
On Concepts of Performance Parameters

for Channels

R. Ahlswede

Abstract. Among the mostly investigated parameters for noisy chan-
nels are code size, error probability in decoding, block length; rate, ca-
pacity, reliability function; delay, complexity of coding. There are sev-
eral statements about connections between these quantities. They carry
names like “coding theorem”, “converse theorem” (weak, strong, ...), “di-
rect theorem”, “capacity theorem”, “lower bound”, “upper bound”, etc.
There are analogous notions for source coding.

This note has become necessary after the author noticed that Infor-
mation Theory suffers from a lack of precision in terminology. Its purpose
is to open a discussion about this situation with the goal to gain more
clarity.

There is also some confusion concerning the scopes of analytical and
combinatorial methods in probabilistic coding theory, particularly in the
theory of identification. We present a covering (or approximation) lemma
for hypergraphs, which especially makes strong converse proofs in this
area transparent and dramatically simplifies them.

1 Channels

It is beyond our intention to consider questions of modelling, like what is a
channel in reality, which parts of a communication situation constitute a channel
etc. Shannon’s mathematical description in terms of transmission probabilities
is the basis for our discussion.

Also, in most parts of this note we speak about one–way channels, but there
will be also comments on multi–way channels and compound channels.

Abstractly, let I be any set, whose elements are called input symbols and let
Ø be any set, whose elements are called output symbols.

An (abstract) channel W : I → (Ø, E) is a set of probability distributions

W =
{
W (·|i) : i ∈ I

}
(1.1)

on (Ø, E).
So for every input symbol i and every (measurable) E ∈ E of output symbols

W (E|i) specifies the probability that a symbol in E will be received, if symbol
i has been sent.

The set I does not have to carry additional structure.
Of particular interest are channels with “time–structure”, that means, sym-

bols are words over an alphabet, say X for the inputs and Y for the outputs.

Here Xn =
n∏

t=1
Xt with Xt = X for t ∈ N (the natural numbers) are the input
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words of (block)–length n and Yn =
n∏

t=1
Yt with Yt = Y for t ∈ N are the output

words of length n.
Moreover, again for the purpose of this discussion we can assume that a trans-

mitted word of length n leads to a received word of length n. So we can define
a (constant block length) channel by the set of stochastic matrices

K = {Wn : Xn → Yn : n ∈ N}. (1.2)

In most channels with time–structure there are (compatibility) relations be-
tween these matrices.

We don’t have to enter these delicate issues. Instead, we present now three
channel concepts, which serve as key examples in this note.

DMC: The most familiar channel is the discrete memoryless channel, defined
by the transmission probabilities

Wn(yn|xn) =
n∏

t=1

W (yt|xt) (1.3)

for W : X → Y, xn = (x1, . . . , xn) ∈ Xn, yn = (y1, . . . , yn) ∈ Yn, and n ∈ N.

NDMC: The nonstationary discrete memoryless channel is given by a sequence
(Wt)∞t=1 of stochastic matrices Wt : X → Y and the rule for the transmission of
words

Wn(yn|xn) =
n∏

t=1

Wt(yt, xt). (1.4)

Other names are “inhomogeneous channel”, “non–constant” channel.

Especially, if Wt =

{
W for t even
V for t odd

one gets a “periodic” channel of period 2 or a “parallel” channel. (c.f. [32], [2])

ADMC: Suppose now that we have two channels K1 and K2 as defined in (1.2).
Then following [3] we can associate with them an averaged channel

A =
{(

1
2
Wn

1 +
1
2
Wn

2 : Xn → Yn

)
: n ∈ N

}
(1.5)

and when both constituents, K1 and K2 are DMC’s (resp. NDMC’s) we term it
ADMC (resp. ANDMC).

It is a very simple channel with “strong memory”, suitable for theoretical
investigations. They are considered in [3] in much greater generality (any number
of constituents, infinite alphabets) and have been renamed by Han and Verdu
“mixed channels” in several papers (see [29]).

We shall see below that channel parameters, which have been introduced for
the DMC, where their meaning is without ambiguities, have been used for gen-
eral time–structured channels for which sometimes their formal or operational
meaning is not clear.

NONSTATIONARITY and MEMORY, incorporated in our examples of chan-
nels, are tests for concepts measuring channel performance.
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2 Three Unquestioned Concepts: The Two Most Basic,
Code Size and Error Probability, Then Further Block
Length

Starting with the abstract channel W : I → (Ø, E) we define a code

C =
{
(ui, Di) : i ∈ I

}
with ui ∈ I, Di ∈ E

for i ∈ I and pairwise disjoint Di’s.

M = |C| is the code size (2.1)

e(C) = max
i∈I

W (Dc
i |ui) (2.2)

is the (maximal) probability of error and

e(C) =
1
M

M∑

i=1

W (Dc
i |ui) (2.3)

is the average probability of error.
One can study now the functions

M(λ) = max
C

{
|C| : e(C) ≤ λ

}
(resp. M(λ)) (2.4)

and
λ(M) = min

C

{
e(C) : |C| = M

}
(resp. λ(M)), (2.5)

that is, finiteness, growth, convexity properties etc.
It is convenient to say that C is an (M, λ)–code, if

|C| ≥ M and e(C) ≤ λ. (2.6)

Now we add time–structure, that means here, we go to the channel defined in
(1.2). The parameter n is called the block length or word length.

It is to be indicated in the previous definitions. So, if ui ∈ Xn and Di ⊂ Yn

then we speak about a code C(n) and definitions (2.4), (2.5), and (2.6) are to be
modified accordingly:

M(n, λ) = max
C(n)

{
|C(n)| : e

(
C(n)

)
≤ λ

}
(2.7)

λ(n, M) = min
C(n)

{
e
(
C(n)

)
: |C(n)| = M

}
(2.8)

C(n) is an (M, n, λ)–code, if |C(n)| ≥ M, e
(
C(n)

)
≤ λ. (2.9)

Remark 1: One could study blocklength as function of M and λ in smooth
cases, but this would be tedious for the general model K, because monotonicity
properties are lacking for M(n, λ) and λ(M, n).

We recall next Shannon’s fundamental statement about the two most basic
parameters.
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3 Stochastic Inequalities: The Role of the Information
Function

We consider a channel W : X → Y with finite alphabets. To an input distribution
P , that is a PD on X , we assign the output distribution Q = PW , that is a PD
on Y, and the joint distribution P̃ on X × Y, where P̃ (x, y) = P (x)W (y|x).

Following Shannon [38] we associate with (P, W ) or P̃ the information func-
tion (per letter) I : X × Y → R, where

I(x, y) =

{
log P̃ (x,y)

P (x)Q(y)

0 , if P̃ (x, y) = 0.
(3.1)

If X is an (input) RV with values in X and distribution PX = P and if Y is
an (output) RV with values in Y and distribution PY = Q such that the joint
distribution PXY equals P̃ , then I(X, Y ) is a RV. Its distribution function will
be denoted by F , so

F (α) = Pr
{
I(X, Y ) ≤ α

}
= P̃

({
(x, y) : I(x, y) ≤ α

})
. (3.2)

We call an (M, λ)–code
{
(ui, Di) : 1 ≤ i ≤ M

}
canonical, if P (ui) = 1

M for
i = 1, . . . , M and the decoding sets are defined by maximum likelihood decoding,
which results in a (minimal) average error probability λ.

Theorem. Shannon [38]
For a canonical (M, λ)–code and the corresponding information function there
are the relations

1
2
F

(
log

M

2

)
≤ λ ≤ F

(
log

M

2

)
. (3.3)

Remarks

2. Shannon carries in his formulas a blocklength n, but this is nowhere used in
the arguments. The bounds hold for abstract channels (without time struc-
ture). The same comment applies to his presentation of his random coding
inequality: there exists a code of length M and average probability of error

λ ≤ F (log M + θ) + e−θ, θ > 0.

3. Let us emphasize that all of Shannon’s bounds involve the information func-
tion (per letter), which is highlighted also in Fano [24], where it is called
mutual information. (One may argue which terminology should be used, but
certainly we don’t need the third “information spectrum” introduced more
recently by Han!) In contrast, Fano’s inequality is not a stochastic inequality.
It works with the average (or expected) mutual information I(X ∧ Y ) (also
written as I(X ; Y )), which is a constant. Something has been given away.
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4 Derived Parameters of Performance: Rates for
Code Sizes, Rates for Error Probabilities, Capacity,
Reliability

The concept of rate involves a renormalisation in order to put quantities into a
more convenient scale, some times per unit. Exponentially growing functions are
renormalized by using the logarithmic function. In Information Theory the prime
example is M(n, λ) (see 2.7). Generally speaking, with any function f : N → R+

(or, equivalently, any sequence
(
f(1), f(2), f(3), . . .

)
of non–negative numbers)

we can associate a rate function rate(f), where

rate
(
f(n)

)
=

1
n

log f(n). (4.1)

We also speak of the rate at n, when we mean

raten(f) � rate
(
f(n)

)
=

1
n

log f(n). (4.2)

This catches statements like “an increase of rate” or “rate changes”.
In Information Theory f is related to the channel K or more specifically f(n)

depends on Wn. For example choose f(n) = M(n, λ) for n ∈ N, λ constant.
Then rate(f) is a rate function for certain code sizes.

Now comes a second step: for many stationary systems like stationary channels
(c.f. DMC) f behaves very regular and instead of dealing with a whole rate
function one just wants to associate a number with it.

We state for the three channels introduced in Section 1 the results – not
necessarily the strongest known – relevant for our discussion.

DMC: There is a constant C = C(W ) (actually known to equal max
P

I(W |P ))

such that

(a) for every λ ∈ (0, 1) and δ > 0 there exists an n0 = n0(λ, δ) such that for all
n ≥ n0 there exist

(n, e(C−δ)n, λ)–codes,

(b) for every λ ∈ (0, 1) and δ > 0 there exists an n0 = n0(λ, δ) such that for all
n ≥ n0 there does not exist an

(n, e(C+δ)n, λ)–code.

ADMC: There is a constant C (actually known to equal max
P

min
i=1,2

I(Wi|P ) [3])

such that

(a) holds
(c) for every δ > 0 there exists a λ ∈ (0, 1) and an n0 = n0(λ, δ) such that for

all n ≥ n0 there does not exist an

(n, e(C+δ)n, λ)–code.
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NDMC: There is a sequence of numbers
(
C(n)

)∞
n=1

(which actually can be

chosen as C(n) = 1
n

n∑

t=1
max

P
I(Wt|P ) [2]) such that

(a′) for every λ ∈ (0, 1) and δ > 0 there exists an n0 = n0(λ, δ) such that for
all n ≥ n0 there exist

(n, e(C(n)−δ)n, λ)–codes.

(b′) for every λ ∈ (0, 1) and δ > 0 there exists an n0 = n0(λ, δ) such that for
all n ≥ n0 there does not exist an

(n, e(C(n)+δ)n, λ)–code.

(This is still true for infinite output alphabets, for infinite input alphabets
in general not. There the analogue of (c), say (c′) is often still true, but
also not always.)

Notice that with every sequence
(
C(n)

)∞
n=1

satisfying (a′) and (b′) or (a′) and
(c′) also every sequence

(
C(n)+ o(1)

)∞
n=1

does. In this sense the sequence is not
unique, whereas earlier the constant C is.

The pair of statements ((a), (b)) has been called by Wolfowitz Coding theorem
with strong converse and the number C has been called the strong capacity in
[2]. For the ADMC there is no C satisfying (a) and (b), so this channel does not
have a strong capacity.

The pair of statements ((a), (c)) have been called by Wolfowitz coding theorem
with weak converse and the number C has been called in [2] the weak capacity.
So the ADMC does have a weak capacity.

(For completeness we refer to two standard textbooks. On page 9 of Gallager
[27] one reads “The converse to the coding theorem is stated and proved in
varying degrees of generality in chapter 4, 7, and 8. In imprecise terms, it states
that if the entropy of a discrete source, in bits per second, is greater than C, then
independent of the encoding and decoding used in transmitting the source output
at the destination cannot be less than some positive number which depends
on the source and on C. Also, as shown in chapter 9, if R is the minimum
number of binary digits per second required to reproduce a source within a given
level of average distortion, and if R > C, then, independent of the encoding
and decoding, the source output cannot be transmitted over the channel and
reproduced within that given average level of distortion.”

In spite of its pleasant preciseness in most cases, there seems to be no definition
of the weak converse in the book by Csiszár and Körner [22].)

Now the NDMC has in general no strong and no weak capacity (see
our example in Section 7)
However, if we replace the concept of capacity by that of a capacity function(
C(n)

)∞
n=1

then the pair ((a′), (b′)) (resp. ((a′), (c′)) may be called coding
theorem with strong (resp. weak) converse and accordingly one can speak about
strong (resp. weak) capacity functions, defined modulo o(1).
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These concepts have been used or at least accepted – except for the author
– also by Wolfowitz, Kemperman, Augustin and also Dobrushin [23], Pinsker
[35]. The concept of information stability (Gelfand/Yaglom; Pinsker) defined for
sequences of numbers and not – like some authors do nowadays – for a constant
only, is in full agreement at least with the ((a), (c)) or ((a′), (c′)) concepts.
Equivalent formulations are

(a′) inf
λ>0

lim
n→∞

(
1
n log M(n, λ) − C(n)

)
≥ 0

(b′) for all λ ∈ (0, 1) lim
n→∞

(
1
n log M(n, λ) − C(n)

)
≤ 0

(c′) inf
λ>0

lim
n→∞

(
1
n log M(n, λ) − C(n)

)
≤ 0.

(For a constant C this gives (a), (b), (c).)

Remarks

4. A standard way of expressing (c) is: for rates above capacity the error prob-
ability is bounded away from 0 for all large n. ([25], called “partial converse”
on page 44.)

5. There are cases (c.f. [3]), where the uniformity in λ valid in (b) or (b′)
holds only for λ ∈ (0, λ1) with an absolute constant λ1 – a “medium”
strong converse. It also occurs in “second order” estimates of [31] with
λ1 = 1

2 .
6. There are cases where (c) (or (c′)) don’t hold for constant λ’s but for

λ = λ(n) going to 0 sufficiently fast, in one case [17] like 1
n and in

another like 1
n4 [19]. In both cases λ(n) decreases reciprocal to a polyno-

mial and it makes sense to speak of polynomial–weak converses. The soft–
converse of [12] is for λ(n) = eo(n). Any decline condition on λn could be
considered.

7. For our key example in Section 7 ((a′), (c′) holds, but not ((a), (c)). It can
be shown that for the constant C = 0 and any δ > 0 there is a λ(δ) > 0 such
that (n, e(C+δ)n)–codes have error probability exceeding λ(δ) for infinitely
many n.
By Remark 1 this is weaker than (c) and equivalent to

inf
λ>0

lim
n→∞

1

n
log M(n, λ) = C.

Now comes a seemingly small twist. Why bother about “weak capacity”, “strong
capacity” etc. and their existence – every channel should have a capacity.

Definition: C is called the (pessimistic) capacity of a channel K, if it is the
supremum over all numbers C for which (a) holds. Since C = 0 satisfies (a), the
number C = C(K) exists. Notice that there are no requirements concerning (b)
or (c) here.

To every general K a constant performance parameter has been assigned !
What does it do for us?
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First of all the name “pessimistic” refers to the fact that another number
C = C(K) can be introduced, which is at least a large as C.

Definition: C is called the (optimistic) capacity of a channel K, if it is the
supremum over all numbers C for which in (a) the condition “for all n ≥ n0(λ, δ)”
is replaced by “for infinitely many n” or equivalently

C = inf
λ>0

lim
n→∞

1
n

log M(n, λ).

Here it is measured whether for every λ R < C this “rate” is occasionally, but
infinitely often achievable.

(Let us briefly mention that “the reliability function” E(R) is commonly de-
fined through the values

E(R) = − lim
n→∞

1
n

log λ(eRn, n)

E(R) = − lim
n→∞

1
n

log λ(eRn, n)

if they coincide. Again further differentiation could be gained by considering the
sequence

En(Rn) = − 1
n

log λ(eRnn, n), n ∈ N,

for sequences of rates (Rn)∞n=1. But that shall not be pursuit here.)

In the light of old work [2] we were shocked when we learnt that these two defi-
nitions were given in [22] and that the pessimistic capacity was used throughout
that book. Since the restriction there is to the DMC–situation it makes actually
no difference. However, several of our Theorems had just been defined away.
Recently we were even more surprised when we learned that these definitions
were not new at all and have indeed been standard and deeply rooted in the
community of information theorists (the pessimistic capacity C is used in [24],
[42], [21] and the optimistic capacity C is used in [22] on page 223 and in [33]).

Fano [24] uses C, but he at the same time emphasizes throughout the book
that he deals with “constant channels”.

After quick comments about the optimistic capacity concept in the next sec-
tion we report on another surprise concerning C.

5 A Misleading Orientation at the DMC: The Optimistic
Rate Concept Seems Absurd

Apparently for the DMC the optimistic as well as the pessimistic capacities, C
and C, equal C(W ). For multi–way channels and compound channels

{
W (·|·, s) :

s ∈ S
}

the optimistic view suggests a dream world.
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A. Recently Cover explained that under this view for the broadcast channel
(W : X → Y, V : X → Z) the rate pair (RY , RZ) =

(
C(W ), C(V )

)
is in

the capacity region, which in fact equals
{
(RY , RZ) : 0 ≤ RY ≤ C(W ),

0 ≤ RZ ≤ C(W )
}
.

Just assign periodically time intervals of lengths m1, n1, m2, n2, m3, n3, . . .
to the DMC’s W and V for transmission. Just choose every interval very long
in comparison to the sum of the lengths of its predecessors. Thus again and
again every channel comes in its rate close, and finally arbitrary close, to
its capacity. The same argument applies to the MAC, TWC etc. – so in any
situation where the communicators have a choice of the channels for different
time intervals.

B. The reader may quickly convince himself that C = min
s∈S

C
(
W (·|·, s)

)
≥

max
P

min
s

I
(
W (·|·, s)|P

)
for the compound channel. For the sake of the ar-

gument choose S = {1, 2}. The sender not knowing the individual channel
transmits for channel W (·|·, 1) on the m–intervals and for channel W (·|·, 2)
on the n–intervals. The receiver can test the channel and knows in which
intervals to decode!

C. As a curious Gedankenexperiment: Is there anything one can do in this
context for the AVC?

For the semicontinuous compound channel, |S| = ∞, the ordinary weak
capacity (((a),(c)) hold) is unknown. We guess that optimism does not help
here, because it does seem to help if there are infinitely many proper cases.

The big issue in all problems here is of course delay. It ought to be incor-
porated (Space–time coding).

6 A “Paradox” for Product of Channels

Let us be given s channels (Wn
j )∞n=1, 1 ≤ j ≤ s. Here Wn

j : Xn
j → Yn

j , 1 ≤ j ≤ s.
The product of these channels (W ∗n)∞n=1 is defined by

W ∗n =
s∏

j=1

Wn
j :

s∏

j=1

Xn
j →

s∏

j=1

Yn
j .

A paper by Wyner [42] is very instructive for our discussion. We quote therefore
literally the beginning of the paper (page 423) and also its Theorem with a
sketch of the proof (page 425), because it is perhaps instructive for the reader
to see how delicate things are even for leading experts in the field.

“In this paper we shall consider the product or parallel combination of chan-
nels, and show that (1) the capacity of the product channel is the sum of the
capacities of the component channels, and (2) the “strong converse” holds for
the product channel if it holds for each of the component channels. The result is
valid for any class of channels (with or without memory, continuous or discrete)
provided that the capacities exist. “Capacity” is defined here as the supremum
of those rates for which arbitrarily high reliability is achievable with block coding
for sufficiently long delay.
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Let us remark here that there are two ways in which “channel capacity” is
commonly defined. The first definition takes the channel capacity to be the supre-
mum of the “information” processed by the channel, where “information” is the
difference of the input “uncertainty” and the “equivocation” at the output. The
second definition, which is the one we use here, takes the channel capacity to be
the maximum “error free rate”. For certain classes of channels (e.g., memoryless
channels, and finite state indecomposable channels) it has been established that
these two definitions are equivalent. In fact, this equivalence is the essence of
the Fundamental Theorem of Information Theory. For such channels, (1) above
follows directly. The second definition, however, is applicable to a broader class
of channels than the first. One very important such class are time–continuous
channels.”

Theorem

(1) Let C∗ be the capacity of the product of s channels with capacities C1, C2, . . . ,
Cs respectively. Then

C∗ =
s∑

j=1

Cj . ((6.1))

(2) If the strong converse holds for each of these s channels, then it holds for
the product channel.

The proof of (1) is divided into two parts. In the first (the “direct half”) we

will show that any R <
s∑

j=1

Cj is a permissible rate. This will establish that

C∗ �
∑s

j=1 Cj . In the second (“weak converse”) we will show that no R >
s∑

j=1

Cj

is a permissible rate, establishing that C∗ �
s∑

j=1

Cj . The proof of (2) parallels

that of the weak converse.
It will suffice to prove the theorem for the product of two channels (s = 2),

the result for arbitrary s following immediately by induction.”

Let’s first remark that C∗ ≥
s∑

j=1

Cj for the pessimistic capacities (appar-

ently used here) follows immediately from the fact that by taking products of
codes the errors at most behave additive. By proving the reverse inequality the
weak converse, statement (c) in Section 4 is tacitly assumed for the component
channels and from there on everything is okay. The point is that this assump-
tion does not appear as a hypothesis in the Theorem! Indeed our key example
of Section 7 shows that (6.1) is in general not true. The two factor channels
used in the example don’t have a weak converse (or weak capacity for that
matter).

The reader is reminded that having proved a weak converse for the number C,
the pessimistic capacity, is equivalent to having shown that the weak capacity
exists.
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7 The Pessimistic Capacity Definition: An Information
Theoretic Perpetuum Mobile

Consider the two matrices V 1 = ( 1 0
0 1 ) and V 0 =

( 1
2

1
2

1
2

1
2

)
. We know that C(V 1) =

1 and C(V 0) = 0.
Consider a NDMC K with Wt ∈ {V 0, V 1} for t ∈ N and a NDMC K∗ with

t–th matrix W ∗
t also from {V 0, V 1} but different from Wt. Further consider the

product channel (K,K∗) specified by W1W
∗
1 W2W

∗
2 – again a NDMC.

With the choice (m1, n1, m2, n2, . . . ), where for instance ni ≥ 2mi, mi+1 ≥ 2ni

we define channel K completely by requiring that Wt = V 1 in the mi–length
intervals and Wt = V 0 in the ni–length intervals. By their growth properties
we have for the pessimistic capacities C(K) = C(K∗) = 0. However, apparently
C(K,K∗) = 1.

8 A Way Out of the Dilemma: Capacity Functions

If M(n, λ) fluctuates very strongly in n and therefore also raten(M), then it does
not make much sense to describe its growth by one number C. At least one has
to be aware of the very limited value of theorems involving that number.

For the key example in Section 7 C(K) = C(K∗) = 0 and on the other
hand C(K) = C(K∗) = 1. In contrast we can choose the sequence (cn)∞n=1 =(

1
n

n∑

t=1
C(Wt)

)∞

n=1

for channel K and (c∗n)∞n=1 =
(

1
n

n∑

t=1
C(W ∗

t )
)∞

n=1

for channel

K∗, who are always between 0 and 1.
They are (even strong) capacity functions and for the product channel K×K∗

we have the capacity function (cn + c∗n)∞n=1, which equals identically 1, what it
should be. Moreover thus also in general the “perpetuum mobile of information”
disappears. We have been able to prove the

Theorem. For two channels K1 and K2

(i) with weak capacity functions their product has the sum of those functions as
weak capacity function

(ii) with strong capacity functions their product has the sum of those functions
as strong capacity function.

We hope that we have made clear that capacity functions in conjunction with
converse proofs carry in general more information – perhaps not over, but about
channels – than optimistic or pessimistic capacities. This applies even for chan-
nels without a weak capacity function because they can be made this way at
least as large C and still satisfy (a).

Our conclusion is, that

1. when speaking about capacity formulas in non standard situations one must
clearly state which definition is being used.

2. there is no “true” definition nor can definitions be justified by authority.
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3. presently weak capacity functions have most arguments in their favour, also
in comparison to strong capacity functions, because of their wide validity and
the primary interest in direct theorems. To call channels without a strong
capacity “channels without capacity” ([41]) is no more reasonable than to
name an optimistic or a pessimistic capacity “the capacity”.

4. we must try to help enlightening the structure of channels. For that purpose
for instance C can be a useful bound on the weak capacity function, because
it may be computable whereas the function isn’t.

5. Similar comments are in order for other quantities in Information Theory,
rates for data compression, reliability functions, complexity measures.

9 Some Concepts of Performance from Channels with
Phases

In this Section we explore other capacity concepts involving the phase of the
channel, which for stationary systems is not relevant, but becomes an issue
otherwise. Again the NDMC (Wt)∞t=1 serves as a genuine example. In a phase
change by m we are dealing with (Wt+m)∞t=1. “Capacity” results for the class of
channels

{
(Wt+m)∞t=1 : 0 ≤ m < ∞

}
in the spirit of a compound channel, that

is, for codes which are good simultaneously for all m are generally unknown.
The AVC can be produced as a special case and even more so the zero–error
capacity problem.

An exception is for instance the case where (Wt)∞t=1 is almost periodic in the
sense of Harald Bohr. Because these functions have a mean also

(
C(Wt)

)∞
t=1

has
a mean and it has been shown that there is a strong capacity [2].

Now we greatly simplify the situation and look only at (Wt)∞t=1 where

Wt ∈
{
( 1 0

0 1 ) ,
( 1

2
1
2

1
2

1
2

)}

and thus C(Wt) ∈ {0, 1}. Moreover, we leave error probabilities aside and look

only at 0 − 1–sequences (C1, C2, C3, . . . ) and the associated C(n) = 1
n

n∑

t=1
Ct ∈

[0, 1].
So we just play with 0 − 1–sequences (an)∞n=1 and associated Cesaro–means

An = 1
n

n∑

t=1
at and Am+1,m+n = 1

n

m+n∑

t=m+1
at.

First of all there are the familiar

A = lim
n→∞

An (the pessimistic mean) (9.1)

A = lim
n→∞

An (the optimistic mean). (9.2)

We introduce now a new concept

A
=

= lim
n→∞

inf
m≥0

Am+1,m+n (the pessimistic phase independent mean). (9.3)
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The “inf” reflects that the system could be in any phase (known to but not
controlled by the communicators). Next we assume that the communicators can
choose the phase m for an intended n and define

=

A = lim
n→∞

sup
m≥0

Am+1,m+n (super optimistic mean). (9.4)

We shall show first

Lemma

lim
n→∞

inf
m≥0

Am+1,m+n = A
=

(9.5)

lim
n→∞

sup
m≥0

Am+1,m+n =
=

A (9.6)

Proof: We prove only (9.5), the proof for (9.6) being “symmetrically” the same.
We have to show that

A
=

= lim
n→∞

inf
m≥0

Am+1,m+n ≥ lim
n→∞

inf
m≥0

Am+1,m+n. (9.7)

For every n let m(n) give minimal Am+1,m+n. The number exists because these
means take at most n+1 different values. Let n∗ be such that Am(n∗)+1,m(n∗)+n∗

is within ε of A
=

and choose a much bigger N∗ for which Am(N∗)+1,m(N∗)+N∗ is

within ε of the expression at the right side of (9.7) and N∗ ≥ 1
εn∗ holds.

Choose r such that rn∗ + 1 ≤ N∗ ≤ (r + 1)n∗ and write

N∗Am(N∗)+1,m(N∗)+N∗ =
r−1∑

s=0

m(N∗)+(s+1)n∗
∑

t=m(N∗)+sn∗+1

at +
m(N∗)+N∗

∑

t=m(N∗)+rn∗+1

at

≥ r · n∗Am(n∗)+n∗ ≥ r · n∗(A
=
− ε)

≥ (N∗ − n∗)(A
=
− ε) ≥ N∗(1 − ε)(A

=
− ε).

Finally, by changing the order of operations we get four more definitions, how-
ever, they give nothing new. In fact,

inf
m

lim
n→∞

Am+1,m+n = sup
m

lim
n→∞

Am+1,m+n = A (9.8)

inf
m

lim
n→∞

Am+1,m+n = sup
m

lim
n→∞

Am+1,m+n = A, (9.9)

because for an m0 close to an optimal phase the first m0 positions don’t affect
the asymptotic behaviour.

The list of quantities considered is not intended to be complete in any sense,
but serves our illustration.

We look now at A
=
≤ A ≤ A ≤

=

A in four examples to see what constellations
of values can occur.

We describe a 0−1–sequence (an)∞n=1 by the lengths of its alternating strings
of 1’s and 0’s: (k1, �1, k2, �2, k3, . . . )
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Example 1: kt = k, �t = � for t = 1, 2, . . . ; a periodic case:

A
=

= A = A =
=

A =
k

k + �
.

Example 2: kt = �t = t for t = 1, 2, . . . . Use
n∑

t=1
kt =

n∑

t=1
�t = n(n+1)

2 and verify

0 = A
=

<
1
2

= A = A < 1 =
=

A.

Example 3: kt =
t−1∑

s=1
ks, �t =

t−1∑

s=1
�s for t = 1, 2, . . .

0 = A
=

<
1
2

= A <
2
3

= A < 1 =
=

A.

Here all four values are different.

Example 4: kt =
t−1∑

s=1
ks, �t = t for t = 2, 3, . . . , k1 = 1

0 = A
=

< 1 = A = A =
=

A.

All four quantities say something about (An)∞n=1, they all say less than the full
record, the sequence itself (corresponding to our capacity function).

10 Some Comments on a Formula for the Pessimistic
Capacity

A noticeable observation of Verdu and Han [39] is that C can be expressed for
every channel K in terms of a stochastic limit (per letter) mutual information.

The renewed interest in such questions originated with the Theory of Identi-
fication, where converse proofs for the DMC required that output distributions
of a channel, generated by an arbitrary input distribution (randomized encoding
for a message), be “approximately” generated by input distributions of control-
lable sizes of the carriers. Already in [12] it was shown that essentially sizes of
∼ eCn would do and then in [30], [31] the bound was improved (strong converse)
by a natural random selection approach. They termed the name “resolvability”
of a channel for this size problem.

The approximation problem (like the rate distortion problem) is a “covering
problem” as opposed to a “packing problem” of channel coding, but often these
problems are very close to each other, actually ratewise identical for standard
channels like the DMC. To establish the strong second order identification capac-
ity for more general channels required in the approach of [30] that resolvability
must equal capacity and for that the strong converse for K was needed.
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This led them to study the ADMC [3], which according to Han [28] plaid a key
role in the further development. Jacobs has first shown that there are channels
with a weak converse, but without a strong converse. In his example the abstract
reasoning did not give a channel capacity formula. This is reported in [32] and
mentioned in [3], from where the following facts should be kept in mind.

1. The ADMC has no strong converse but a weak converse (see Section 4 for
precise terminology).

2. The term weak capacity was introduced.
3. The weak capacity (and also the λ–capacity were determined for the ADMC

by linking it to the familiar maxmin –formula for the compound channel in
terms of (per letter)–mutual information.

4. It was shown that lim
n→∞

1
n maxXn I(Xn ∧ Y n) does not describe the weak

capacity in general. Compare this with Wyner’s first capacity definition in
Section 6.

5. It was shown that Fano’s inequality, involving only the average mutual in-
formation I(Xn ∧ Y n), fails to give the weak converse for the ADMC.

The observation of [39] is again natural, one should use the information func-
tion of the ADMC directly rather than the max min –formula. They defined for
general K the sequence of pairs

(X,Y) = (Xn, Y n)∞n=1 (10.1)

and

I(X ∧ Y) = sup
{

α : lim
n→∞

Pr
{

(xn, yn) :
1
n

I(xn, yn) ≤ α

}
= 0

}
. (10.2)

Their general formula asserts

C = sup
X

I(X ∧ Y). (10.3)

The reader should be aware that

α.) The stochastic inequalities used for the derivation (10.3) are both (in par-
ticular also Theorem 4 of [39]) not new.

β.) Finally, there is a very important point. In order to show that a cer-
tain quantity K (for instance sup

X
I(X ∧ Y)) equals C one has to show

K ≥ C and then (by definition of C) that K + δ, any δ > 0, is not a
rate achievable for arbitrary small error probabilities or equivalently, that
inf
λ

lim
n→∞

log M(n, λ) < K + δ. For this one does not need the weak converse

(b) inf
λ

lim
n→∞

log M(n, λ) ≤ K, but only

inf
λ

lim
n→∞

log M(n, λ) ≤ K (10.4)

(see also Section 4) The statement may be termed the “weak–weak con-
verse” or the “weak–converse” or “occasional–converse” or whatever. Keep
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in mind that the fact that the weak converse does not hold for the fac-
tors led to the “information theoretic perpetuum mobile”. The remark on
page 1153 “Wolfowitz ... referred to the conventional capacity of Definition
1 (which is always defined) as weak capacity” is not only wrong, because
Wolfowitz never used the term “weak capacity”, it is – as we have explained
– very misleading. After we have commented on the drawbacks of the pes-
simistic capacity, especially also for channel NDMC, we want to say that
on the other hand the formula sup

X
I(X∧Y) and also its dual sup

X
I(X∧Y)

are helpful in characterizing or bounding quantities of interest not only in
their original context, Theory of Identification. Han has written a book [29]
in which he introduces these quantities and their analogues into all major
areas of Information Theory.

11 Pessimistic Capacity Functions

We think that the following concept suggests itself as one result of the discussion.

Definition: A sequence (Cn)∞n=1 of non–negative numbers is a capacity sequence
of K, if

inf
λ>0

lim
n→∞

(
1
n

log M(n, λ) − Cn

)
= 0.

The sequence (C, C, C, . . . ) is a capacity sequence, so by definition there are
always capacity sequences.

Replacing α by αn in (10.2) one can characterize capacity sequences in term of
sequences defined in terms of (per letter) information functions. Every channel
K has a class of capacity sequences C(K).

It can be studied. In addition to the constant function one may look for in-
stance at the class of functions of period m, say C(K, m) ⊂ C(K). More generally
complexity measures μ for the sequences may be used and accordingly one gets
say C(K, μ ≤ ρ), a space of capacity functions of μ–complexity less than ρ.

This seems to be a big machinery, but channels K with no connections between
Wn and Wn′ required in general constitute a wild class of channels. The capacity
sequence space C(K) characterizes a channel in time like a capacity region for
multi–way channels characterizes the possibilities for the communicators.

Its now not hard to show that for the product channel K1 × K2 for any
f ∈ C(K1 × K2) there exist fi ∈ C(Ki); i = 1, 2,; such that f1 + f2 ≥ f . The
component channels together can do what the product channel can do. This way,
both, the non–stationarity and perpetuum mobile problem are taken care of.

We wonder how all this looks in the light of “quantum parallelism”.
We finally quote statements by Shannon. In [37] he writes “Theorem 4, of

course, is analogous to known results for the ordinary capacity C, where the
product channel has the sum of the ordinary capacities and the sum channel has
an equivalent number of letters equal to the sum of the equivalent numbers of
letters for the individual channels. We conjecture, but have not been able to
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prove, that the equalities in Theorem 4 hold in general – not just under the
conditions given”. Both conjectures have been disproved (Haemers and Alon).

12 Identification

Ahlswede and Dueck, considering not the problem that the receiver wants to
recover a message (transmission problem), but wants to decide whether or not
the sent message is identical to an arbitrarily chosen one (identification problem),
defined an (n, N, λ1, λ2) identification (ID) code to be a collection of pairs

{(Pi,Di) : i = 1, . . . , N},

with probability distributions Pi on Xn and Di ⊂ Yn, such that the error prob-
abilities of first resp. second kind satisfy

PiW
n(Dc

i ) =
∑

xn∈Xn

Pi(xn)Wn(Dc
i |xn) ≤ λ1,

PjW
n(Di) =

∑

xn∈Xn

Pj(xn)Wn(Di|xn) ≤ λ2,

for all i, j = 1, . . . , N , i 
= j. Define N(n, λ1, λ2) to be the maximal N such that
a (n, N, λ1, λ2) ID code exists.

With these definitions one has for a DMC

Theorem. (Ahlswede, Dueck [12]) For every λ1, λ2 > 0 and δ > 0, and for
every sufficiently large n

N(n, λ1, λ2) ≥ exp(exp(n(C(W ) − δ))).

The next two sections are devoted to a (comparably short) proof of the following
strong converse

Theorem. Let λ1, λ2 > 0 such that λ1 +λ2 < 1. Then for every δ > 0 and every
sufficiently large n

N(n, λ1, λ2) ≤ exp(exp(n(C(W ) + δ))).

The strong converse to the coding theorem for identification via a DMC was
conjectured in [12] (In case of complete feedback the strong converse was estab-
lished already in [13]) and proved by Han and Verdu [31] and in a simpler way in
[30]. However, even the second proof is rather complicated. The authors empha-
size that they used and developed analytical methods and take the position that
combinatorial techniques for instance of [6], [7] find their limitations on this kind
of problem (see also Newsletter on Moscow workshop in 1994). We demonstrate
now that this is not the case (see also the remarks on page XIX of [C1]).

Here we come back to the very first idea from [12], essentially to replace the
distributions Pi by uniform distributions on “small” subsets of Xn, namely with
cardinality slightly above exp(nC(W )).
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13 A Novel Hypergraph Covering Lemma

The core of the proof is the following result about hypergraphs. Recall that a
hypergraph is a pair Γ = (V , E) with a finite set V of vertices, and a finite set E
of (hyper–) edges E ⊂ V . We call Γ e–uniform, if all its edges have cardinality
e. For an edge E ∈ E denote the characteristic function of E ⊂ V by 1E .

A result from large deviation theory will be used in the sequel:

Lemma 1. For an i.i.d. sequence Z1, . . . , ZL of random variables with values in
[0, 1] with expectation EZi = μ, and 0 < ε < 1

Pr

{
1
L

L∑

i=1

Zi > (1 + ε)μ

}

≤ exp(−LD((1 + ε)μ‖μ)),

Pr

{
1
L

L∑

i=1

Zi < (1 − ε)μ

}

≤ exp(−LD((1 − ε)μ‖μ)),

where D(α‖β) is the information divergence of the binary distributions (α, 1−α)
and (β, 1 − β). Since

D((1 + ε)μ‖μ) ≥ ε2μ

2 ln 2
for |ε| ≤ 1

2
,

it follows that

Pr

{
1
L

L∑

i=1

Zi 
∈ [(1 − ε)μ, (1 + ε)μ]

}

≤ 2 exp
(
−L· ε2μ

2 ln 2

)
.

Proof: The first two inequalities are for instance a consequence of Sanov’s The-
orem (c.f. [21], also Lemma LD in [12]). The lower bound on D is elementary
calculus.

Lemma 2. (Novel hypergraph covering, presented also in “Winter School on
Coding and Information Theory, Ebeltoft, Dänemark, Dezember 1998” and in
“Twin Conferences: 1. Search and Complexity and 2. Information Theory in
Mathematics, Balatonelle, Ungarn, July 2000”.)

Let Γ = (V , E) be an e–uniform hypergraph, and P a probability distribution
on E. Define the probability distribution Q on V by

Q(v) =
∑

E∈E
P (E)

1
e
1E(v),

and fix ε, τ > 0. Then there exist vertices V0 ⊂ V and edges E1, . . . , EL ∈ E such
that with

Q̄(v) =
1
L

L∑

i=1

1
e
1Ei(v)
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the following holds:
Q(V0) ≤ τ,

∀v ∈ V \ V0 (1 − ε)Q(v) ≤ Q̄(v) ≤ (1 + ε)Q(v),

L ≤ 1 +
|V|
e

2 ln 2 log(2|V|)
ε2τ

.

For ease of application we formulate and prove a slightly more general version
of this:

Lemma 3. Let Γ = (V , E) be a hypergraph, with a measure QE on each edge
E, such that QE(v) ≤ η for all E, v ∈ E. For a probability distribution P on E
define

Q =
∑

E∈E
P (E)QE ,

and fix ε, τ > 0. Then there exist vertices V0 ⊂ V and edges E1, . . . , EL ∈ E such
that with

Q̄ =
1
L

L∑

i=1

QEi

the following holds:
Q(V0) ≤ τ,

∀v ∈ V \ V0 (1 − ε)Q(v) ≤ Q̄(v) ≤ (1 + ε)Q(v),

L ≤ 1 + η|V|2 ln 2 log(2|V|)
ε2τ

.

Proof: Define i.i.d. random variables Y1, . . . , YL with

Pr{Yi = E} = P (E) for E ∈ E .

For v ∈ V define Xi = QYi(v). Clearly EXi = Q(v), hence it is natural to use
a large deviation estimate to prove the bounds on Q̄. Applying Lemma 1 to the
random variables η−1Xi we find

Pr

{
1
L

L∑

i=1

Xi /∈ [(1 − ε)Q(v), (1 + ε)Q(v)]

}

≤ 2 exp
(
−L · ε2Q(v)

2ηln2

)
.

Now we define

V0 =
{

v ∈ V : Q(v) <
1
|V|τ

}
,

and observe that Q(V0) ≤ τ . Hence,

Pr

{

∃v ∈ V \ V0 :
1
L

L∑

i=1

QYi(v) /∈ [(1 − ε)Q(v), (1 + ε)Q(v)]

}

≤ 2|V| exp
(
−L · ε2τ

2η|V|ln2

)
.
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The right hand side becomes less than 1, if

L > η|V|2ln2 log(2|V|)
ε2τ

,

hence there exist instances Ei of the Yi with the desired properties.
The interpretation of this result is as follows: Q is the expectation measure

of the measures QE, which are sampled by the QEi . The lemma says how close
the sampling average Q̄ can be to Q. In fact, assuming QE(E) = q ≤ 1 for all
E ∈ E , one easily sees that

‖Q − Q̄‖1 ≤ 2ε + 2τ.

14 Proof of Converse

Let {(Pi, Di) : i = 1, . . . , N} be a (n, N, λ1, λ2) ID code, λ1 + λ2 = 1 − λ < 1.
Our goal is to construct a (n, N, λ1 + λ/3, λ2 + λ/3) ID code {(P̄i, Di) : i =
1, . . . , N} with KL–distributions P̄i on Xn, i.e. all the probabilities are rational
with common denominator KL to be specified below.

Fix i for the moment. For a distribution T on X we introduce

T n
T = {xn ∈ Xn : ∀x N(x|xn) = nT (x)},

and call T empirical distribution if this is nonempty. There are less than (n+1)|X |

many empirical distributions.
For an empirical distribution T define

PT
i (xn) =

Pi(xn)
Pi(T n

T )
for xn ∈ T n

T ,

which is a probability distribution on T n
T (which we extend by 0 to all of Xn).

Note:
Pi =

∑

T emp. distr.

Pi(T n
T )PT

i .

For xn ∈ T n
T and

α =

√
9|X ||Y|

λ

we consider the set of conditional typical sequences

T n
W,α(xn) = {yn ∈ Yn : ...}.

It is well known that these sets are contained in the set of TW–typical se-
quences on Yn,

T n
TW,..α = {yn ∈ Yn : ...}.

Define now the measures Qxn by

Qxn(yn) = Wn(yn|xn) · 1T n
W,α(xn)(yn).
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By the properties of typical sequences and choice of α we have

‖Qxn − W (·|xn)‖1 ≤ λ

9
.

Now with ε = τ = λ/36 apply Lemma 3 to the hypergraph with vertex
set T n

TW,..α and edges T n
W,α(xn), xn ∈ T n

T , carrying measure W (·|xn), and the
probability distribution PT

i on the edge set: we get a L–distribution P̄T
i with

‖PT
i Q − P̄T

i Q‖1 ≤ λ

9
,

L ≤ exp(nI(T ; W ) + O(
√

n)) ≤ exp(nC(W ) + O(
√

n)),

where the constants depend explicitly on α, δ, τ . By construction we get

‖PT
i Wn − P̄T

i Wn‖1 ≤ λ

3
.

In fact by the proof of the lemma we can choose L = exp(nC(W ) + O(
√

n)),
independent of i and T .

Now chose a K–distribution R on the set of all empirical distributions such
that

∑

T emp.distr.

|Pi(T n
T ) − R(T )| ≤ λ

3
,

which is possible for
K = �3(n + 1)|X |/λ�.

Defining
P̄i =

∑

T emp.distr.

R(T )P̄T
i

we can summarize
1
2
‖PiW

n − P̄iW
n‖1 ≤ λ

3
,

where P̄i is a KL–distribution. Since for all D ⊂ Yn

|PiW
n(D) − P̄iW

n(D)| ≤ 1
2
‖PiW

n − P̄iW
n‖1

the collection {(P̄i,Di) : i = 1, . . . , N} is indeed a (n, N, λ1 + λ/3, λ2 + λ/3) ID
code.

The proof is concluded by two observations: because of λ1 + λ2 + 2λ/3 < 1
we have P̄i 
= P̄j for i 
= j. Since the P̄i however are KL–distributions, we find

N ≤ |Xn|KL = exp(n log |X | · KL) ≤ exp(exp(n(C(W ) + δ))),

the last if only n is large enough.
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Appendix: Concepts of Performance from Number Theory

We can identify the 0 − 1–sequence (at)∞t=1 with the set of numbers A ⊂ N,
where

A = {t ∈ N : at = 1}. (A.1)

Then the lower asymptotic density equals the pessimistic mean, so

d(A) = A (A.2)

and the upper asymptotic density equals the optimistic mean, so

d(A) = A. (A.3)

If both coincide they agree with the asymptotic density d(A). Another well–
known and frequently used concept is logarithmic density δ again with lower and
upper branches

δ(A) = lim
n→∞

1
log n

∑

a∈A
a≤n

1
a

(A.4)

δ(a) = lim
n→∞

1
log n

∑

a∈A
a≤n

1
a
. (A.5)

If they are equal, then the logarithmic density δ(A) = δ(A) = δ(A) exists.
Equivalently, they can be written in the form of (lower, upper, ...) Dirichlet

densities

δ(A) = lim
s→1+

∑

a∈A

1
as

(A.6)

δ(A) = lim
s→1+

∑

a∈A

1
as

(A.7)

which often can be handled analytically more easily.
It is well–known that for every A ⊂ N

d(A) ≤ δ(A) ≤ δ(A) ≤ d(A). (A.8)

Whereas the measures of the previous Section A
=

and
=

A are outside the interval
(
d(A), d(A)

)
these measures are inside.

Operationally their meaning is not so clear except that they put more weight
on the beginning of the sequence – a realistic property where time is limited.

Even though they don’t seem to have an immediate information theoretical
interpretation, they get one as bounds on the limit points of (An)∞n=1 and also
on A, A. For instance in a widely developed calculus on pessimistic capacities δ
helps in evaluations.
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The other famous concept of density in Number Theory is

σ(A) = inf
n≥1

1
n
|{a ∈ A : a ≤ n}|, (A.9)

the Schnirelmann density. It is in so far peculiar as 1 /∈ A implies already
σ(A) = 0.

As first application we consider a situation where the communicators have
restrictions on transmission lengths n and on phases m, say to be members of N

and M. Following these rules, what are the time points at which there can be
activity? One answer is the

Lemma (Schnirelmann). Let 0 ∈ M ⊂ N ∪ {0} and 0 ∈ N ⊂ N ∪ {0}, if
σ(M) + σ(B) ≥ 1, then n ∈ M + N for every n ∈ N.

But now we come closer to home.

Definition: For channel K we define for every λ ∈ (0, 1) the Schnirelmann
λ–capacity

S(λ) = σ

({
1
n

log M(n, λ) : n ∈ N

})
.

A pleasant property of σ is that σ(A) = γ implies

1
n
|{a ∈ A : a ≤ n}| ≥ γ for all n ∈ N. (A.10)

Therefore 1
n log M(n, λ) ≥ S(λ) for all n. For a DMC we have for the quantity

min
λ>0

S(λ) = log M(1, 0) ≤ Czero(W ).

S(λ) lower bounds the pessimistic λ–capacity (see [15])

C(λ) = lim
n→∞

1
n

log M(n, λ).

Remark 8: This quantity in conjunction with a weak converse has been deter-
mined (except for finitely many discontinuities in [15]) for compound channels
with the average error criterion, after it was noticed in [3] that for this error con-
cept – as opposed to the maximal error concept – there is no strong converse.

The behaviour of C(λ) is the same as for average errors for the case of maximal
errors and randomisation in the encoding. Conjunction of average error criterion
and randomisation lead to no improvement.

Problem: For which DMC’s and for which λ do we have

S(λ) = C(λ)?

For instance consider a BSC
(

1−ε ε
ε 1−ε

)
and λ > ε, then log M(1, λ) = 1. On the

other hand we know that C(λ) = 1 − h(ε). For λ large enough it is conceivable
that 1

n log M(n, λ) ≥ 1− h(ε) for all n ∈ N. For general channels K many things
can happen.

Theoretically and practically it is still meaningful to investigate S(λ) where
it is smaller than C(λ).
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