by the injective function

r : O → Xn.

We call the languages of this type injective and denote the corresponding fitness
values by Fin.

We consider the metric space (M = {a, b, c}, d), where the distance is defined
as follows:

d a b c
a 0 0.01 3
b 0.01 0 3
c 3 3 0

In this case holds:

Fin(M) = Fin({a, c},M) =
2

1 + e−3
> Fin({a, b, c},M),

but for the product we have:

Fin(M2) = Fin({aa, ac, cb, cc},M2) > Fin({aa, ac, ca, cc},M2).

Thus Fin(M)2 < Fin(M2). This means the product conjecture does not hold for
injective languages. The reason for this behavior is, that the distance between a
and b is very small and the optimal fitness does not consist of all possible letters.
In the product space we can use the unused letter to improve the fitness. This
counterexample does not work in the original problem, because in the case of
such a finite metric space it is always better to choose all elements with a certain
multiplicity.

Acknowledgment. The authors would like to thank V. Blinovsky and
E. Telatar for discussions on these problems and P. Harremoes for drawing their
attention to the counter-example in the case without multiplicity.
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