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Abstract. We introduce a new aspect of the influence of the information-
theoretical methods on the statistical theory. The procedures of the prob-
ability distributions identification for K(≥ 1) random objects each having
one from the known set of M(≥ 2) distributions are studied. N-sequences
of discrete independent random variables represent results of N observa-
tions for each of K objects. On the base of such samples decisions must be
made concerning probability distributions of the objects. For N → ∞ the
exponential decrease of the test’s error probabilities is considered. The re-
liability matrices of logarithmically asymptotically optimal procedures are
investigated for some models and formulations of the identification prob-
lems. The optimal subsets of reliabilities which values may be given be-
forehand and conditions guaranteeing positiveness of all the reliabilities
are investigated.

“In statistical literature such a problem is referred to as one of classifica-
tion or discrimination, but identification seems to be more appropriate”

Radhakrishna Rao [1].

1 Problem Statement

Let Xk = (Xk,n, n ∈ [N ]), k ∈ [K], be K(≥ 1) sequences of N discrete inde-
pendent identically distributed random variables representing possible results of
N observations, respectively, for each of K randomly functioning objects.

For k ∈ [K], n ∈ [N ], Xk,n assumes values xk,n in the finite set X of cardinality
|X |. Let P(X ) be the space of all possible distributions on X . There are M(≥ 2)
probability distributions G1, . . . , GM from P(X ) in inspection, some of which
are assigned to the vectors X1, . . . ,XK . This assignment is unknown and must
be determined on the base of N–samples (results of N independent observations)
xk = (xk,1, . . . , xk,N ), where xk,n is a result of the n-th observation of the k-th
object.

When M = K and all objects are different (any two objects cannot have the
same distribution), there are K! possible decisions. When objects are indepen-
dent, there are MK possible combinations.

Bechhofer, Kiefer, and Sobel presented investigations on sequential multiple-
decision procedures in [2]. This book is concerned principally with a particular
class of problems referred to as ranking problems.
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Chapter 10 of the book by Ahlswede and Wegener [3] is devoted to statistical
identification and ranking problems.

We study models considered in [2] and [3] and variations of these models
inspired by the pioneering papers by Ahlswede and Dueck [4] and by Ahlswede
[5], applying the concept of optimality developed in [6]-[11] for the models with
K = 1.

Consider the following family of error probabilities of a test

α
(N)

m1,m2,...,mK |l1,l2,...,lK
, (m1, m2, . . . , mK) �= (l1, l2, . . . , lK), mk, lk ∈ [M ] , k ∈ [K] ,

which are the probabilities of decisions l1, l2, . . . , lK when actual indices of the
distributions of the objects were, respectively, m1, m2, . . . , mK .

The probabilities to reject all K hypotheses when they are true are the fol-
lowing

α
(N)
m1,m2,...,mK |m1,m2,...,mK

=
∑

(l1,l2,...,lK) �=(m1,m2,...,mK)

α
(N)
m1,m2,...,mK |l1,l2,...,lK

.

We study exponential decrease of the error probabilities when N → ∞ and
define (using logarithms and exponents to the base e)

lim
N→∞

− 1
N

log α
(N)
m1,m2,...,mK |l1,l2,...,lK

= Em1,m2,...,mK|l1,l2,...,lK ≥ 0. (1)

These are exponents of error probabilities which we call reliabilities (in asso-
ciation with Shannon’s reliability function [12]). We shall examine the matrix
E = {Em1,m2,...,mK |l1,l2,...,lK} and call it the reliability matrix.

Our criterion of optimality is: given M, K and values of a part of reliabilities
to obtain the best (the largest) values for others. In addition it is necessary
to describe the conditions under which all these reliabilities are positive. The
procedure that realizes such testing is identification, which following Birgé [10],
we call “logarithmically asymptotically optimal” (LAO).

Let N(x|x) be the number of repetitions of the element x ∈ X in the vector
x ∈ XN , and let

Q = {Q(x) = N(x|x)/N, x ∈ X}
is the distribution, called “the empirical distribution” of the sample x in statis-
tics, in information theory called “the type” [12], [13] and in algebraic literature
“the composition”.

Denote the space of all empirical distributions for given N by P(N)(X ) and
by T (N)

Q the set of all vectors of the type Q ∈ P(N)(X ).
Consider for k ∈ [K], m ∈ [M ], divergences

D(Qk||Gm) =
∑

x∈X
Qk(x) log

Qk(x)
Gm(x)

,

and entropies
H(Qk) = −

∑

x∈X
Qk(x) log Qk(x).
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We shall use the following relations for the probability of the vector x when
Gm is the distribution of the object:

G(N)
m (x) =

N∏

n=1

Gm(xn) = exp{−N [D(Q||Gm) + H(Q)]}.

For mk ∈ [M ], k ∈ [K], when the objects are independent and Gmk
is the

distribution of the k-th object:

P (N)
m1,m2,...,mK

(x1,x2, . . . ,xK) = exp{−N [
K∑

k=1

D(Qk||Gmk
) + H(Qk)]}. (2)

The equalities follow from the independence of N observations of K objects
and from the definitions of divergences and entropies. It should be noted that
the equality (2) is valid even when its left part is equal to 0, in that case for
one of xk the distribution Qk is not absolutely continuous relative to Gmk

and
D(Qk||Gmk

) = ∞.
Our arguments will be based on the following fact: the “maximal likelihood”

test accepts as the solution values m1, m2, . . . , mk, which maximize the proba-
bility P

(N)
m1,m2,...,mK (x1,x2, . . . ,xK), but from (2) we see that the same solution

can be obtained by minimization of the sum
K∑

k=1

[D(Qk||Gmk
) + H(Qk)], that is

the comparison with the help of divergence of the types of observed vectors with
their hypothetical distributions may be helpful.

In the paper we consider the following models.

1. K objects are different, they have different distributions among M ≥ K
possibilities. For simplicity we restrict ourselves to the case K = 2, M = 2. It is
the identification problem in formulations of the books [2] and [3].

2. K objects are independent, that is some of them may have the same distri-
butions. We consider an example for K, M = 2. It is surprising, but this model
has not been considered earlier in the literature.

3. We investigate one object, K = 1, and M possible probability distribu-
tions. The question is whether the m-th distribution occurred or not. This is the
problem of identification of distributions in the spirit of the paper [4].

4. Ranking, or ordering problem [5]. We have one vector of observations X =
(X1, X2, . . . , XN) and M hypothetical distributions. The receiver wants to know
whether the index of the true distribution of the object is in {1, 2, . . . , r} or in
{r + 1, . . . , M}.

5. r-identification of distribution [5]. Again K = 1. One wants to identify the
observed object as a member either of the subset S of [M ], or of its complement,
with r being the number of elements in S.

Section 2 of the paper presents necessary notions and results on hypothesis
testing. The models of identification for independent objects are considered in
section 3 and for different objects in section 4. Section 5 is devoted to the problem
of identification of an object distribution and section 6 to the problems of r-
identification and ranking. Some results are illustrated by numerical examples
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and graphs. Many directions of further research are indicated in the course of
the text and in the section 7.

2 Background

The study of interdependence of exponential rates of decrease, as the sample size
N goes to the infinity, of the error probabilities α

(N)
1|2 of the “first kind” and α

(N)
2|1

of the “second kind” was started by the works of Hoeffding [6], Csiszár and Longo
[7], Tusnády [8], Longo and Sgarro [9], Birgé [10], and for multiple hypotheses
by Haroutunian [11]. Similar problems for Markov dependence of experiments
were investigated by Natarajan [14], Haroutunian [15], Gutman [16] and others.
As it was remarked by Blahut in his book [17], it is unfortunately confusing that
the errors are denoted type I and type II, while the hypotheses are subscripted
0 and 1. The word “type” is also used in another sense to refer to the type of a
measurement or the type of a vector. For this reason we do not use the names
“0” and “1” for hypotheses and the name “type” for errors. Note that in [17]–[19]
an application of the methods of hypothesis testing to the proper problems of
information theory is developed.

It will be very interesting to combine investigation of described models with
the approach initiated by the paper of Ahlswede and Csiszár [20] and developed
by many authors, particularly, for the exponentially decreasing error probabili-
ties by Han and Kobayashi [21].

In [22] Berger formulated the problem of remote statistical inference. Zhang
and Berger [23] studied a model of an estimation system with compressed in-
formation. Similar problems were examined by Ahlswede and Burnashev [24]
and by Han and Amari [25]. In the paper of Ahlswede, Yang and Zhang [26]
identification in channels via compressed data was considered. Fu and Shen [19]
studied hypothesis testing for an arbitrarily varying source.

Our further considerations will be based on the results from [11] on mul-
tiple hypotheses testing, so now we expose briefly corresponding formulations
and proofs. In our terms it is the case of one object (K = 1) and M possible
distributions (hypotheses) G1, . . . , GM . A test ϕ(x) on the base of N -sample
x = (x1, . . . , xN ) determines the distribution.

We study error probabilities α
(N)
m|l for m, l ∈ [M ]. Here α

(N)
m|l is the probability

that the distribution Gl was accepted instead of true distribution Gm. For m = l

the probability to reject Gm when it is true, is denoted by α
(N)
m|m thus:

α
(N)
m|m =

∑

l:l �=m

α
(N)
m|l .

This probability is called [27] the test’s “error probability of the kind m”. The
matrix {α(N

m|l)} is sometimes called the “power of the test” [27].
In this paper we suppose that the list of possible hypotheses is complete.

Remark that, as it was noted by Rao [1], the case, when the objects may have
also some distributions different from G1, . . . , GM , is interesting too.
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Let us analyze the reliability matrix

E =

⎛
⎜⎜⎜⎜⎝

E1|1 . . . E1|l . . . E1|M
. . . . . . . . . . . . . . . . . . . . .
Em|1 . . . Em|l . . . Em|M
. . . . . . . . . . . . . . . . . . . . .

EM|1 . . . EM|l . . . EM|M

⎞
⎟⎟⎟⎟⎠

with components

Em|l = lim
N→∞

− 1
N

log α
(N)
m|l , m, l ∈ [M ] .

According to this definition and the definition of α
(N)
m|l we can derive that

Em|m = min
l:m �=l

Em|l. (3)

Really,

Em|m = lim
N→∞

− 1
N

log
∑

l:m �=l

α
(N)
m|l =

= lim
N→∞

− 1

N
log max

l:m�=l
α

(N)
m|l + lim

N→∞
− 1

N
log

⎡

⎣

⎛

⎝
∑

l:m�=l

α
(N)
m|l

⎞

⎠ / max
l:m�=l

α
(N)
m|l

⎤

⎦ = min
l:m�=l

Em|l.

The last equality is a consequence of the fact that for all m and N

1 ≤ (
∑

l:m �=l

α
(N)
m|l )/ max

l:m �=l
α

(N)
m|l ≤ M − 1.

In the case M = 2, the reliability matrix is

E =
(

E1|1 E1|2
E2|1 E2|2

)
(4)

and it follows from (3) that there are only two different values of elements,
namely

E1|1 = E1|2 and E2|1 = E2|2, (5)

so in this case the problem is to find the maximal possible value of one of them,
given the value of the other.

In the case ofM hypotheses for givenpositive andfiniteE1|1, E2|2, . . . , EM−1,M−1

let us consider the regions of distributions

Rl = {Q : D(Q||Gl) ≤ El|l}, l ∈ [M − 1] , (6)

RM = {Q : D(Q||Gl) > El|l, l ∈ [M − 1]} = P(X ) −
M−1⋃

l=1

Rl, (7)

R(N)
l = Rl

⋂
P(N), l ∈ [M ]. (8)
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Let
E∗

l|l = E∗
l|l(El|l) = El|l, l ∈ [M − 1] , (9)

E∗
m|l = E∗

m|l(El|l) = inf
Q∈Rl

D(Q||Gm), m ∈ [M ] , m �= l, l ∈ [M − 1] , (10)

E∗
m|M = E∗

m|M (E1|1, . . . , EM−1,M−1) = inf
Q∈RM

D(Q||Gm), m ∈ [M − 1] , (11)

E∗
M|M = E∗

M|M (E1|1, . . . , EM−1,M−1) = min
l∈[M−1]

E∗
M|l. (12)

If some distribution Gm is not absolutely continuous relative to Gl the reliability
E∗

m|l will be equal to the infinity, this means that corresponding α
(N)
m|l = 0 for

some large N .
The principal result of [11] is:

Theorem 1. If all the distributions Gm are different and all elements of the
matrix {D(Gl||Gm)}, l, m ∈ [M ], are positive, but finite, two statements hold:

a) when the positive numbers E1|1, E2|2, . . . , EM−1,M−1 satisfy conditions

E1|1 < min
l∈[2,M ]

D(Gl||G1),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (13)

Em|m < min[ min
l∈[m−1]

E∗
m|l(El|l), min

l∈[m+1,M ]
D(Gl||Gm)], m ∈ [2, M − 1] ,

then there exists a LAO sequence of tests, the reliability matrix of which E∗ =
{E∗

m|l} is defined in (9),(10),(11),(12) and all elements of it are positive;
b) even if one of conditions (13) is violated, then the reliability matrix of any

such test has at least one element equal to zero (that is the corresponding error
probability does not tend to zero exponentially).

The essence of the proof of Theorem 1 consists in construction of the following
optimal tests sequence. Let the decision l will be taken when x gets into the set

B(N)
l =

⋃

Q∈R(N)
l

T (N)
Q , l ∈ [M ] , N = 1, 2, . . . . (14)

The non-coincidence of the distributions Gm and the conditions (13) guarantee
that the sets from (14) are not empty, they meet conditions

B(N)
l

⋂
B(N)

m = ∅, l �= m,

and
M⋃

l=1

B(N)
l = XN ,

and so they define a sequence of tests, which proves to be LAO.
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For the simplest particular case M = 2 elements of the reliability matrix (4)
satisfy equalities (5) and for given E1|1 from (5) and (7) we obtain the value of
E∗

2|1 = E∗
2|2:

E∗
2|1(E1|1) = inf

Q:D(Q||G1)≤E1|1
D(Q||G2). (15)

Here, according to (13), we can take E1|1 from (0, D(G2‖G1)) and E∗
2|1(E1|1)

will range between D(G1||G2) and 0.

3 Identification Problem for Model with Independent
Objects

We begin with study of the second model. To illustrate possibly arising devel-
opments and essential features we consider a particular case K = 2, M = 2. It
is clear that the case with M = 1 is trivial. The reliability matrix is (see (1))

E =

⎛
⎜⎜⎝

E1,1|1,1 E1,1|1,2 E1,1|2,1 E1,1|2,2

E1,2|1,1 E1,2|1,2 E1,2|2,1 E1,2|2,2

E2,1|1,1 E2,1|1,2 E2,1|2,1 E2,1|2,2

E2,2|1,1 E2,2|1,2 E2,2|2,1 E2,2|2,2

⎞
⎟⎟⎠ .

Let us denote by α
(1)
m1|l1 , α

(2)
m2|l2 and E

(1)
m1|l1 , E

(2)
m2|l2 the error probabilities and

the reliabilities as in (4) for, respectively, the first and the second objects.

Lemma. If 0 < E
(i)
1|1 < D(G2||G1), i = 1, 2, then the following equalities hold

true:
Em1,m2|l1,l2 = E

(1)
m1|l1 + E

(2)
m2|l2 , if m1 �= l1, m2 �= l2, (16)

Em1,m2|l1,l2 = E
(i)
mi|li , if m3−i = l3−i, mi �= li, i = 1, 2, (17)

Proof. From the independence of the objects it follows that

α
(N)
m1,m2|l1,l2

= α
(N,1)
m1|l1α

(N,2)
m2|l2 , if m1 �= l1, m2 �= l2, (18)

α
(N)
m1,m2|l1,l2

= α
(N,i)
mi|li(1 − α

(N,3−i)
m3−i|l3−i

), if m3−i = l3−i, mi �= li, i = 1, 2, (19)

According to (1), from (18) we obtain (16), from (19) and the conditions of
positiveness of E

(i)
1|1 and E

(i)
2|2, i = 1, 2, (17) follows.

Theorem 2. If the distributions G1 and G2 are different, the strictly positive
elements E1,1|1,2, E1,1|2,1 of the reliability matrix E are given and bounded above:

E1,1|1,2 < D(G2||G1), and E1,1|2,1 < D(G2||G1), (20)
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then the other elements of the matrix E are defined as follows:

E2,1|2,2 = E1,1|1,2, E1,2|2,2 = E1,1|2,1,

E1,2|1,1 = E2,2|2,1 = inf
Q: D(Q||G1)≤E1,1|1,2

D(Q||G2),

E2,1|1,1 = E2,2|1,2 = inf
Q: D(Q||G1)≤E1,1|2,1

D(Q||G2), (21)

E2,2|1,1 = E1,2|1,1 + E2,1|1,1, E2,1|1,2 = E2,1|1,1 + E1,2|2,2,

E1,2|2,1 = E1,2|1,1 + E1,2|2,2, E1,1|2,2 = E1,1|1,2 + E1,1|2,1,

Em1,m2|m1,m2 = min
(l1,l2) �=(m1,m2)

Em1,m2|l1,l2 , m1, m2 = 1, 2.

If one of the inequalities (20) is violated, then at least one element of the matrix
E is equal to 0.

Proof. The last equalities in (21) follow (as (3)) from the definition of

α
(N)
m1,m2|m1,m2

=
∑

(l1,l2) �=(m1,m2)

α
(N)
m1,m2|l1,l2

, m1, m2 = 1, 2.

Let us consider the reliability matrices of each of the objects X1 and X2

E(1) =

(
E

(1)
1|1 E

(1)
1|2

E
(1)
2|1 E

(1)
2|2

)
and E(2) =

(
E

(2)
1|1 E

(2)
1|2

E
(2)
2|1 E

(2)
2|2

)
.

From (5) we know that E
(i)
1|1 = E

(i)
1|2 and E

(i)
2|1 = E

(i)
2|2, i = 1, 2. From (20)

it follows that 0 < E
(1)
1|1 < D(G2||G1), 0 < E

(2)
1|1 < D(G2||G1). Really, if

0 < E1,1|1,2 < D(G2||G1), but E
(2)
1|1 ≥ D(G2||G1), then from (19) and (1) we

arrive to
lim

N→∞
− 1

N
log(1 − α

(N,2)
1|2 ) < 0,

therefore index N0 exists, such that for subsequence of N > N0 we will have
1−α

(N,2)
1|2 > 1. But this is impossible because α

(N,2)
1|2 is the probability and must

be positive.
Using Lemma we can deduce that the reliability matrix E can be obtained

from matrices E(1) and E(2) as follows:

E =

⎛
⎜⎜⎜⎜⎝

min(E(1)
1|2 , E

(2)
1|2) E

(2)
1|2 E

(1)
1|2 E

(1)
1|2 + E

(2)
1|2

E
(2)
2|1 min(E(1)

1|2 , E
(2)
2|1) E

(1)
1|2 + E

(2)
2|1 E

(1)
1|2

E
(1)
2|1 E

(1)
2|1 + E

(2)
1|2 min(E(1)

2|1 , E
(2)
1|2) E

(2)
1|2

E
(1)
2|1 + E

(2)
2|1 E

(1)
2|1 E

(2)
2|1 min(E(1)

2|1 , E
(2)
2|1)

⎞
⎟⎟⎟⎟⎠

,
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in other words, providing, that conditions (20) are fulfilled, we find that

E1,1|1,2 = E
(2)
1|2 = E

(2)
1|1 and E1,1|2,1 = E

(1)
1|2 = E

(1)
1|1 ,

E2,1|2,2 = E1,1|1,2 = E
(2)
1|2 , E1,2|2,2 = E1,1|2,1 = E

(1)
1|2 ,

E1,2|1,1 = E2,2|2,1 = E
(2)
2|1 , E2,1|1,1 = E2,2|1,2 = E

(1)
2|1 ,

E2,2|1,1 = E
(1)
2|1 + E

(2)
2|1 , E2,1|1,2 = E

(1)
2|1 + E

(2)
1|2 , (22)

E1,2|2,1 = E
(1)
1|2 + E

(2)
2|1 , E1,1|2,2 = E

(1)
1|2 + E

(2)
1|2 ,

Em1,m2|m1,m2 = min{E(1)
m1|m1

, E
(2)
m2|m2

}, m1, m2 = 1, 2,

From Theorem 1 we know that if E
(i)
1|1 ∈ (0, D(G2||G1)), i = 1, 2, then the tests

of both objects are LAO and the elements E
(i)
2|1, i = 1, 2, can be calculated (see

(15)) by

E
(i)
2|1 = inf

Q:D(Q||G1)≤E
(i)
1|1

D(Q||G2), i = 1, 2, (23)

and if E
(i)
1|1 ≥ D(G2||G1), then E

(i)
2|1 = 0.

According to (22) and (23), we obtain, that when (20) takes place, the el-
ements of the matrix E are determined by relations (21). When one of the
inequalities (20) is violated, then from (23) and the first and the third lines of
(22) we see, that some elements in the matrix E must be equal to 0 (namely,
either E1,2|1,1, or E2,1|1,1 and others).

Now let us show that the compound test for two objects is LAO, that is
it is optimal. Suppose that for given E1,1|1,2 and E1,1|2,1 there exists a test
with matrix E

′
, such that it has at least one element exceeding the respective

element of the matrix E. Comparing elements of matrices E and E
′

different
from E1,1|1,2 and E1,1|2,1, from (22) we obtain that either E1,2|1,1 < E

′
1,2|1,1, or

E2,1|1,1 < E
′
2,1|1,1 , i.e. either E

(2)
2|1 < E

(2)′

2|1 , or E
(1)
2|1 < E

(1)′

2|1 . It is contradiction
to the fact, that LAO tests have been used for the objects X1 and X2.

When it is demanded to take the same values for the reliabilities of the first
and the second objects E

(1)
1|2 = E

(2)
1|2 = a1 and, consequently, E

(1)
2|1 = E

(2)
2|1 = a2,

then the matrix E will take the following form

E =

⎛
⎜⎜⎝

a1 a1 a1 2a1

a2 min(a1, a2) a1 + a2 a1

a2 a1 + a2 min(a1, a2) a1

2a2 a2 a2 a2

⎞
⎟⎟⎠ .
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4 Identification Problem for Models with Different
Objects

The K objects are not independent, they have different distributions, and so the
number M of the distributions is not less than K. This is the model studied in
[2]. For brevity we consider the case K = 2, M = 2. The matrix of reliabilities
will be the following:

E =
(

E1,2|1,2 E1,2|2,1

E2,1|1,2 E2,1|2,1

)
. (24)

Since the objects are strictly dependent this matrix coincides with the reliability
matrix of the first object (see (4))

E(1) =

(
E

(1)
1|1 E

(1)
1|2

E
(1)
2|1 E

(1)
2|2

)
,

because the distribution of the second object is uniquely defined by the distrib-
ution of the first one.

We can conclude that among 4 elements of the reliability matrix of two de-
pendent objects only 2 elements are distinct, the second of which is defined by
given E

(1)
1|1 = E1,2|1,2.

From symmetry it follows that the reliability matrix of the second object also
may determine the matrix (24).

5 Identification of the Probability Distribution of an
Object

Let we have one object, K = 1, and there are known M ≥ 2 possible distribu-
tions. The question is whether r-th distribution occured, or not. There are two
error probabilities for each r ∈ [M ] the probability α

(N)
m=r|l �=r to accept l different

from r, when r is in reality, and the probability α
(N)
m �=r|l=r that r is accepted,

when it is not correct.
The probability α

(N)
m=r|l �=r is already known, it coincides with the probability

α
(N)
r|r which is equal to

∑
l:l �=r

α
(N)
r|l . The corresponding reliability Em=r|l �=r is equal

to Er|r which satisfies the equality (3).
We have to determine the dependence of Em �=r|l=r upon given Em=r|l �=r =

Er|r, which can be assigned values satisfying conditions (13), this time we will
have the conditions:

0 < Er|r < min
l:l �=r

D(Gl‖Gr), r ∈ [M ].



On Logarithmically Asymptotically Optimal Testing 563

We need the probabilities of different hypotheses. Let us suppose that the
hypotheses G1, . . . , GM have, say, probabilities Pr(r), r ∈ [M ]. The only sup-
position we shall use is that Pr(r) > 0, r ∈ [M ]. We will see, that the result
formulated in the following theorem does not depend on values of Pr(r), r ∈
[M ], if they all are strictly positive.

Now we can make the following reasoning for each r ∈ [M ]:

α
(N)
m �=r|l=r =

Pr(N)(m �= r, l = r)
Pr(m �= r)

=
1∑

m:m �=r

Pr(m)

∑

m:m �=r

Pr(N)(m, r).

From here we see that for r ∈ [M ]

Em �=r|l=r = lim
N→∞

(
− 1

N
log α

(N)
m �=r|l=r

)
=

= lim
N→∞

1
N

⎛
⎝log

∑

m:m �=r

Pr(m) − log
∑

m:m �=r

α
(N)
m|rPr(m)

⎞
⎠ = min

m:m �=r
E∗

m|r. (25)

Using (25) by analogy with the formula (15) we conclude (with Rr defined as in
(6) for each r including r = M by the values of Er|r from (0, min

l:l �=r
D(Gl||Gr)))

that
Em �=r|l=r(Er|r) = min

m:m �=r
inf

Q∈Rr

D(Q‖Gm) =

= min
m:m �=r

inf
Q:D(Q‖Gr)≤Er|r

D(Q‖Gm), r ∈ [M ]. (26)

We can summarize this result in

Theorem 3. For the model with different distributions, for the given sample x
we define its type Q, and when Q ∈ R(N)

r we accept the hypothesis r. Under
condition that the probabilities of all M hypotheses are positive the reliability
of such test Em �=r|l=r for given Em=r|l �=r = Er|r is defined by (26).

For presentation of examples let us consider the set X = {0, 1} with only 2
elements. Let 5 probability distributions are given on X :

G1 = {0.1, 0.9}

G2 = {0.65, 0.35}

G3 = {0.45, 0.55}

G4 = {0.85, 0.15}

G5 = {0.23, 0.77}

On Fig. 1 the results of calculations of Em �=r|l=r as function of Em=r|l �=r are
presented.
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Em�=r|l=r

[
Er|r

]

r = 1, 2, 3, 4, 5

Er|r

Fig. 1.

The elements of the matrix of divergences of all pairs of distributions are used
for calculation of conditions (13) for this example.

{D(Gm‖Gl)}l∈[5]
m∈[5] =

⎛
⎜⎜⎜⎜⎝

0 0.956 0.422 2.018 0.082
1.278 0 0.117 0.176 0.576
0.586 0.120 0 0.618 0.169
2.237 0.146 0.499 0 1.249
0.103 0.531 0.151 1.383 0

⎞
⎟⎟⎟⎟⎠

.

In figures 2 and 3 the results of calculations of the same dependence are
presented for 4 distributions taken from previous 5.

Em�=t|l=t

[
Et|t

]

t = 1, 2, 3, 4

Et|t

Fig. 2.
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Em�=t|l=t

[
Et|t

]

t = 1, 2, 3, 4

Et|t

Fig. 3.

6 r-Identification and Ranking Problems

The model was introduced in [5] and named K-identification. Since in this paper
the letter K is already used we speak of r-identification. Given N -sample x of
measurements of the object the problem is to answer to the question: is the
distribution of the object in the part S of M possible distributions or in its
complement, here r is the number of elements of the set S.

Again we can make decision on the base of the type Q of the sample x and
suppose that before experiments all hypotheses have some positive probabilities

Pr(1), . . . , Pr(M). (27)

Using (6) – (8) with some E1,1, . . . , EM−1,M−1 meeting the conditions (13) when
Q ∈

⋃
l∈S

R(N)
l decision “l is in S” follows.

The model of ranking is the particular case of the model of r-identification
with S = {1, 2, . . . , r}. But conversely the r-identification problem without loss
of generality may be considered as the ranking problem, to this end we can
renumber the hypotheses placing the hypotheses of S in the r first places. Be-
cause these two models are mathematically equivalent we shall speak below only
of the ranking model.

It is enough to consider the cases r ≤ 	M/2
, because in the cases of larger
r we can replace S with its complement. Remark that the case r = 1 was
considered in section 5.

We study two error probabilities of a test: the probability α
(N)
m≤r|l>r to make

incorrect decision when m is not greater than r and the probability α
(N)
m>r|l≤r to

make error when m is greater than r. The corresponding reliabilities are
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E1(r) = Em≤r|l>r and E2(r) = Em>r|l≤r, 1 ≤ r ≤ 	M/2
. (28)

With supposition (27) we have

α
(N)
m≤r|l>r =

Pr(N)(m ≤ r, l > r)
Pr(m ≤ r)

=

=
1∑

m≤r

Pr(m)

∑

m≤r

∑

l>r

Pr(N)(m, l) =
1∑

m≤r

Pr(m)

∑

m≤r

∑

l>r

α
(N)
m|l Pr(m). (29)

The definition (28) of E1(r) and the equality (29) give

E1(r) = lim
N→∞

− 1
N

log α
(N)
m≤r|l>r =

= lim
N→∞

− 1
N

⎡
⎣log

∑

m≤r

∑

l>r

Pr(m)α(N)
m|l − log

∑

m≤r

Pr(m)

⎤
⎦ = min

m≤r,l>r
Em|l. (30)

Analogously, at the same time

E2(r) = lim
N→∞

− 1
N

log α
(N)
m>r|l≤r =

= lim
N→∞

− 1
N

⎡
⎣log

∑

m>r

∑

l≤r

α
(N)
m|l − log

∑

m>r

Pr(m)

⎤
⎦ = min

m>r,l≤r
Em|l. (31)

For any test the value of E1(r) must satisfy the condition (compare (3) and (30))

E1(r) ≥ min
m:m≤r

Em|m. (32)

Thus for any test meeting all inequalities from (13) for m ≤ r and inequality
(32) the reliability E2(r) may be calculated with the equality (31). For given value
of E1(r) the best E2(r) will be obtained if we use liberty in selection of the biggest
values for reliabilities Em|m, r < m ≤ M − 1, satisfying for those m-s conditions
(13). These reasonings may be illuminated by Fig.4.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1|1 E1|M

EM|1 EM|M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Er|r

E2(r)[E1(r)] =

= min
m>r,l≤r

Em|l

E1(r)= min
m≤r,l>r

Em|l

m = 1

2

.

.

.

r

r + 1

.

.

.

.

.

.

.

.

.

.

.

.

M

l = 1, 2, . . . , r, r + 1, . . . . . . . , M

Fig. 4. Calculation of E2(r) [E1(r)]
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and resumed as follows:

Theorem 4. When the probabilities of the hypotheses are positive, for given
E1(r) for m ≤ r not exceeding the expressions on the right in (13), E2(r) may
be calculated in the following way:

Em�=t|l=t

[
Et|t

]

t = 1, 2, 3

Et|t

Fig. 5.

E2(r)

E1(r)

Fig. 6.
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E2(r) [E1(r)] = max
{Em|l, m,l∈[M ]}: min

m≤r, l>r
E∗

m|l=E1(r)

[
min

m>r, l≤r
E∗

m|l

]
(33)

with E∗
m|l defined in (9),(10),(11),(12).

Remark. One can see from (33) that for r = 1 we arrive to (26) for r = 1.

Em�=t|l=t

[
Et|t

]

t = 1, 2, 3

Et|t

Fig. 7.

E2(r)

E1(r)

Fig. 8.
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In figures 5 and 7 for 2 subsets by 3 distributions taken from 5 defined for Fig.1
the results of calculation of the dependence (26) and in figures 6 and 8 the
corresponding results of the formula (33) are presented.

7 Conclusion and Extensions of Problems

The paper is a contribution to influence of the information theory methods on
statistical theory. We have shown by simple examples what questions arise in
different models of statistical identification.

Problems and results of the paper may be extended in several directions some
of which have been already noted above.

It is necessary to examine models in which measurements are described by
more general classes of random variables and processes [14]–[16], [25].

One of the directions is connected with the use of compressed data of mea-
surements [22]–[26].

One may see perspectives in application of identification approach and meth-
ods to the authentication theory [32] and steganography [33].
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