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Abstract. Write–efficient memories (WEM) as a model for storing and
updating information were introduced by R. Ahlswede and Z. Zhang [2].
We consider now three new models of WEM with localized errors and
defects, resp.

In the situation (E+, D−), where the encoder is informed but the
decoder is not informed about the previous state of the memory we
study

1. WEM codes correcting defects,
2. WEM codes detecting localized errors.

Finally, in the situation (E+, D+), where both, the encoder and the
decoder, are informed about the previous state of the memory we study.
3. WEM codes correcting localized errors.

In all three cases we determine for binary alphabet the optimal rates
under a cost constraint defined in terms of the Hamming distance.

1 Introduction

We recall first the model and a result of [2]. A write–efficient memory (WEM)
is a model for storing and updating information on a rewritable medium. There
is a cost ϕ : X ×X → R∞ assigned to changes of letters. A collection of subsets
C = {Ci : 1 ≤ i ≤ M} of Xn is an (n, M, d) WEM code, if

Ci ∩ Cj = ∅ for all i �= j (1)

and, if

dmax = max
1≤i,j≤M

max
xn∈Ci

min
yn∈Cj

n∑

k=1

C(xk, yk) ≤ d. (2)

dmax is called the minimax correction cost with respect to the given cost
function ϕ. The performance of a code C can also be measured by two parameters,
namely, the maximal cost per letter δC = n−1dmax and the rate of the size
RC = n−1 log M . The rate achievable with a maximal per letter cost δ is thus
R(δ) = supC:δC≤δ RC .

This is the most basic quantity, the storage capacity of a WEM (Xn, ϕn)∞n=1.
It has been characterized in [2] for every ϕ.

The operational significance of a WEM code is as follows. For a set M =

{1, 2, . . . , M} of possible messages and the state xn = (x1, . . . , xn) ∈ C =
M⋃
i=1

Ci

of the memory the encoder can store any message i ∈ M by any state yn in Ci.
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It is guaranteed that the cost of changing xn to yn does not exceed d, provided
that the encoder knows the original state xn. The decoder votes for message j,
if yn ∈ Cj . He does not use and therefore does not need knowledge about the
previous state xn. We are thus in a case (E+, D−).

In this model there is no error in encoding and decoding. Solely the cost
function ϕ defines it. Clearly, by the forgoing explanation the encoder can update
any message i stored by a state of Ci to any message j stored by a suitable state
in Cj .

In this note we confine ourselves to the binary Hamming case, that is, X =
{0, 1} and the encoder cannot change symbols in more than d = δn, 0 ≤ δ ≤ 1

2 ,
positions of a state. In this case the result of [2] specialized to

R(δ) = h(δ), (3)

where h(δ) = −δ log δ − (1 − δ) log(1 − δ).
WEM codes can be considered, where we take instead of Xn a subset with

restrictions on codewords, for instance on the weight of the codewords, on the
distribution of 0 and 1, etc.

Such a partition can be used in some other situations, for example WEM
codes correcting defects, WEM codes detecting localized errors, i.e. the encoder
has an additional information about errors.

In Section 2 we present our three models. In Section 3 – 5 we present capacity
theorems for them.

2 Three Models of WEM with Errors

We study three types of WEM codes with additional properties.

1. WEM code correcting t = τn defects (E+, D−)
Denote the t element subsets of [n] = {1, 2, . . . , n} by Et =

(
[n]
t

)
. Any E ∈ Et can

be the set of defect positions and any eE = (ek)k∈E can specify the defects ek

in position k. Both, E and eE , are known to the encoder, who also knows the
present state xn whereas the decoder knows nothing.

The decoder, reading yn ∈ Cj votes for message j. Necessarily the Cj ’s are

again disjoint. Moreover, for every xn ∈ C =
M⋃

j=1

Cj , E, and eE there must be

for every j a yn ∈ Cj with

yk = ek for k ∈ E (4)

and ∑

k∈[n]�E

ϕ(dk, yk) ≤ d. (5)

2. WEM code detecting t localized errors (E+, D−)
Any E ∈ Et can be the set of positions with possible errors. At any updating E is
known to the encoder. We want to be able to have a large set M = {1, 2, . . . , M}
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of messages as candidates for an updating. The code {Ci : 1 ≤ i ≤ M} has to
be designed such that the decoder decides correctly, if no error occurs in the
positions E, and otherwise he detects an error.

It will be shown that optimal rates are achieved with codes of the following
structure:

The elements in C =
M⋃
i=1

Ci have weight
⌊

n−t
2

⌋
.

For j ∈ M and xn ∈ C we require that yn = yn(xn, E, j) satisfies yk = xk for
k ∈ E, yn ∈ Cj , and D(xn, yn) ≤ d.

If for the output state v v ∈ Cj , then v is decoded into j, and if v /∈ Cj , then
necessarily |v| >

⌊
n−t
2

⌋
and an error is detected.

Actually, we shall make sure by additional assumptions on the model that
always the state sequence xn satisfies xk = 0 for k ∈ E.

This can be achieved by a.) having the same E (unknown to the decoder for
all updatings) or by b.) allowing only errors which change a 1 into a 0.

In case of a detection the memory has to be cleaned by writing a 0 everywhere.

3. WEM code correcting t localized errors (E+, D+)
Let E ∈ Et be the set of possible positions for errors in updating. It is known
to the encoder, who also knows the present state, say xn. He encodes a mes-
sage j ∈ {1, 2, . . . , M} by a yn(xn, j, E) satisfying D(xn, yn) ≤ d. For the
output state v D(yn, v) ≤ t holds. The decoder knows xn and bases his
decoding Ψ on xn and v. Therefore Ψ : Xn × Xn → M must satisfy
Ψ(xn, v) = j.

Of course by the distance constraint there is no loss in assuming that yk = xk

for k ∈ E. Since both, encoder and decoder, know xn the coding problem is
practically equivalent to the coding problem for transmission in the presence of
localized errors, except that there is now the constraint for the codewords to
have weights not exceeding d.

Remark 1. An interesting more difficult coding problem arises, if model 3 is
altered such that the encoder does not remember the previous state, that is, we
are in case (E+, D−).

3 The Capacity in Model 1

We denote by Rdef(δ, τ) the optimal rate, that is, the capacity of WEM codes
correcting t = τn defects at maximal cost d = δn. We need the quantity

R(w, τ) =

{
(1 − τ)h

(
w

1−τ

)
, if w ≤ 1

2 (1 − τ)

1 − τ, if w ≥ 1
2 (1 − τ).

Theorem 1. For any 0 ≤ τ ≤ 1 and 0 ≤ δ ≤ 1

Rdef(δ, τ) = R(δ, τ).
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We recall the Color Carrying Lemma. (see [2])

The hypergraph H=(V, E) carries M colors, if M ≤
(

�n|E|min
E∈E

|E|
)−1

min
E∈E

|E|.

Remark 2: Misprints in Lemma in [2] have been corrected.

Proof of Theorem 1
For xn ∈ Xn and xk = ek(k ∈ E) define

Sd(xn, E, eE) =
{
yn ∈ Xn : yk = ek for k ∈ E, D(yn, xn) ≤ d

}
. (6)

Clearly, M ≤ |Sd(xn, E, eE)| and |Sd(xn, E, eE)|=
d∑

i=0

(
n−t

i

) ∼ exp
{
R(δ, τ)n

}
.

By applying the previous lemma to the hypergraph with vertex set Xn and
edges defined in (6) we can achieve the rate R(δ, τ).

Remark 3: Actually, Theorem 1 is also an immediate consequence of the results
of [3].

The capacity for model 2
Here Rdetect

loc (δ, τ) denotes the optimal rate (capacity) of WEM codes detecting
t = τn, 0 ≤ τ ≤ 1

2 , localized errors with cost d = δn. The encoder knows the set
E of error positions E and the previous state of the memory.

Theorem 2. Under conditions a.) or b.)

Rdetect
loc (δ, τ) = R(δ, τ).

Remarks

4. The expression R(δ, τ) also occurs as the capacity in correcting localized
errors with constant weight δn codes (see [4]). That result also follows from
the proof of Theorem 2.

5. The work of [6] does not assume restrictions on the weight of codewords.

Proof: The inequality Rdetect
loc (δ, τ) ≤ R(δ, τ) is obvious and the opposite in-

equality follows again by the Color Carrying Lemma.

The capacity for model 3
We denote by Rloc(δ, τ) the optimal rate (capacity) of WEM codes correcting
t = τn, 0 < τ ≤ 1

2 , localized errors with cost d = δn. Recall that the encoder
knows the set of error positions E and both encoder and decoder, are informed
about the previous state of the memory.

We define now a quantity RL which describes the capacity in correcting t = τn
localized errors with binary constant weight w = wn, 0 < w ≤ 1, codes

RL(w, τ) =

⎧
⎪⎨

⎪⎩

h(w + τ) − h(τ), if 0 < w ≤ 1
2

1 − h(τ), if 1
2 − τ ≤ w ≤ 1

2

h(w − τ) − h(τ), if 1
2 + τ ≤ w < 1

(7)

(see [4]).
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Combining this result with the capacity theorem of [2] for error free WEM
codes one gets

Theorem 3
Rloc(δ, τ) = RL(δ, τ).

Remark 6. Some facts about WEM codes in the situation (E+, D+) can be
carried over to ordinary codes with constant weight.

Theorem 3 can be extended to the situation (E+, D−), when positions E of
t possible errors do not change during updating, namely, we have the capacity
R0

loc(δ, τ).

Theorem 4
RL(w, τ) ≤ R0

loc(δ, τ) ≤ RL(δ, τ), (8)

where w is defined by the equation

δ = 2w(1 − w).

However, if w + τ ≥ 1
2 , then we have equalities in (8).
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