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1 Introduction

We present an algorithm to sort all suffixes of xn = (x1, . . . , xn) ∈ Xn lexico-
graphically, where X = {0, . . . , q−1}. Fast and efficient sorting of a large amount
of data according to its suffix structure (suffix-sorting) is a useful technology in
many fields of application, front-most in the field of Data Compression where
it is used e.g. for the Burrows and Wheeler Transformation (BWT for short), a
block-sorting transformation ([3],[9]).

Larsson [4] describes the relationship between the BWT on one hand and
suffix trees and context trees on the other hand. Then Sadakane [8] suggests a
well referenced method to compute the BWT more time efficiently. Then the
algorithms based on suffix trees have been improved ([6],[5],[1]).

In [3] it was observed that for an input string of size n, this transformation can
be computed in O(n) time and space1 using suffix trees. While suffix trees are
considered to be greedy in space – even small factors hidden in the O-notation
may decide on the feasibility of an algorithm – sorting was accomplished by
alternative non-linear methods: Manber and Myers [7] introduced an algorithm
of O(n log n) in worst case time and 8n bytes of space and in [2] an algorithm
based on Quicksort is suggested, which is fast on the average but its worst case
complexity is O(n2 log n). Most prominent in this case is the Bendson-Sedgewick
Algorithm which requires 4n bytes and Sadakane’s example of a combination of
the Manber-Myers Algorithm with the Bendson-Sedgewick Algorithm with a
complexity of O(nlogn) worst case time using 9n bytes [8].

The reduction of the space requirement due to an upper bound on n seems
trivial. However, it turns out that it involves a considerable amount of engineer-
ing work to achieve an improvement, while retaining an acceptable worst case
time complexity. This paper proposes an algorithm, efficient in the terms de-
scribed above, ideal for handling large blocks of input data. We assume that the
cardinality of the alphabet (q) is smaller than the text-string (n). Our algorithm
computes the suffix sorting in O(n) space and O(n2 log n) time in the worst case.
It has also the property that it sorts the suffixes lexicographically according to
the prefixes of length t2 = logq�n

2 � in the worst case in linear time. After the ini-
tial sorting of length t2, we use a Quick-sort-variant to sort the remaining part.
Therefore we get the worst time O(n2 log n). It is also possible to modify our
algorithm by using Heap-sort. Then we will get a worst case time O(n(log n)2).

1 This only holds, if the space complexity of a counter or pointer is considered to be
constant (e.g. 4 Bytes) and the basic operations on them (increment, comparison)
are constant in time. This assumption is common in the literature and helpful for
practical purposes.
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We use Quick-sort, because it is better in practice and has an average time of
O(n log n) like Heap-sort, but with a smaller factor.

The elements of X are called symbols. We denote the symbols by their rank
w.r.t. the order on X . We assume that $ = q − 1 ∈ X is a symbol not occurring
in the first n − 1 symbols in xn, the sentinel symbol.

xi is the ith element in the sequence xn. If i ≤ j, then (xi, . . . , xj) is the factor
of xn beginning with the ith element and ending with the jth element. If i > j,
then (xi, . . . , xj) is the empty sequence. A factor v of x begins at position i and
ends at position j in x if (xi, . . . , xj) = v. To conveniently refer to the factors of
a sequence, we use the abbreviation xj

i for (xi, . . . , xj).

2 The Initial Sorting Step

Before we tackle the problem of sorting all suffixes of a given sequence in lexi-
cographical order we start to consider the case where we only sort the suffixes
looking at the prefixes of a fixed length correctly. The simplest case is to look at
all prefixes of length one, which is the case to sort all symbols occurring in the
input sequence lexicographically.

2.1 Sorting of the Symbols

The sorting of the symbols of a given input sequence xn with symbols out of a
finite alphabet X can be done linearly in time and space complexity as follows:

We define q counters (counter0[0], . . . , counter0[q−1]) and count for each sym-
bol in {0, . . . , q − 1} how often it occurs in xn. In each step i we have to increase
exactly one counter (counter0[xi]) by one. Therefore to get the frequencies of the
symbols requires O(n) operations. Now our alphabet is given in lexicographic or-
der and we generate the output in the following way: First output counter0[0]
many zeros, followed by counter0[1] many ones,. . . Obviously the generated out-
put sequence is produced in O(n) operations and the sorting is done.

2.2 Sorting a Given Prefix Length

We would like to continue the sorting of all suffixes in an iterative way by using
the counting idea of the previous section. In a later step of the algorithm we
need n counters. We have to take the memory already at the beginning, which
allows us to use it already in the initial sorting phase. We choose t1 such that
2t1−1 < q ≤ 2t1 and t2 such that 2t1t2 ≤ ⌊

n
2

⌋
< 2t1(t2+1). For simplicity we

assume from now on that q = 2t1 and n = 2t1t2+1.
We like to sort all suffixes such that the first t2 symbols of each suffix are

sorted lexicographically correctly.
Now we will count the number of occurrences of factors of length t2 in our

sequence xn. We assume that xn+1, . . . , xn+t2−1 = q − 1 and count the factors
as follows. The counter[a1k

t2−1 + a1k
t2−2 + · · · + at2k

0] counts the number of
occurrences of the factor (a1, . . . , at2). Let us define a temporary value tmp =
2t1t2 − 1 and i = n. This is the position n of the sequence, with the factor
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(q − 1, . . . , q − 1). Now starting at the end down to the beginning of the input
sequence xn+t2−1 in each step we increase counter[tmp] by one, decrease i by
one and we calculate:

tmp →
⌊

tmp

2t1

⌋
+ xi2t1(t2−1).

Notice that multiplications and divisions by powers of two can be represented
by shifts. Let us denote

a >> b =
⌊ a

2b

⌋
and a << b = a2b.

Furthermore notice that the + operation can be replaced by a binary logical
or-operation which we denote as |. Hence in total we need O(n) operations.

By construction tmp will only take values less than
⌊

n
2

⌋
= (n >> 1), such

that we can calculate the partial sums of the entries counter[j] and store them
in the second half of the memory for the array counter

counter[
n

2
+ j] →

n
2 −1∑

i=0

counter[i].

Obviously this calculation can also be done linearly in time:

i->1
counter[(n>>1)]->0
while i< (n>>1) do

counter[(n>>1)+i] -> counter[(n>>1)+i-1] + counter[i-1]
i-> i+1

done

Finally we have to write back the result of the sorting. In order to continue we
introduce two further arrays of size n, one, which we denote as pointer, in order
to describe the starting points of the suffixes, and the second one, denoted as
index, to store the partial results of the sorting.

Again we start with tmp = 2t1t2 − 1 and at position i = n.

while i>n-t_2 do
i->i-1
tmp->(tmp>>t_1)|x_i<<t_1(t_2-1)
counter[tmp]->counter[tmp]-1
index[i]->counter[tmp+(n>>1)]+counter[tmp];
pointer[index[i]]->i;

done
while i>0 do

i->i-1
tmp->(tmp>>t_1)|x_i<<t_1(t_2-1)
counter[tmp]->counter[tmp]-1
index[i]->counter[tmp+(n>>1)]
pointer[index[i]+counter[tmp]]->i

done
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In the first loop we consider the cases where we have to take the sentinel into
account (we assume that xn+i = $). With the starting definition of tmp the
sentinel will be taken as a number greater or equal to |X | − 1. Using the fact
that it occurs only at the end of the sequence, that is with the largest entry of
count, we can fix the position of the last t2 entries to the starting-point of the
prefix of suffixes, represented as integer tmp at that moment, plus the number
of occurrences of that value tmp. In all other cases (second loop) we set index[i]
to the starting position of the interval of suffixes with prefix tmp.

In other words after these loops pointer[1], . . . , pointer[n] represent the start-
ing positions of the suffixes in lexicographical order according to the prefix-
es of length t2. If index[pointer[i]] < index[pointer[j]] (index[pointer[i]] >
index[pointer[j]]) then the suffix starting in pointer[i] is lexicographically small-
er (larger) than the suffix starting in position pointer[j]. If the two values are
equal, then the two suffixes have a common prefix of length greater or equal
to t2.

Notice that to finish the lexicographic order in total we can continue using the
two arrays pointer and index only, that is there is no need to look at the original
input sequence to calculate the defined total order, such that the continuation
is independent of the alphabet size.

3 Only Three Elements

In order to continue the sorting we first analyze how to sort and how to calculate
the median of three given numbers.

3.1 Median-Position-Search of Three Elements

The median m of a triple (n1, n2, n3) ∈ N
3
0 is a value equal to at least one of

them which is in between the two others, i.e.

m = n1 ⇒ n2 ≤ n1 ≤ n3 or n3 ≤ n1 ≤ n2,

m = n2 ⇒ n1 ≤ n2 ≤ n3 or n3 ≤ n2 ≤ n1,

m = n3 ⇒ n2 ≤ n3 ≤ n1 or n1 ≤ n3 ≤ n2.

Notice that we are not interested in the value itself, only in the position relative
to the two others, i.e. for us there is no difference between the case (1, 1, 1) and
(2, 2, 2). Therefore we partition the set of triples in the following way. We define
13 subsets A1, . . . ,A13 ⊂ N

3
0 in the following way: For k ∈ N0 and l, m ∈ N we

define
A1 = {(k, k, k)} A8 = {(k, k + l, k + l + m)}

A2 = {(k, k, k + l)} A9 = {(k, k + l + m, k + l)}
A3 = {(k, k + l, k)} A10 = {(k + l, k, k + l + m)}
A4 = {(k + l, k, k)} A11 = {(k + l, k + l + m, k)}
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A5 = {(k, k + l, k + l)} A12 = {(k + l + m, k, k + l)}
A6 = {(k + l, k, k + l)} A13 = {(k + l + m, k + l, k)}

A7 = {(k + l, k + l, k)}.
For a given triple (n1, n2, n3) the median is known to us, if we know the

index i with (n1, n2, n3) ∈ Ai. Therefore we define the following questionnaire of
yes–no–questions where a question is of the following form: a ≤ b, a < b, a = b.

if n_1 <= n_2 then
if n_2 <= n_3 then m=n_2
else if n_1 <= n_3 then m=n_3

else m=n_1
endif

endif
else

if n_3 <= n_2 then m=n_2
else if n_1 <= n_3 then m=n_1

else m=n_3
endif

endif
endif

Notice that we need at most three yes-no-questions and we need only two in
case where the median is already in the middle.

3.2 Sorting of Three Elements

Using questions of the form mentioned in the previous section we can sort three
elements using at most four questions:

if n_1 <= n_2 then
if n_2 <= n_3 then

if n_1 = n_2 then
if n_2 = n_3 then (n_1,n_2,n_3) in A_1
else (n_1,n_2,n_3) in A_2
endif

else
if n_2 = n_3 then (n_1,n_2,n_3) in A_5
else (n_1,n_2,n_3) in A_8
endif

endif
else

if n_1 <= n_3 then
if n_1 = n_3 then (n_1,n_2,n_3) in A_3
else (n_1,n_2,n_3) in A_9
endif
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else
if n_1 = n_2 then (n_1,n_2,n_3) in A_7
else (n_1,n_2,n_3) in A_11
endif

endif
endif

else
if n_1 > n_3 then

if n_2 = n_3 then (n_1,n_2,n_3) in A_4
else if n_2 < n_3 then (n_1,n_2,n_3) in A_12

else (n_1,n_2,n_3) in A_13
endif

endif
else

if n_1 = n_3 then (n_1,n_2,n_3) in A_6
else (n_1,n_2,n_3) in A_10
endif

endif
endif

4 The Main Loop of the Sorting Algorithm

After the initial sorting phase we have the array pointer, which points to the
starting positions of the suffixes lexicographically correctly sorted according to
the prefixes of length t2. index contains the partial ordering, that is if the values
are different, then the larger one is lexicographically larger than the smaller one,
if they are equal then the two suffixes have a common prefix of length greater or
equal to t2. Finally we can calculate with the second half of the array counter
the positions of the intervals with common prefixes of length t2. We use now
counter[0] to count the number of intervals where we have to continue with the
sorting, more precisely counter[0] points to the first free place in memory where
we can store a further interval, which is in the beginning 1 (counter[1] is free).

counter[0]->1

Starting the loop to get the not necessarily correctly sorted intervals counter[0]
is initialized with 1 because we need it in this way later and we are working on
“unsigned int”.

i->0
while i< 2^(t_1*t_2) do
if counter[(n>>1)+i+1]-counter[(n>>1)+i]>1 then

counter[counter[0]+1]->counter[(n>>1)+i];
counter[counter[0]+2]->counter[(n>>1)+i+1]-1
while index[pointer[counter[counter[0]+2]]]>

index[pointer[counter[counter[0]+1]]] do
counter[counter[0]+2]->counter[counter[0]+2]-1
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done
if counter[counter[0]+2]!=counter[counter[0]+1] then

counter[0]->counter[0]+2
endif

endif
done

Notice that during the loop we reuse the memory in counter from (n >> 1)
to n.

4.1 Split an Interval

We have to sort an interval from position begin to end that is pointer[begin] to
pointer[end] has to be sorted but they are already of equal length length. We
like to do the sorting by a 3 part quick-sort. The array ‘smaller’ contains all
pointers which are smaller than the first entry (smaller defined by index !), the
array ‘equal’ the pointers which are equal in the first 2length positions with the
first one and the array ‘bigger’ the remaining ones. After we have split this part
we have to continue with ’smaller’ and ’bigger’ of length length and with ’equal’
of length 2 · length. These intervals (starting point, end point) we return to the
calling function using two arrays x and y.

Given a value val, the index for the interval stored in counter at positions
counter[val − 1] and counter[val], the value length which is the length of the
common prefix already known from the previous steps (after the initial sorting
it is t2) and a flag flag which describes whether the intervals are stored at the
beginning of counter or at the end (after the initial part at the beginning).

Now the beginning of the interval is given by begin = counter[val − 1] and
the end position by end = counter[val]. Notice that the last length pointers of
the original sequence can not occur inside this interval because they are correct-
ly inserted in one of the previous steps due to the (virtual) sentinel symbol at
the end of the input sequence. Therefore if we look at the suffixes starting at
pointer[begin] and pointer[end], then we know they have by construction a com-
mon prefix of length at least length. But if we look at the two suffixes without
the prefix of length length, then theses two suffixes have been sorted correctly
also according to the prefix of length length. In other words the result of the
comparison of the two pointers pointer[begin] and pointer[end] is equal to the
result of the comparison of pointer[begin]+length and pointer[end]+length. We
can get the result by using the values stored in the array index. Let us denote
that a is lexicographic smaller than b with a ≺ b for two pointers a, b where a
pointer is smaller than another one if the corresponding suffix starting at that
pointer is lexicographic smaller than the other suffix. Then

pointer[begin] ≺ pointer[end] ⇔
pointer[begin] + length ≺ pointer[end] + length.

Therefore if now index[pointer[begin] + length] = index[pointer[end] + length]
then the suffixes starting at pointer[begin] and pointer[end] have a common
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prefix of length at least 2 · length. Otherwise we can use the result to get the
right comparison result. Notice that in this way we double the length of the
comparison in each step.

Now for a given interval we like to split the interval into several parts similar to
quick-sort. Therefore we take three values and calculate the median as mentioned
in Section 3.1

n_1->index[pointer[begin]+length];
n_2->index[pointer[(begin+end)>>1]+length];
n_3->index[pointer[end]+length];

median-> (n_1 <= n_2 ?
(n_2 <= n_3 ? n_2 : (n_1 <= n_3 ? n_3 : n_1 ) )
: (n_3 <= n_2 ? n_2 : (n_1 <= n_3 ? n_1 : n_3 )))

With currentindex = index[pointer[begin]] we have the value of index[pointer[i]]
for all begin ≤ i ≤ end. Now we like to split the interval into three parts, one for
the pointers which are smaller than the median one for those which are equal and
one for those which are larger. We divide the parts by changing the values of the
pointers as follows:

First we need two further variables which we set to begin and end respectively.

s->begin
b->end

And we need yet another variable k for the actual position inside the interval.
As long as the values of index[pointer[k] + length] < median and k ≤ b the
current end of the interval we increase k by one:

k->begin; /* the starting point */
while index[pointer[k]+length]<median && k<=b do

k->k+1
done
s->k;

We set s to the actual value of k such that s points to the first position which
is greater or equal to the median. In a similar way we reduce b at the end, give
the first pointer which is less or equal than the median.

while index[pointer[b]+length]>median && k<=b do
b->b-1

done

Remember that we have stopped the first loop in a case where

index[pointer[k] + length] ≥ median

and the second one where

index[pointer[b] + length] ≤ median.
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Now let us continue in the following way:

if index[pointer[k]+length]>median then
SWAPPOINTER(k,b)
b->b-1

where we denote with SWAPPOINTER(k, b) the following operations:

tmp− > pointer[k] pointer[k]− > pointer[b] pointer[b]− > tmp

such that the two values are simply exchanged. Now we have that
index[pointer[k] + length] ≤ median and we continue:

if index[pointer[k]+length]=median then
k->k+1
while index[pointer[k]+length]=median do

k->k+1
done

else
k->k+1 s->s+1

endif
else
k->k+1
while index[pointer[k]+length]=median && k<=b do

k->k+1
done

endif

Now if s > begin then the part from begin to s− 1 stores the pointers which are
smaller than the median and if b < end then the part from b + 1 to end are the
pointers which are larger than the median. Furthermore if s < k then the part
from s to k− 1 are pointers which are equal to the median. Let us first continue
with the case where s = k:

if s=k then
s->end+1 /* we make the value impossible, in other */

/* words larger then end */
while k<=b && s>end do
if index[pointer[k]+length]<median then

k->k+1 /* one further pointer which is smaller */
else

if index[pointer[k]+length]>median then
SWAPPOINTER(k,b);
b->b-1 /* add to bigger interval */

else
s->k /* s is getting a value <= end and */

/* the loop stops. */
k->k+1 /* they are equal */
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endif
endif

done
endif

Now we have found at least one pointer which is equal to the median. We have
to continue similarly as before but if index[pointer[k] + length] < median then
we have to exchange in addition the pointers in positions k and s and we have to
increase also s. Furthermore the only stop situation for the loop occurs if k > b.

while k<=b do
if index[pointer[k]+length]<median then
SWAPPOINTER(k,s);
k->k+1
s->s+1

else
if index[pointer[k]+length]>median then

SWAPPOINTER(k,b);
b->b-1 /* add to bigger */

else
k->k+1 /* they are equal */

endif
endif

done

Now we have the three parts

begin, . . . , s − 1, the pointers which are smaller

s, . . . , b, the pointers which are equal

b + 1, . . . , end, the pointers which are larger.

If s − 1 < begin or b + 1 > end then the corresponding intervals are empty. In
order to use these parts in the future, we have to update the values of index for
the current pointers. Notice that equal to the median means that they have a
common prefix of a length at least 2 · length.

For the first interval (if it exists) nothing has to be done, because the values
of index are already at the starting point of the interval. The new starting point
of the second part is

currentindex->currentindex+s-begin

Of course the second part contains at least one pointer by construction (the
pointer which is used to calculate the median has a common prefix to itself !).

if s>begin && s<=b then
k->s
while k<=b do
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index[pointer[k]]->currentindex;
k->k+1

done
endif

Finally we have to calculate the starting point of the last interval (if it exists)

currentindex->currentindex+b+1-s;

if b+1<=end then
k->b+1
while k<=end do
index[pointer[k]]->currentindex
k->k+1

done
endif

Now we have to continue with our sorting algorithm on the constructed inter-
vals. But before we start to consider the interval from s to b of length 2 · length we
like to finish all intervals of length length in order to double the compared lengths
of the prefixes again. For that reason we store that interval at the opposite end
of the array counter on which we are working at the moment. After the initial
part we are working at the beginning to store our intervals, such that we store
the interval from s to b at the end. After we have finished all intervals which we
have to compare of length length we start to work at the end with the intervals
sorted correctly of length 2 · length and store all intervals we produce of length
4 · length at the beginning. Notice that the total number of intervals we have to
store is always less than n such that if we need more space at the end it is free at
the beginning of the array counter and vice versa. To add these intervals we define
a function INSTOCOUNTER(FROM, TO, FLAG) where FROM ,TO are the
boundaries of the interval which we have to add and FLAG describes where. If we
are working at the end of counter we use counter[n] similarly to counter[0] for the
beginning part. To delete one interval at the end we have to increase counter[n]
such that we need two different rules to add an interval at the end:

INSTOCOUNTER(FROM,TO,FLAG) {
switch(FLAG) {
case 0: {
counter[counter[0]]->(FROM);
counter[0]->counter[0]+1
counter[counter[0]]->(TO);
counter[0]->counter[0]+1
break;

}
case 1: {
counter[n]->counter[n]-1
counter[counter[n]]_>(TO);
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counter[n]->counter[n]-1
counter[counter[n]]->(FROM);
break;

}
default: { /* case 2 */

counter[counter[n]]->(FROM);
counter[counter[n]+1]->(TO);
counter[n]->counter[n]-2;
break;

}
}

}

Now the insertion of the intervals using the function INSTOCOUNTER can
be done as follows:

if s-begin>1 then
INSTOCOUNTER(begin,s-1,2-(flag<<1))

endif
if b-s>0 then
INSTOCOUNTER(s,b,flag)

endif
if end-b>1 then
INSTOCOUNTER(b+1,end,2-(flag<<1))

endif

4.2 Calling the Sorting Procedure

To conclude the description of the whole algorithm it remains to describe the
step between the initial sorting phase and the calling of the procedure to split a
given interval.

We are starting in a situation where we have given the three arrays counter,
pointer and index and we know, that if we use the values stored in index as
rule for the comparison of two pointers then the result is correct according to
the first t2 symbols (from the initial sorting part).

As mentioned earlier we like to use the array counter from both sides. At the
beginning we use a variable length which describes the length of the common
prefix correctly sorted. This variable is initialized with t2 from the initial sorting
phase. In order to double the length in each loop we have to use the information
stored in index to sort all suffixes according to the first 2 · length symbols
correctly. After that we use the information to double the length again and so
on. counter[0] is already used to describe the first free position in memory at
the beginning of counter. Analogously we use counter[n] in order to do the same
procedure at the end. Therefore we have to store at the same time intervals sorted
with prefixes of length length and of length 2 · length. If there is no further one
of length length we start to sort them of length 2 · length and produce new ones
of length 4 · length. Notice that the total number of intervals can not be more
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then n >> 1 such that to store them with starting and ending point we need at
most n values in the memory. Furthermore out of the initial sorting part some
pointers at the end of the input sequence (exactly t2 many) are already correctly
sorted such that the memory requirement is strictly less than n − 2 (we make
an initial sorting at least of length 2). For typical files we need only something
like n >> 2 entries in memory, but in worst case n − t2 is needed as we can see
by the following example:
Take a deBruijn sequence of length 2n−1 copy the sequence and concatenate the
two. The property of a deBruijn sequence is, that if we are looking at a linear
shift-register of length n− 1 then these sequences have maximal period, or more
precisely every binary sequence of length n − 1 occurs exactly once. Now if we
have a length of t2 = n − 1 then each prefix occurs in the constructed sequence
exactly twice and hence we have n intervals from which only n − 1 are getting
correctly sorted at the initial phase.

Now at the beginning we have no interval to sort of length 2 · length:

counter[n]->n;

We are starting the main loop.

/* as long as there is something to compare */
while(counter[0]>1) do
/* starting with the beginning part (at the end) */

We call this loop twice because first we like to sort every interval of length
length correctly, after that we continue at the end of counter and sort the
intervals of length 2 · length. If there are further intervals of length 4 · length
then we can find them at the beginning of counter.

/* as long as we have something to compare of length "length" */
while counter[0]>1 do
counter[0]->counter[0]-2

switch(counter[counter[0]+1]-counter[counter[0]]) {
/* +1 is the number of elements ! */

Notice that using the procedure of Section 4.1 the calculation of the median is
only efficient if we have enough elements to sort. Therefore in case where we
have intervals of a small length we sort directly:

With only two entries we need in the worst case two questions in order to sort
them

case 1: { /* only two entries */
m1->index[pointer[counter[counter[0]]]+k]

/* a shortcut to store them in order not */
m2->index[pointer[counter[counter[0]+1]]+k]

/* to calculate them twice */
if m1=m2 then
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The two values are equal, that means the two suffixes are equal of length
”2*lengthänd therefore we add it at the end of counter.

INSTOCOUNTER(counter[counter[0]],
counter[counter[0]+1],1)

else

They are different so that we can compare them

if m1<m2 then

The beginning value of the interval is smaller than the end, therefore we do not
have to exchange the order and we can update the index.

index[pointer[counter[counter[0]+1]]]->
index[pointer[counter[counter[0]+1]]]+1;

else

We have to swap them and to update the index of the beginning pointer.

SWAPPOINTER(counter[counter[0]],
counter[counter[0]+1])

index[counter[counter[0]]]->
index[counter[counter[0]]]+1

endif
endif
break;

} /* end of case interval of length 2 */

An interval with three elements we can sort as described in Section 3.2. We
call a function sort3 which needs as parameters the array counter, the position
(counter[counter[0]]) in counter to get the boundaries for the interval to sort, the
arrays pointer and index, a flag which describes how to insert a new interval to
continue with, the length of the already compared prefixes and finally the length
n (necessary to insert a new interval using the function INSTOCOUNTER).

case 2: { /* interval of length 3 */
sort3(counter,counter[counter[0]],pointer,

index,1,length,n)

Either everything is sorted or we are getting an interval back which starts with
the same first 2 · length symbols and that is we have to add them to the end of
counter.

break;
} /* end of interval of length 3 */

In all other cases we call the function described in Section 4.1 which we denote
as splitcount.
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default: { /* the general case */
splitcount(counter,counter[0]+1,pointer,index,

1,length,n);
break;

} /* end of the general case */
} /* end of the switch */

Now we can stop the loop for sorting intervals with length length and look at
the intervals of length 2 · length.

done /* inner loop: counter[0]>1 */
length->(length<<1)

The length llengtḧıs finished, that is we can continue with ”2*lengtḧın order not
to copy the end to the beginning and continue the main loop we repeat the whole
procedure with exchanging the role of the beginning of the array counter and
the end of it. Of course counter[0] = 1, in other words at the beginning there
is no interval of 4 · length which we have to compare. Now we have to start the
loop at the end:

while counter[n]<n do
switch(counter[counter[n]+1]-counter[counter[n]]) {
/* +1 is the number of elements ! */

case 1: { /* only two elements */
/* two shortcuts */
m1=index[pointer[counter[counter[n]]]+length];
m2=index[pointer[counter[counter[n]+1]]+length];
if m1=m2 then

The two values are equal and we have to add a new interval at the beginning of
the array counter using the function INSTOCOUNTER.

INSTOCOUNTER(counter[counter[n]],
counter[counter[n]+1],0);

else /* we can compare them */
if m1<m2 then
index[pointer[counter[counter[n]+1]]]++;

else
SWAPPOINTER(counter[counter[n]],

counter[counter[n]+1]);
index[counter[counter[n]]]++;

endif
endif
break;

} /* end of the case with only two elements. */

As before we also consider a separate case with only three elements using the
function sort3 as before but with flag = 0.
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case 2: {
sort3(counter,counter[counter[n]],pointer,

index,0,length,n);
break;
} /* and of case 2. */

Again in all others cases we use the function splitcount.

default: {
splitcount(counter,counter[n]+1,pointer,

index,0,length,n);
break;

}
} /* and of the switch */
/* continue with the next interval. */

counter[n]->counter[n]+2
done /* end of the loop counter[n]<n */
length->(length<<1) /* double again and return to the */
/* first loop: counter[0]>1. */

done
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