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Abstract. In this paper we propose a model of secrecy systems for
identification via channels with ALIB encipherers and find the smallest
asymptotic key rate of the ALIB encipherers needed for the requirement
of security.

1 Introduction

Attention: This is the only paper in the collection which works with the opti-
mistic capacity, which is the optimal rate achivable with arbitrary small error
probability again and again as the blocklength goes to infinity.

The criticism of this concept made in [B34] has been supplemented by a new
aspect:

in cryptology enemies strongest time in wire-taping must be taken
into consideration!

The model of identification via channels was introduced by R. Ahlswede and
G. Dueck [1] based on the following cases. The receivers of channels only are
interested in whether a specified message was sent but not in which message was
sent and the senders do not know in which message the receivers are interested.
Sometimes the sender requires that the message sent can be identified only by
legitimate receivers of the channel but not by any one else (e.g. wiretapper).
For example, a company produces N kinds of products which are labelled by
j = 1, 2, · · · , N . The company wants to sell a kind of products only to the
members of the company’s association. For other customers it even does not
want them to know what it is going to sell. In this case the company can use
a secrecy system for identification via channels with additive-like instantaneous
block (ALIB) encipherers, i.e. the sender encrypts the message (identification
code) with a private key sending it via the channel and sends the same key only
to the members of the company’s association through a secure channel. The
secrecy system with ALIB encipherers was investigated by R. Ahlswede and
G. Dueck [2], but their model needs to be adapted to satisfy the requirement
of identification via channels. In this paper we consider the model of secrecy
systems for identification via channels with ALIB encipherers and investigate the
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smallest asymptotic key rate of the ALIB encipherers needed for the requirement
of security.

In Section 2, we review the necessary background of identification via chan-
nels. Our model is described in Section 3. Our result for symmetric channels is
proved in Section 4.

2 Background

Let X ,K,Y,Z be finite sets. For simplicity, we assume that X = K = Y = Z =
GF (q)(q ≥ 2). Let W = {Wn}∞n=1 be a memoryless channel with transmission
matrix (w(z|x); x ∈ X , z ∈ Z).

Definition 1. A randomized (n, Nn, μn, λn) identification (Id) code for the chan-
nel Wn is a system {(Qi, Di); 1 ≤ i ≤ Nn}, where Qi is a probability distribution
(PD) of the random codeword Xn(i) generated by a randomized encoder ϕn(i), i.e.
Qi(xn) = Pr{Xn(i) = xn}, xn ∈ Xn, Di ⊂ Zn is a decoding set.

Denote by Zn(i) the output of Wn when the input is Xn(i) and QiW
n the PD of

Zn(i). Set μ
(i)
n = QiW

n(Dc
i ) = Pr{Zn(i) ∈ Zn − Di} and λ

(j,i)
n = QjW

n(Di) =
Pr{Zn(j) ∈ Di}(j �= i). μn = max

1≤i≤Nn

μ
(i)
n and λn = max

1≤j,i≤Nn,j �=i
λ

(j,i)
n are

called the error probability of the first and second kind for the Id code, respectively,
1
n log log Nn = rn is called the rate of the Id code.

Definition 2. Rate R is (μ, λ)–achievable if there exists a sequence of (n, Nn,
μn, λn) Id codes for the channel Wn (1 ≤ n < ∞) satisfying the following
conditions.
1) lim

n→∞μn ≤ μ, 2) lim
n→∞ λn ≤ λ, 3) lim inf

n→∞ rn ≥ R.

The (μ, λ)–Id capacity for the channel W is defined by D(μ, λ|W ) = sup(R|R is
(μ, λ)−achievable).

Theorem 1. ([1]) Let W = {Wn}∞n=1 be an arbitrary channel. If there exists a
number ε satisfying 0 ≤ ε ≤ μ and 0 ≤ ε ≤ λ, then it holds that D(μ, λ|W ) ≥
C(ε|W ), where C(ε|W ) denotes the ε–channel capacity of the channel W which
is defined as follows.

Definition 3. Rate R is ε–achievable if there exists a sequence of (n, Mn, εn)
codes for the channel Wn(1 ≤ n ≤ ∞) satisfying the following conditions.
1) lim

n→∞ εn ≤ ε, 2) lim inf
n→∞

1
n log Mn ≥ R.

The ε-channel capacity for the channel W is defined by

C(ε|W ) = sup(R|R is ε−achievable).

Theorem 1 is proved by using the following lemma.

Lemma 1. ([1]) Let M be an arbitrary finite set of size M =| M |. Choose
constants τ and κ satisfying 0 < τ ≤ 1

3 and 0 < κ < 1 and κ log( 1
τ −1) ≥ log 2+1,

where the natural logarithms are used. Define N = �eτM/Me	. Then, there exist
N subsets A1, A2, · · · , AN of M satisfying | Ai |= �τM	
(1 ≤ i ≤ N) and | Ai ∩ Aj |< κ�τM	(i �= j).
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Using Lemma 1 the ID-code for proving Theorem 1 can be constructed as follows.
Let γ > 0 be an arbitrarily small constant and set R = C(ε|W ) − γ. By De-

finition 3 R is ε–achievable as a rate of the transmission code. Therefore, there
exists a sequence of (n, Mn, εn) codes for the channel Wn(1 ≤ n < ∞) satisfying
the following conditions:

1) lim
n→∞ εn ≤ ε, 2) lim inf

n→
1
n log Mn ≥ R, where εn denotes the maximum de-

coding error probability of the code. Denote the (n, Mn, εn) code by Cn =
{c1, c2, · · · , cMn}
(ci ∈ Xn) and let Ei be the decoding region corresponding to ci(1 ≤ i ≤ Mn).
Now we apply Lemma 1 by setting M = {1, 2, · · · , Mn}, M = Mn, τ = τn =

1
(n+3) , κ = κn = 2

log(n+2) and N = Nn = �eτnMn/Mne	. Since all conditions of
Lemma 1 are satisfied, there exist Nn subsets A1, A2, · · · , ANn of M satisfying
|Aj | = �τnMn	(1 ≤ j ≤ Nn) and | Aj ∩ Ak |< κn�τnMn	(j �= k). Define the
subsets Sj (1 ≤ j ≤ Nn) of Cn by Sj =

⋃

i∈Aj

{ci} and let Qj denote the uniform

distribution over Sj . Define Dj =
⋃

i∈Aj

Ei as the decoding set corresponding to

Qj. It is shown that the constructed Id code {(Qj , Dj); 1 ≤ j ≤ Nn} can be used
to prove Theorem 1.

Theorem 1 gives the direct theorem on the Id coding problem. We need the
converse theorem also. Since the converse theorem is essentially related to the
channel resolvability problem, we can introduce the channel resolvability instead.

Let W = {Wn}∞n=1 be an arbitrary channel with input and output alphabets
X and Y respectively. Let Y = {Y n}∞n=1 be the output from the channel W
corresponding to a given input X = {Xn}∞n=1. We transform the uniform random
number UMn of size Mn into another input X̃ = {X̃n}∞n=1. That is, X̃n =
fn(UMn), fn : {1, 2, · · · , Mn} → Xn.

Denote by Ỹ = {Ỹ n}∞n=1 the output from the channel W with an input X̃ . The
problem of how we can choose the size Mn of the uniform random number UMn

and the transform fn such that the variational distance between Y = {Y n}∞n=1

and Ỹ = {Ỹ n}∞n=1 satisfies lim
n→∞ d(Y n, Ỹ n) = 0 is sometimes called the channel

resolvability problem. In this problem, the criterion of approximation can be
slightly generalized to lim

n→∞ d(Y n, Ỹ n) ≤ δ, where δ is an arbitrary constant
satisfying 0 ≤ δ < 2.

Definition 4. Rate R is δ–achievable for an input X = {Xn}∞n=1 if there exists
a sequence of transforms X̃n = fn(UMn)(1 ≤ n < ∞) satisfying

lim
n→∞ d(Y n, Ỹ n) ≤ δ and lim

n→∞
1
n

log Mn ≤ R,

where Y n and Ỹ n denote the channel outputs corresponding to Xn and X̃n,
respectively. The channel δ–resolvability for an input X is defined by

SX(δ|W ) = inf(R|R is δ–achievable for an input X).
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Theorem 2. ([3]) Let W be an arbitrary channel with time structure and X an
arbitrary input variable. Then, it holds that SX(δ|W ) ≤ I(X ; Y ) for all δ ≥ 0,
where Y denotes the channel output variable corresponding to X and I(X ; Y )
represents the sup-mutual information rate defined by

I(X ; Y ) = p − lim
n→∞

1
n log W n(Y n|Xn)

PY n (Y n)

= inf
(

α
∣
∣
∣ lim

n→∞PrXnY n

{
1
n log W n(Y n|Xn)

PY n (Y n) > α
}

= 0
)

. (1)

3 Model

In this section we propose a model of the secrecy systems for identification via
channels with ALIB encipherers. We keep the notations and assumptions given
in Section 2 for reviewing the background of identification via channels.

Let {(Qi, Di) : 1 ≤ i ≤ Nn} be the (n, Nn, μn, λn) Id code constructed as in
the proof of Theorem 1 for the channel W . Recall that an (n, R) ALIB encipherer
is a subset C ⊂ Kn with | C |< enR. Let f : X × K → Y be a function, where
f(x, ·) is bijective for each x ∈ X and f(·, k) is bijective for each k ∈ K. fn : Xn×
Kn → Yn denotes the n–fold product of f . Given a pair (f, C) we define a secrecy
system which works as follows. If the sender wants to send a message i(1 ≤ i ≤
Nn), he sends the random codeword Xn(i) generated by the randomized encoder
ϕn(i). Before he transmits Xn(i) he uses a random key generator Kn to generate
kn according to the uniform distribution on C. Then the sender encrypts Xn(i)
into the random cryptogram Y n(i) = fn(Xn(i), Kn) and sends it to the receiver
over the channel Wn. Suppose that Xn(i) and Kn are mutually independent.
The used key kn is sent to the receiver over a secure channel. Denote by Z̃n(i) the
output of the channel Wn when the input is the cryptogram Y n(i). In general,
the receiver cannot use the same key kn to recover the received codeword Zn(i)
from the received cryptogram Z̃n(i) since the channel Wn is noisy. In order
to solve this problem, we assume that f(x, k) = x + k, where + operates in
GF (q). Then we have Y n(i) = Xn(i) + Kn. Further, we need to assume that
the channel Wn is memoryless with symmetric transmission matrix, more
specifically, the output and input of the channel Wn have the following relation:
Z̃n(i) = Y n(i)+ En, where En = (E1, E2, · · · , En) is a sequence of independent
random variables with the same PD on GF (q). Combining the two assumptions,
we obtain Z̃n(i) = Xn(i) + Kn + En = Zn(i) + Kn or Zn(i) = Z̃n(i) − Kn.
Hence the receiver can get Zn(i) from Z̃n(i) by using the same key kn and
decides that the message i(1 ≤ i ≤ Nn) is sent if Zn(i) ∈ Di. Since the PD
of Zn(i) is QiW

n and QiW
n(Dc

i ) ≤ μn, QjW
n(Di) ≤ λn(j �= i), the receiver

can identify the message i with error probabilities of the first kind and second
kind not greater than μn and λn, respectively. Another customer intercepts the
channel output Z̃n(i) and attempts to identify a message j(1 ≤ j ≤ Nn) being
sent. Since the customer does not know the actual key kn being used, he has to
use Z̃n(i) and his knowledge of the system for deciding that the message j is
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sent. We need a security condition under which the customer can not decide for
any fixed message j(1 ≤ j ≤ Nn) being sent with small error probability. Such
a condition was given by R. Ahlswede and Z. Zhang [4] for investigating the
problem of identification via a wiretap channel. This condition is also suitable
for our model. The condition is stated as follows.

Security Condition. For any pair of messages (i, j)(1 ≤ i �= j ≤ Nn) and
D ⊂ Zn, it holds that Q̃iW

n(Dc) + Q̃jW
n(D) > 1− δn and lim

n→∞ δn = 0, where

Q̃i and Q̃iW
n denote the PD of Y n(i) and Z̃n(i) respectively.

From the identity Q̃iW
n(Dc) + Q̃iW

n(D) = 1 for any i(1 ≤ i ≤ Nn) and any
D ⊂ Z and the Security Condition, we obtain Q̃jW

n(D) > 1−Q̃iW
n(Dc)−δn =

Q̃iW
n(D) − δn for any pair (i, j)(1 ≤ i �= j ≤ Nn). Therefore, the Security

Condition means that Q̃iW
n and Q̃jW

n are almost the same for any pair (i, j)
with i �= j. Hence the customer can not decide on any fixed message j(1 ≤ j ≤
Nn) being sent with small error probability.

We are interested in the following problem. What is the largest rate R of the
ALIB encipherer C so that the distributions Q̃iW

n(i = 1, 2, · · · , Nn) satisfy the
Security Condition.

4 Main Result

For the model of a secrecy system described in Section 3 we obtain the following
main result.

Theorem 3. 1) Assume for the alphabets X = K = Y = Z = GF (q)(q ≥
2) and that W = {Wn}∞n=1 is a memoryless symmetric channel with the
transmission matrix (w(z|x) > 0; x ∈ X , z ∈ Z).

2) Assume that the function f(x, k) = x+k, where + operates in the finite field
GF (q).

3) Suppose that the random key Kn has uniform distribution on the ALIB en-
cipherer C ⊂ Kn and is mutually independent with each random codeword
Xn(i)(1 ≤ i ≤ Nn).

Then, the secrecy system for identification via the channel W with ALIB enci-
pherers possesses the following properties.

1) The secrecy system can transmit Nn messages i = 1, 2, · · · , Nn with

lim inf
n→∞

1
n

log log Nn ≥ log q +
∑

z∈Z
w(z|x) log w(z|x) − γ,

where γ > 0 is an arbitrarily small number and x ∈ X is fixed, the legitimate
receiver can identify the message i(1 ≤ i ≤ Nn) with arbitrarily small error
probability.
2) The smallest asymptotic key rate R of the ALIB encipherer C is R =
− ∑

z∈Z
w(z|x)log w(z|x) (x∈X is fixed) for the distributions Q̃iW

n(i=1, 2, · · · , Nn)

satisfying the Security Condition. Hence, the other customer can not judge any
fixed message j(1 ≤ j ≤ Nn) being sent from Q̃iW

n with small error probability.
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Proof. 1) By assumption 1), the channel capacity of the channel W is C(W ) =
C(0|W ) = log q +

∑

z∈Z
w(z|x) log w(z|x). Using Theorem 1 with ε = 0, we obtain

that the (μ, λ)–Id capacity of the channel W, D(μ, λ|W ) ≥ C(W ) for μ ≥ 0,
λ ≥ 0. Hence, there exists a sequence of (n, Nn, μn, λn) Id codes for the channel
Wn(1 ≤ n < ∞) satisfying the conditions: 1) lim

n→∞μn = 0; 2) lim
n→∞λn = 0; 3)

lim inf
n→∞ rn ≥ C(W ) − γ. Using the Id codes in the secrecy system, the property

1) holds.
2) By assumption 2), the random cryptogram Y n(i) = Xn(i) + Kn, where the
random key Kn has uniform distribution on an ALIB encipherer C ⊂ Kn. R.
Ahlswede and G. Dueck [2] have pointed out that Y n(i) and Kn can be regarded
as the output and input of the channel denoted by V = {V n}∞n=1. In the case
of identification, the channel V is a general channel rather than a memoryless
channel. By assumption 3), the transmission probability of the channel V n can
be defined as V n

yn|kn =
∑

xn

Qi(xn)δ(yn, xn + kn), where

δ(yn, xn + kn) =

{
1, if yn = xn + kn,

0, otherwise.

In order to prove property 2), we want to apply Theorem 2 for the general
channel V . First, we consider the input Un of the channel V n which has uniform
distribution on the ALIB encipherer C = Kn. It is evident that the PD of the
output Y n(i) corresponding to the input Un is the uniform distribution on Yn,
i.e. Q̃i(yn) = Pr{Y n(i) = yn} = q−n for any yn ∈ Y and any i(1 ≤ i ≤ Nn).
By the assumption 1), it is also evident that the PD of the output Z̃n(i) of the
channel Wn corresponding to the input Y n(i) is the uniform distribution on Zn,
i.e. Q̃iW

n(zn) = q−n for any zn ∈ Zn and any i(1 ≤ i ≤ Nn). Hence Q̃iW
n(1 =

1, 2, · · · , Nn) satisfy the Security Condition. But the key rate of C = Kn equals
log q, it can be reduced. Then, applying Theorem 2 for the input U = {Un}∞n=1

and δ = 0, we obtain SU (0|V ) ≤ I(U, Y (i)), where Y (i) = {Y n(i)}∞n=1. We
use formula (1) to compute I(U, Y (i)). We have seen that Pr{Y n(i) = yn} =
PY n(i)(yn) = q−n for any yn ∈ Yn and V n

yn|kn =
∑

xn

Qi(xn)δ(yn, xn + kn) =
∑

xn∈Si

| Si |−1 δ(yn, xn + kn) for kn ∈ Kn, where | Si |= τnMn, τn = 1
(n+3) ,

lim inf
n→∞

1
n log Mn ≥ C(W ) − γ. Then, the joint distribution of Un and Y n(i)

Pr{Un =kn, Y n(i)=yn}=
{

q−n | Si |−1, for yn∈Si + kn = {xn + kn; xn ∈ Si}
0, otherwise.

Hence,
1
n

log
V n(Y n(i)|Un)
PY n(i)(Y n(i))

=
1
n

log
|Si|−1

q−n
= log q − 1

n
log |Si|

= log q − 1
n

log Mn +
1
n

log(n + 3)
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with probability one. Therefore, by formula (1):

I(U ; Y (i)) ≤ log q − C(W ) + γ = −
∑

z∈Z
w(z|x) log w(z|x) + γ.

Since γ is an arbitrarily small number, so I(U, Y (i)) = H({w(z|x); z ∈ Z}),
where H(·) is the entropy function. Then, we obtain SU (0|V ) ≤ H({w(z|x); z ∈
Z}). By the definition 4, there exists a sequence of transforms Kn=fn(UMn)(1 ≤
n < ∞) satisfying lim

n→∞ d(Y n(i), Ỹ n(i)) = 0 and lim inf
n→∞

1
n log Mn ≤ H({w(z|x);

z ∈ Z}) + γ, where Y n(i) and Ỹ n(i) denote the outputs of channel V corre-
sponding to the inputs Un and Kn respectively.

In other words, there exists a sequence of (n, R) ALIB encipherers C with
R ≤ H({w(z|x); z ∈ Z}) + γ, such that if the random key Kn generates the key
kn according to the uniform distribution on C, then the random cryptogram
Ỹ n(i) = Xn(i) + Kn satisfies lim

n→∞ d(Y n(i), Ỹ n(i)) = 0.

In the following, in order to avoid confusion, the PDs of Y n(i) and Ỹ n(i) are
denoted by QY n(i) and Q̃i, respectively, denote Z̃n(i) the output of the channel
Wn corresponding to the input Ỹ n(i). Now, we prove that the PD of Z̃n(i),
Q̃iW

n(i = 1, 2, · · · , Nn) satisfies the Security Condition. In fact, QY n(i)W
n is

the uniform distribution on Zn and QY n(i)W
n(D)+QY n(i)W

n(Dc) = 1 for any
D ⊂ Zn. On the other hand,

d(QY n(i)W
n, Q̃iW

n) =
∑

zn∈Zn

| QY n(i)W
n(zn) − Q̃iW

n(zn) |

≤ ∑

zn∈Zn

∑

yn∈Yn

| QY n(i)(yn) − Q̃i(yn) | Wn
zn|yn

= d(QY n(i), Q̃i).

Consequently, lim
n→∞ d(QY n(i)W

n, Q̃iW
n) = 0. Evidently, for any i(1 ≤ i ≤ Nn),

| QY n(i)W
n(Dc) − Q̃iW

n(Dc) |≤ d(QY n(i)W
n, Q̃iW

n),

then,
Q̃iW

n(Dc) ≥ QY n(i)W
n(Dc) − d(QY n(i)W

n, Q̃iW
n).

Similarly, for any j(j �= i),

QjW
n(D) ≥ QY n(j)W

n(D) − d(QY n(j)W
n, Q̃jW

n).

Combine these two inequalities and set

δn = 2[d(QY n(i)W
n, Q̃iW

n) + d(QY n(j)W
n, Q̃jW

n)].

We obtain Q̃iW
n(Dc) + Q̃jW

n(D) > 1 − δn and lim
n→∞ δn = 0. Our proof is

complete.
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