
Appendix: On Set Coverings in Cartesian

Product Spaces

R. Ahlswede

Abstract. Consider (X, E), where X is a finite set and E is a system of
subsets whose union equals X. For every natural number n ∈ N define the
cartesian products Xn =

∏n
1 X and En =

∏n
1 E . The following problem

is investigated: how many sets of En are needed to cover Xn? Let this
number be denoted by c(n). It is proved that for all n ∈ N

exp{C · n} ≤ c(n) ≤ exp{Cn + log n + log log |X|} + 1.

A formula for C is given. The result generalizes to the case where X and
E are not necessarily finite and also to the case of non–identical factors in
the product. As applications one obtains estimates on the minimal size
of an externally stable set in cartesian product graphs and also estimates
on the minimal number of cliques needed to cover such graphs.

1 A Covering Theorem

Let X be a non–empty set with finitely many elements and let E be a set of
non–empty subsets of X with the property

⋃
E∈E E = X . (We do not introduce

an index set for E in order to keep the notations simple). For n ∈ N, the set
of natural numbers, we define the cartesian product spaces Xn =

∏n
1 X and

En =
∏n

1 E . The elements of En can be viewed as subsets of Xn.
We say that E ′

n ⊂ En covers Xn or is a covering of Xn, if Xn =
⋃

En∈E′
n

En.
We are interested in obtaining bounds on the numbers c(n) defined by

c(n) = min
E′

n covers Xn

|E ′
n|, n ∈ N. (1)

Clearly, c(n1 + n2) ≤ c(n1) · c(n2) for n1, n2 ∈ N. Example 1 below shows
that equality does not hold in general. Denote by Q the set of all probability
distributions on the finite set E , denote by 1E(·) the indicator function of a set
E, and define K by

K = max
q∈Q

min
x∈X

∑

E∈E
1E(x)qE . (2)

Theorem 1. With C = log K−1 the following estimates hold:

a) c(n) ≥ exp{C · n}, n ∈ N.
b) c(n) ≤ exp{C · n + log n + log log |X |} + 1, n ∈ N.
c) limn→∞ 1

n log c(n) = C.
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Proof. c) is a consequence of a) and b). In order to show a) let us assume that
E∗

n+1 covers Xn+1 and that |E∗
n+1| = c(n + 1).

Write an element En+1 of E∗
n+1 as E1E2 . . . En+1 and denote by xXn+1 the set

of all those elements of Xn+1 which have x as their first component. Finally,
define a probability distribution q∗ on E by

q∗E =
∣
∣{En+1 | En+1 ∈ E∗

n+1, E
1 = E}∣∣c−1(n + 1) for E ∈ E . (3)

In order to cover the set xXn+1 we need at least c(n) elements of E∗
n+1. This

and the definition of q∗ yield

c(n + 1)
∑

E∈E
1E(x)q∗E ≥ c(n). (4)

Since 1 holds for all x ∈ X we obtain

c(n + 1) min
x∈X

∑

E∈E
1E(x)q∗E ≥ c(n) (5)

and therefore also

c(n + 1)max
q∈Q

min
x∈X

∑

E∈E
1E(x)qE ≥ c(n). (6)

Inequality a) is an immediate consequence of 1.
We prove now b). Let r be an element of Q for which the maximum in 1 is

assumed. Denote by rn the probability distribution on En, which is defined by

rn(En) =
n∏

t=1

rEt, En = E1E2 . . . En ∈ En. (7)

Let N be a number to be specified later. Select now N elements E
(1)
n , . . . , E

(N)
n

of En independently of each other according to the random experiment (En, rn).
If every xn ∈ Xn is covered by

{
E

(1)
n , . . . , E

(N)
n

}
with positive probability then

there exists a covering of Xn with N sets. Let xn = (x1, . . . , xn) be any element
of Xn. Define E(xn) by

E(xn) = {En|En ∈ En, xn ∈ En}. (8)

Clearly, E(xn) =
∏n

1{E|E ∈ E , xt ∈ E} and therefore

rn

(E(xn)
)

=
n∏

t=1

(
∑

E

1E(xt)rE

)

. (9)
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Recalling the definitions for r and K we see that
∑

E 1E(xt)rE ≥ K and that

rn

(E(xn)
) ≥ Kn. (10)

This implies that xn is not contained in anyone of the N selected sets with
a probability smaller than (1 − Kn)N and therefore Xn is not covered by those
sets with a probability smaller than |X |n(1 − Kn)N . Thus there exist coverings
of cardinality N for all N satisfying

|X |n(1 − Kn)N < 1. (11)

Since (1 − Kn)N ≤ exp{−KnN} one can choose any N satisfying

exp{−KnN} ≤ exp{− log |X |n} or (equivalently) N ≥ exp{logK−1·n+log n+log log |X |}.

The proof is complete.

Probabilistic arguments like the one used here have been applied frequently in
solving combinatorial problems, especially in the work of Erdös and Renyi. The
cleverness of the proofs lies in the choice of the probability distribution assigned
to the combinatorial structures. The present product distribution has been used
for the first time by Shannon [2] in his proof of the coding theorem of Information
Theory. For the packing problem defined in section 5 the present approach will
not yield asymptotically optimal results.

Example 1
X = {0, 1, 2, 3, 4}, E =

{{x, x + 1} | x ∈ X
}
.

The addition is understood mod 5. Clearly, c(1) = 3. We list the elements
of X2 as follows:

00 22 02 20 43 14 34 41
01 23 03 30 44 24 40 42
10 32 12 21 04
11 33 13 31

The elements in every column are contained in a set which is an element of
E2. Therefore c(2) ≤ 8 < c(1)2. Since in the present case K−1 = 5

2 and since
c(2) ≥ c(1)K−1 = 15

2 > 7 we obtain that actually c(2) = 8. Moreover, since
limn→∞ 1

n log c(n) = log 5
2 there exists infinitely many n with c(2n) < c2(n).

2 Generalizations of the Covering Theorem

Let (Xt, Et)∞t=1 be a sequence of pairs, where Xt is an arbitrary non–empty set
and Et is an arbitrary system of non–empty subsets of Xt. For every n ∈ N set
Xn =

∏n
t=1 Xt, En =

∏n
t=1 Et, and define c(n) again as the smallest cardinality

of a covering of Xn. Define Qt, t ∈ N, as the set of all probability distributions
on Et which are concentrated on a finite subset of Et. Finally, set
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Kt = sup
qt∈Qt

inf
xt∈Xt

∑

Et∈Et

1Et(xt)qt
Et and Ct = log(Kt)−1 for t ∈ N.

A. The case of identical factors
Let us assume that (Xt, Et) = (X, E) for t ∈ N. This implies that also Qt = Q,

Kt = K, and Ct = C for t ∈ N.

Corollary 1.
a) c(n) ≥ exp{C · n}, n ∈ N

b) For every δ > 0 there exists an nδ such that c(n) ≤ exp{C ·n+δn} for n ≥ nδ.
c) limn→∞ 1

n log c(n) = C.

Proof. If c(1) = ∞, then also c(n) = ∞ and a) is obviously true. b) holds in
this case, because K = 0. If c(1) < ∞, then also c(n) < ∞. Replacing “max” by
“sup” and “min” by “inf” the proof for a) of the theorem carries over verbally
to the present situation. We prove now b). Choose r∗ such that

| log K−1 − log

(

inf
x∈X

∑

E∈E
1E(x)r∗E

)−1

| <
δ

2
. (12)

Let E∗ be the finite support of r∗. We define an equivalence relation on X by

x ∼ x′ iff {E|E ∈ E∗, x ∈ E} = {E|E ∈ E∗, x′ ∈ E}. (13)

Thus we obtain at most 2|E
∗| many equivalence classes. Denote the set of equiv-

alence classes by X and let E be the subset of X obtained from E by replacing
it’s elements by their equivalence classes. Write E = {E|E ∈ E}, Xn =

∏n
1 X ,

and En =
∏n

1 E . A covering of Xn induces a covering of Xn with the same
cardinality. If follows from the theorem and from 2 that

c(n) ≤ exp
{

Cn +
δ

2
n + log n + log log 2|E

∗|
}

+ 1. (14)

This implies b). c) is again a consequence of a) and b).

B. Non–identical factors

Corollary 2. Assume that maxt |Et| ≤ a < ∞. Then for all n ∈ N:
a) c(n) ≥ exp {∑n

t=1 Ct}
b) c(n) ≤ exp {∑n

t=1 Ct + log n + log log 2a} + 1.

Proof. Introducing equivalence relations in every Xt as before in X we see that
it suffices to consider the case maxt |Xt| ≤ 2a. a) is proved as in case of identical
factors. We show now b). Since Et is finite there exists an rt for which Ct is
assumed. Replace the definition of rn given in 1 by

rn(En) =
r∏

t=1

rt(Et) for all En = E1 . . . En ∈ En. (15)
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By the argument which led to 1 we obtain now

|2a|n
(

1 −
n∏

t=1

Kt

)N

< 1 (16)

and therefore b).

The condition on the Et’s can actually be weakened to the following uniformity
condition:

For every δ > 0 there exists an mδ and rt’s with supports of cardinality
smaller then mδ such that

∣
∣log(Kt)−1 − log

(

inf
xt∈Xt

∑

Et∈Et

1Et(xt)rt
Et

)−1
∣
∣ ≤ δ. (17)

The upper bound on c(n) which one then obtains is of course only of a sharpness
as the one in b) of corollary 1.

Remark 1. One can assign weights to the elements of En and than ask for
coverings with minimal total weight. It may be of some interest to elaborate
conditions on the weight function under which the covering theorem still holds.
The weight function will of course enter the definition of K.

3 Hypergraphs: Duality

In this and later sections we consider only finite sets and products of finite sets,
even though the results obtained can easily be generalized along the lines of
section 2 to the infinite case. Thus we have the benefit of notational simplicity.

Let X =
{
x(i)|i = 1, . . . , a

}
be a non–empty finite set and let E =

(
E(j)|j =

1, . . . , b
)

be a family of subsets of X . The pair H = (X, E) is called a hypergraph
(see [3]), if

b⋃

j=1

E(j) = X and E(j) �= ∅ for j = 1, . . . , b. (18)

The x(i)’s are called vertices and the E(j)’s are called edges. A hypergraph is
called simple, if E is a set of subsets of X . For the problems studied in this paper
we can limit ourselves without loss of generality to simple hypergraphs and we
shall refer to them shortly as hypergraphs. A hypergraph is a graph (without
isolated vertices), if |E(j)| ≤ 2 for j = 1, . . . , b. Interpreting E(1), . . . , E(b) as
points e(1), . . . , e(b) and x(1), . . . , x(a) as sets X(1), . . . , X(a), where

X(j) =
{
e(i)|i ≤ a, x(j) ∈ E(i)

}
(19)

one obtains the dual hypergraph H∗ = (E∗,X ∗). A hypergraph is characterized
by it’s incidence matrix A. The incidence matrix of H∗ is the conjugate of A. Let
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Ht = (Xt, Et), t ∈ N, be hypergraphs. For n ∈ N we define cartesian product
hypergraphs Hn =

∏n
t=1 Ht by

Hn = (Xn, En). (20)

The covering theorem can be interpreted as a statement about edge coverings
of cartesian product hypergraphs. We are looking now for the dual statement.
One easily verifies that

H∗
n = (E∗

n,X ∗
n) =

n∏

t=1

(Ht)∗. (21)

This means that the dual of the product hypergraph is the product of the dual
hypergraphs. A set T ⊂ X is called a transversal (or support) in H = (X, E) if

T ∩ E �= ∅ for all E ∈ E . (22)

Denote the smallest cardinality of transversals in Hn (resp. H∗
n) by t(n) (resp.

t∗(n)). A transversal in Hn is a covering in H∗
n, and vice versa. Denoting the

smallest cardinality of coverings in H∗
n by c∗(n) we thus have

t(n) = c∗(n), t∗(n) = c(n), n ∈ N. (23)

Let now P be the set of all probability distributions on X and define K∗ by

K∗ = max
p∈P

min
E∈E

∑

x∈X

1E(x)px. (24)

K∗ plays the same role for H∗
n as K does for Hn. The covering theorem implies

Corollary 3. With C∗ = log K∗−1 the following estimates hold for n ∈ N:

a) t(n) = c(n) ≥ exp{C∗ · n}
b) t(n) ≤ exp{C∗ · n + log + log log |E|} + 1.

Of course the dual results to Corollaries 1, 2 also hold. There is generally no
simple relationship between K and K∗. By choosing E as

{{x} | x ∈ X
} ∪ {X}

we obtain c(n) = 1, t(n) = |X |n, and therefore K∗ < K in this case. K >
K∗ occurs for the dual problem. It may be interesting (and not too hard) to
characterize hypergraphs for which K∗ = K. We show now that K (resp. K∗)
can be expressed as a function of P (resp. Q).

Lemma 1.
a) K =maxq∈Q minx∈X

∑
E∈E 1E(x)qE =minp∈P maxE∈E

∑
x∈X 1E(x)px = K,

b) K∗ = maxp∈P minE∈E
∑

x∈X 1E(x)px = minq∈Q maxx∈X

∑
E∈E 1E(x)qE .
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Proof. We have to show a) only since b) follows by dualization. P and Q are
convex and compact in the supremum norm topology. The function f(p, q) =∑

x∈X

∑
E∈E 1E(x)pxqE is linear and continuous in both variables p and q.

Therefore von Neumann’s Minimax Theorem ([4]) is applicable and yields

max
q

min
p

∑

x

∑

E

1E(x)pxqE = min
p

max
q

∑

x

∑

E

1E(x)pxqE = M, say. (25)

Write K as maxq minδx0

∑
x

∑
E 1E(x)δ(x, x0)qE , where δx0 is the probability

distribution concentrated on x0 and δ(·, ·) is Kronecker’s symbol. We see that
K ≥ M and similarly that M ≥ K. For all p and q we have

max
E

∑

x

1E(x)px ≥
∑

E

qE

∑

x

1E(x)px =
∑

x

px

∑

E

1E(x)qE ≥ min
x

∑

E

1E(x)qE .

(26)

This implies K ≥ K and thus K = K. In studying infinite hypergraphs one
could make use of more general Minimax Theorems, which have been proved by
Kakutani, Wald, Nikaido, and others.

4 Applications to Graphs

Let G = (X, U) be a non–oriented graph without multiple edges. Define Γx by

Γx =
{
y|y ∈ X, (x, y) ∈ U

}
, x ∈ X. (27)

Γx is the set of vertices connected with x by an edge. The graph G is completely
described by X and Γ and we therefore also write G = (X, Γ ). Given a sequence
of graphs (Gt)∞t=1 then we define for every n ∈ N the cartesian product graphs
Gn = (Xn, Γn) =

∏n
t=1 Gt by

Xn =
n∏

t=1

Xt, Γnxn =
n∏

t=1

Γ txt (28)

for all xn = (x1, . . . , xn) ∈ Xn. (This product has also been called the cardinal
product in the literature). Two vertices xn = (x1, . . . , xn) and yn = (y1, . . . , yn)
of Gn are connected by an edge if and only if they are connected component–
wise. In the sequel we shall show that the covering theorem leads to estimates
for some fundamental graphic parameters in case of product graphs.

A. The coefficient of external stability
Given a graph G = (X, Γ ), a set S, S ⊂ X , is said to be externally stable if

Γx ∩ S �= ∅ for all x ∈ Sc (29)

or (equivalently) if ⋃

x∈S

(
Γx ∪ {x}) = X. (30)
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The coefficient of external stability s(G) of a graph G is defined by

s(G) = min
S ext. stable

|S|. (31)

Finally, denote by Q(X, Γ ) the set of all probability distributions on
{Γy|y ∈ X}.
Corollary 4. Let G = (X, Γ ) be a finite graph with all loops included, that is

x ∈ Γx for all x ∈ X. With C = log
(

maxq∈Q(X,Γ ) minx∈X

∑
y∈X 1Γy(x)qΓy

)−1

and s(n) = s (
∏n

1 G) the following estimates hold for n ∈ N:

a) s(n) ≥ exp{Cn}
b) s(n) ≤ exp{Cn + log n + log log |X |} + 1.

Proof. Since x ∈ Γx by assumption we also have that xn ∈ Γnxn =
∏n

t=1 Γxt.
According to 4 Sn ⊂ Xn is externally stable if and only if

⋃
xn∈Sn

Γnxn = Xn.
Consider the hypergraph H = (X, E), where E = {Γx|x ∈ X}, and it’s product
Hn = (Xn, En). An externally stable set Sn corresponds to a covering of Xn by
edges of Hn, and vice versa. The corollary follows therefore from the covering
theorem.

B. Clique coverings
We recall that a clique in G is simply a complete subgraph of G. A clique is
maximal if it is not properly contained in another clique.

Lemma 2. Given Gn =
∏n

1 G, where G is a graph with an edge set containing
all loops. The maximal cliques Mn in Gn are exactly those cliques which can be
written as Mn =

∏n
t=1 M t, where the M t’s are maximal cliques in G.

Proof. Products of maximal cliques are a maximal clique in the product graph.
It remains to show the converse. Define

Bt =
{
xt | ∃yn = (y1, . . . , yt, . . . , yn) ∈ Mn with yt = xt

}
; t = 1, 2, . . . , n.

The Bt’s are cliques and therefore Bn =
∏n

t=1 Bt is a clique in Gn containing
Mn. Since Mn is maximal we have that Mn = Bn and also that the Bt’s are
maximal. The system of cliques

{
M

(i)
n | i = 1, . . . , m

}
covers Gn if

⋃m
i=1 M

(i)
n =

Xn. We denote by m(n) the smallest number of cliques needed to cover Gn.
Define M as the set of all maximal cliques in G and define Q(M) as set of all
probability distributions on M.

Corollary 5. Let G be a finite graph with all loops in the edge set.
With L = log

(
maxq∈Q(M) minx∈X

∑
M∈M 1M (x)qM

)−1 the following estimates
hold for n ∈ N:

a) m(n) ≥ exp{Ln}
b) m(n) ≤ exp{Ln + log n + log log |X |} + 1.

Proof. It follows from Lemma 2 that clique coverings for Gn are simply edge
coverings of the hypergraph Hn =

∏n
1 H , where H = (X,M). The corollary is

a consequence of the covering theorem.
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Remark 2. A clique covering of Gn can be interpreted as a colouring of the
dual graph Gc

n. This graph can be written as
∏n

1 Gc, where the product is to be
understood as follows: two vertices xn = (x1, . . . , xn), yn = (y1, . . . , yn) ∈ Xn

are joined by an edge if for at least one t, 1 ≤ t ≤ n, xt and yt are joined.
Thus the corollary 5 gives estimates for minimal colorings of *–product graphs.
The result of the present section generalize of course to the case of non–identical
factor and also to the so called strong product.

5 A Packing Problem and It’s Equivalence to a Problem
by Shannon

A. The problem
Instead of asking how many edges are needed to cover the set of all vertices of
the hypergraph Hn = (Xn, En) one may ask how many non–intersecting edges
can one pack into Xn. Formally, E ′

n ⊂ En is called a packing in Hn if En∩E′
n = ∅

for all En′E′
n ∈ E ′

n. Define the maximal packing number π(n) by

π(n) = max
E′

n is packing in Hn

|E ′
n|, n ∈ N. (32)

Using the argument which led to 1 one obtains

π(n + 1) ≤ π(n)

(

min
q∈Q

max
n

∑

E∈E
1E(x)qE

)−1

. (33)

The inequality goes in the other direction and the roles of “max” and “min” are
exchanged, because we are dealing with packings rather than with coverings. We
know from Lemma 1 that minq∈Q maxx

∑
E∈E 1E(x)qE = K∗. Since obviously

π(n) ≤ t(n) inequality 5 becomes trivial. Equality does not hold in general.

Example 2
X = {0, 1, 2}, E(j) = {j, j + 1} for j = 0, 1, 2. The addition is understood

mod 3. In this case K∗ = 2
3 and therefore t(n) ≥ (

3
2

)n. However, π(n) = 1 for
all n ∈ N.

B. The dual problem. Independent sets of vertices
The packing problem for the dual hypergraph means the following for the original
hypergraph: How many vertices can we select from X such that no two of them
are contained in an edge? We are simply asking for the largest cardinality of a
strongly independent set of vertices. We recall that I ⊂ X is called a strongly
independent set if and only if

|I ∩ E| ≤ 1 for all E ∈ E . (34)

W ⊂ X is called a weakly independent set if and only if

|W ∩ E| < |E| for all E ∈ E . (35)
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One easily verifies that a strongly independent set is also weakly independent
provided that |E| ≥ 2 for all E ∈ E . (Loops are excluded.) If H = H(G)
is the hypergraph of a graph G without loops, then the two concepts are the
same. A weakly independent set for H(G) is simply an internally stable set for
G = (X, Γ ), and conversely. V ⊂ X is said to be an internally stable set of G if
V ∩ ΓV = ∅. This implies that no element of V has a loop. We would like to
call a set J ⊂ X with no 2 vertices joined by an edge a Shannon stable or briefly
S–stable set of a graph, because this concept has been used by Shannon in [1]
and because the difference between the two notions of stability seems not to have
been emphasized enough in the literature even though it is significant for product
graphs. In an S–stable set elements with loops are permitted. An internally stable
set is S–stable. The converse is not necessarily true. T ⊂ X is a transversal in
G if every edge has at least one vertex in T . The complement of an internally
stable set in G is a transversal in G, and vice versa. The same relationship holds
for weakly independent sets and transversals in hypergraphs. Let v(Gn) be the
coefficient of internal stability of Gn, that is, the largest cardinality which can
be obtained by an internally stable set in Gn and let t(Gn) be the smallest
cardinality for a transversal in Gn. We have

t(Gn) = |X |n − v(Gn), n ∈ N. (36)

Denoting by w(Gn) the largest cardinality of a weakly independent set in Hn

and writing t(Hn) = t(n) we also obtain

t(Hn) = |X |n − w(Hn), n ∈ N. (37)

Our estimates for t(Hn) (see section 3) can be translated into estimates for
w(Hn). However, those hypergraph results have no implications for t(Gn) and
v(Gn). This is due to the fact that H(Gn) �= ∏n

1 H(G) in general. Actually,
v(Gn) is not a very interesting function of n. If G = (X, U) is such that U
contains all loops then also Gn contains all loops and v(Gn) = 0 for all n ∈ N.
If there exists an element x ∈ X without a loop, then xXn−1 is internally stable
in Gn and therefore limn→∞ 1

n log v(Gn) = log |X |. This is also true in this case
for j(Gn), the largest cardinality of an S–stable set in Gn. Similarly one can
show that w(Hn) ≡ 0 if H contains all loops and limn→∞ 1

n log w(Hn) = log |X |
otherwise. In summarizing our discussion we can say that the following problems
are unsolved:

1. 1.) The transversal–problem for graphs not containing all loops in the edge
set

(
t(Gn)

)
.

2. 2.) The S–stability–problem for graphs with all loops in the edge set
(
j(Gn)

)
.

3. 3.) The strong independence–problem for hypergraphs
(
i(Hn)

)
.

4. 4.) The packing problem for hypergraphs
(
π(n)

)
.

A solution of 3.) for all hypergraphs is equivalent to a solution of 4.) for all
hypergraphs, because the problems are dual to each other. Moreover, we notice
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that 2.) is a special case of 3.). Suppose that G is a graph with all loops in the
edge set and that H(G) is the hypergraph associated with G, then an S–stable
set in Gn is a strongly independent set in H(G)n, and conversely. We show that
4.) is a special case of 2.) and therefore that all three problems are equivalent.
Let H = (X, E) be a hypergraph. Define a graph G(H) as follows:

Choose E as set of vertices and join E, E′ ∈ E by an edge if and only if
E ∩ E′ �= ∅. G(H) is a graph with all loops in the edge set and the packings of
Hn are in one to one correspondence to the S–stable sets of G(H)n.

C. Shannon’s zero error capacity
Problem 2.) is due to Shannon [1]. It is a graph theoretic formulation of the
information theoretic problem of determining the maximal number of messages
which can be transmitted over a memoryless noisy channel with error probability
zero. limn→∞ 1

n log j(Gn) was called in [1] the zero error capacity Co, say. Using
our standard argument (see 1 and 5 one can show that for G = (X, U), where
U contains all loops,

j(Gn+1) ≤ j(Gn)

(

min
p∈P

max
E∈U

∑

x∈X

1E(x)px

)−1

. (38)

This implies that

Co ≤ log

(

min
p∈P

max
E∈U

∑

x∈X

1E(x)px

)−1

. (39)

It has been shown in [6] that for bipartite graphs j(Gn) =
(
j(G)

)n for all n ∈ N

and hence that Co = log j(G) in this case. The proof uses the marriage theorem.
The simplest non–bipartite graph for which Co is unknown is the pentagon
graph. It was shown in [1] that in this case

1
2

log 5 ≤ Co ≤ log
5
2
. (40)

The lower bound is an immediate consequence of the equation j(G2) = 5. The
upper bound follows also from 5. No improvement has been made until now on
any of those bounds. We have been able to prove that

j(G3) = 10, j(G4) = 25, j(G5) = 50, and j(G6) = 125. (41)

We conjecture that

j(G2n) = 5n, j(G2n+1) = 2.5n for all n ∈ N, (42)

but so far we have no proof for n > 6. 5 would imply Co = 1
2 log 5. The result

announced in 5 and results which go beyond this (including colouring problems)
will appear elsewhere. We would like to mention that we came to the covering
problem by trying to understand the results of [5] from a purely combinatorial



Appendix: On Set Coverings in Cartesian Product Spaces 937

point of view. Those results can be understood as statements about “packings
with small overlapping and an additional weight assignment”. It seems to us that
the methods of [5] allow refinements which may be helpful for the construction
of minimal coverings. We expect that the covering theorem has applications in
Approximation Theory, in particular for problems involving ε–entropy (see [7]).

It might also be of some interest to compare our estimates with known results
(see [8]) on coverings with convex sets in higher dimensional spaces.
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