Correlation Inequalities in Function Spaces

R. Ahlswede and V. Blinovsky

Abstract. We give a condition for a Borel measure on RI%Y which is
sufficient for the validity of an AD-type correlation inequality in the
function space!

In [1] was proved that if 1, p2, @3, p4 are bounded real non negative measurable
functions on the space with measure (R™, B, 1) which satisfy for all Z,§ € R"
the following inequality

P1(T)p2() < @32\ Dpa(@ )\ ) a.s., (1)

then

[er@ntan) [ ea@ntao) < [ @ntan) [or@mtan, @

where p(dz) is the product o—finite measure on B, (ZVg); = z; Vi, (TAG); =
x; A y;. That proof was simplified in [2] via induction on dimension n suggested
in [3], [7] ,[8]. The question we consider here is how the problem can be viewed
in the case of not arbitrary measure v on RT, when possibly T = [0,1]? The
next theorem answers this question.

Let for arbitrary real functions z(t),y(t), t € T=[0,1], (z \/ v)(t)=z(t) V y(¢)
and (z Ay)(t) = x(t) Ay(t). Let also v;(dZ), i = 1,2,3,4 be measures on the
Borel sets B(C) of the linear space C of continuous functions from RT with the
norm |||/, which are finite on the compact subsets of C. Let also p;, : = 1,2, 3,4
be four uniformly bounded nonnegative Borel real functions from R” .

Theorem 1. If the following conditions are valid

o1(Fea(9) < a(f\ 9ealf N\ o) (3)
vi(A)va(B) < vs(A\/ B)ru(A \ B), A, B € B(C), (4)

then
[er@m@) [ex@pan < [e@mi) [a@md.

Here A\VB={a\/b:a€ Ajbe B}, ANAB={aAb:a€c A bec B}.

Condition (4) is also necessary for (5). Indeed indicator functions Ia, Ig, Iy B,
I4 5 p satisfy (3) and substitution of them in (5) gives (4).
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We call a measure v which satisfies the relation
v(A)w(B) < v(A\/ B)v(A \ B), A, B € B(C)
an FKG measure.

Proof. If
/ o3(Z)v3(dz) / pa(E)a(dz) = o0

then (5) follows. Next we consider that
[ eat@matdn) [ aom(dn) <o

and propose at first that

©1(2)r1(dz) [ p2(T)r2(dT) < oo (6)
/ /

Then [ ¢;(Z)v;(dz),i = 1,2,3,4 are finite Borel measures which are regular
and hence there exists a compact set I C C, such that for given € > 0

[ etamtin) - [ i@mian)

and v(K) < oo. This compact set is by Ascoli’s Lemma the set of equicontinuous
functions {x;} which for some N > 0 satisfy the relation

<e i=1,2,3,4 (7)

Without loss of generality we will consider that K is the set of all such functions.
It is easy to see that this set is a distributive lattice. Indeed if

2:(t) — y(t)] < e, < Nyi=1,2
then
xl\/zz )] <e | zl/\xQ )| <e, 8)
xl\/xz )| < N, | xl/\ggg ) < N.

We consider the partition of the interval T" into m consecutive subintervals A; =
[tic1,t:),i=1,2,...m — 1,tg = 0, A,, = [t;m—1,1] of equal length choosing m
in such a way that if £, € A;, then

|.%'t — .Tt/| < 6/2 (9)

Without loss of generality we assume that N is integer and that § = L~! for some
natural L. Next we divide the interval [N, N] into 2N/d = 2LN consecutive
subintervals Fj = [Sj_l, Sj), _] = 1,27 .. ,2LN — 17F2LN = [SQLN_1,2LN] of
equal length §. At last we consider the partition of the compact K into the set
of cylinders (m = 2LN + 1)

7Tt07t17___7tm(7:0,7:1, .. ,Zm) = {I‘t Tx; € Fij}aij =1,2,...,2LN.
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Consider the finite set of rectangles
o N o .
K(i0,1, -y im) = Kigty ot (10,1, « -y im) = {ze:20, € Ii)5 |0 — y;|< 8,6 € Aj}CRT,

where y; is the center of the interval I';. Then from (9) it follows that

IC C UKtO’tlp_th (io,il, ey Zm)

25

Note also that
diam (K (ig,1, ... ,im)) = 24. (10)

Now we approximate in L'(R”, v;) functions ¢; on the compact K by contin-
uous functions f; on K :

[ 0@ = Fi@)lntan) < ()
Using a standard procedure we can choose f; in such a way that
Ji<@ii=12; fi > ¢;i=3,4.

Note, that functions f; are uniformly continuous on X and consequently, choosing
o0 sufficiently small, we can choose new functions &;,7 = 1,2, 3,4 on K such that
0< fi—& <e/vi(K), i =1,2, 0< & — fi < €/v;(K),i = 3,4 and every &; is
constant on every set K ¢, .+, (30,71, ., im) [ ). At last note that the family
A of sets

K(ig,iv, ... im) (K ,i; =1,2,...,2LN

is a distributive lattice under the operations \/, A on the set of indices i;:

K(io\/igyir \/ i, vim \/i0) [ K
K(io N\igyir N\t im [\im) [ 1K € A
Hence we have eight families of values
Vi(io, i1, .- im) 2 v (K (o, i1, - - - im)), i = 1,2,3,4,
€i(io, i1, ... im) 2 &(T), T € K(ig,i1s- .., im)
and

Vl(iOailw . '7im)§1(i07i17 cee 7i’m)V2(j07j17' . '7jm)§2(j03.j17 cee a.]m) < (12)
< w(io \/ dorir \/ d1s -+ im \ dm)&s(io \/ dorin \/ Gz - im \/ Gim) %
x va(io N\ dorin \dvs--vim [\ Jm)€aCio \dorir \drs- - vim [\ dm)-

Hence we are in the condition (1), (2) with counting measure u on R™*1

A) = 8z (igsir,..niiv) (A)
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and
©i(i0, 11, - -y im) = Vi(i0, 01, -+ im)Ei (G0, 15 - -y im)-
It follows that
> wvilioyit, o yim)&iio,it, o im) D v2(jo, i, -y m)€2 (o, g1, -y Gm) (13)
i 4
<> ws(ioyit, -y im)&s(ioyin, - yim) D valioyit, ..y im)a(ioyit, ..y im).
] i

Because

< 3e

S vilion - -y im)€ilios it - i) —/&(i)w(dz‘:)

]

and € > 0 is arbitrary from (13) it follows statement of the theorem in the case
when (6) is valid. Let’s consider now that (6) is not valid. Let’s for example

/ 05 (F)vs(dT) = oo, / oa(Z)a(dF) < 0o, (14)

Then we use the same consideration, but instead of relations (7), (11) we apply
relations

/ p3(7)v3(dz) > M,
K

/}Cfg(i)|1/3(d5c)>M—e, fa < M,

correspondingly. Here M, M are given constants which we will an consider ar-
bitrary large. Repeating the proof as in the case of finite integrals we obtain
that the product integrals over measures v, v4 is arbitrary large which gives the
contradiction to their finiteness. Cases other than (14) are considered similarly.
This proves the theorem.

Let’s show that (4) is valid if we consider the all equal for different ¢ measures,
generated by Wiener process. Actually it is not difficult to see that for the
validness of (4) it is necessary and sufficient the inequality (4) to be valid for
the cylinders A, B which bases are rectangles. It easily follows from the proof of
Theorem.

Hence all we should do when the random process is given by its finite di-
mensional distributions is to check whether it has continuous modification and
whether the measure on cylinders which bases are rectangles generated by the
finite dimensional distributions satisfy the inequality (4).

It is easy to see that Wiener process is the case. Indeed it is well known that in
finite dimensional case Gauss distribution generate the measure, satisfying (4) if
rij < 0,4 # j, where W = [|w; ;|| ;_; is the matrix inverse to the correlation ma-
trix R [2]. In the case of Wiener process R = |[t; \/ ;|}',_;,t; > t;,i > j and the
inverse matrix W has nonzero elements only on the diagonal and also elements
in the strip above and belong the diagonal wp pt1 = Wpt1p = (tp — tpy1) ",
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p=1,2,...,n — 1. Hence measure v , generated by the Wiener process w; sat-
isfies (4) (v; = v,i=1,2,3,4).

Also introduce one important example of the function which satisfies (3). Such
function is

i) = ot =eo [ 1 o

where b(t) is some function for which the integral has sense. This functions
satisfy (3) because the expression in the exponent is linear function of w; and

the obvious relation
a+b:a\/b+a/\b.

Next we introduce some corollaries of the theorem. Note that if ¢ is a nonde-
creasing non negative function, then functions @1 = p3 = ¢, g = w4 = 1 satisfy
inequality (3). If v; are probability distributions then from the theorem it follows
that

Ey(0) < Ex(0), (15)

where Fj; is the mathematical expectation under the probability measure v;.
Note that the theorem is valid also if instead of T' = [0, 1] one consider T' =
n. In other words the theorem is valid in n—dimensional space. To see it is
enough to make minor changes in the proof mostly concerning notations. But
in this case we have the extending of the result from [3],[7],[8] to the case
of the arbitrary measure, not only such that is discrete or have density. The
same note is valid concerning the FKG inequality [6]. Note also that the con-
dition that ¢ > 0 is ambitious because if it is negative we can consider the
truncated version of ¢ and add the positive constant and then take a lim-
it when the level of the truncation tends to infinity. If we have probability
measure which satisfies inequality (4) (all v; are equal) then for any pair of
nondecreasing (non increasing) functions /¢1,fs the following inequality
is valid

E(t143) > E(¢1)E(£3). (16)

In the case of finite dimension it is a strengthening of the FKG inequality for the
case of an arbitrary probability measure. To prove this inequality it is sufficient

to use inequality (15) with vo(dz) = b;(—(edj), v1 = v and assume that ¢5 is non
negative.
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