
Problems in Network Coding and Error

Correcting Codes Appended by a Draft Version
of S. Riis “Utilising Public Information in

Network Coding”

S. Riis and R. Ahlswede

1 Introduction

In most of todays information networks messages are send in packets of informa-
tion that is not modified or mixed with the content of other packets during trans-
mission. This holds on macro level (e.g. the internet, wireless communications)
as well as on micro level (e.g. communication within processors, communication
between a processor and external devises).

Today messages in wireless communication are sent in a manner where each
active communication channel carries exactly one “conversation”. This approach
can be improved considerably by a cleverly designed but sometimes rather com-
plicated channel sharing scheme (network coding). The approach is very new and
is still in its pioneering phase. Worldwide only a handful of papers in network
coding were published year 2001 or before, 8 papers in 2002, 23 papers in 2003
and over 25 papers already in the first half of 2004; (according to the database
developed by R. Koetters). The first conference on Network Coding and appli-
cations is scheduled for Trento, Italy April 2005. Research into network coding
is growing fast, and Microsoft, IBM and other companies have research teams
who are researching this new field. A few American universities (Princeton, MIT,
Caltech and Berkeley) have also established research groups in network coding.

The holy grail in network coding is to plan and organize (in an automated
fashion) network flow (that is allowed to utilise network coding) in a feasible
manner. With a few recent exceptions [5] most current research does not yet
address this difficult problem.

The main contribution of this paper is to provide new links between Network
Coding and combinatorics. In this paper we will elaborate on some remarks in [8],
[9]. We will show that the task of designing efficient strategies for information
network flow (network coding) is closely linked to designing error correcting
codes. This link is surprising since it appears even in networks where transmission
mistakes never happen! Recall that traditionally error correction, is mainly used
to reconstruct messages that have been scrambled due to unknown (random)
errors. Thus error correcting codes can be used to solve network flow problems
even in a setting where errors are assumed to be insignificant or irrelevant.

Our paper is the first paper that use error correcting codes when channels
are assumed to be error-free. The idea of linking Network Coding and Error
Correcting Codes when channels are not error-free was already presented in [4].

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 861–897, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

862 S. Riis and R. Ahlswede

In this paper Cai and Yeung obtained network generalizations of the Hamming
bound, the Gilbert-Varshamov bound, as well as the singleton bound for classical
error-correcting codes.

2 The Basic Idea and Its Link to Work by Euler

The aim of the section is to illustrate some of the basic ideas in network coding.
To illustrate the richness of these ideas we will show that solving the flow problem
for certain simple networks, mathematically is equivalent to a problem that
puzzled Euler and was first solved fully almost 200 years later! First consider
the network in figure 1.

The task is to send the message x from the upper left node, to the lower right
node labelled r : x (indicating that the node is required to receive x) as well as
to send the message y from the upper right node, to the lower left node labelled
r : y . Suppose the messages belong to a finite alphabet A = {1, 2, . . . , n}. If
the two messages are sent as in ordinary routing (as used on the world wide
web or in an ordinary wireless network) there is a dead lock along the middle
channel where message x and message y will clash. If instead we send the message
sx,y = S(x, y) ∈ A through the middle channel, it is not hard to show that the
problem is solvable if and only if the matrix (si,j)i,j∈A forms a latin square (recall
that a latin square of order n is an n×n matrix with entries 1, 2, . . . , n appearing
exactly once in each row and in each column). We can now link this observation
to work by Euler! Consider the extension of the previous flow problem in figure 2.

Now the task is to send the message x and the message y to each of the
five nodes at the bottom. To do this each of the matrices {sx,y} and {tx,y}
must, according to the previous observation, be latin squares. However, the latin
squares must also be orthogonal i.e. if we are given the value s ∈ A of the entry
sx,y and the value t ∈ A of the entry tx,y, the values of x and y must be uniquely
determined. Thus, we notice that:

Fig. 1. Fig. 2.

Proposition 1. There is a one-to-one correspondence between solutions to the
flow problem in figure 2 with alphabet A and pairs of orthogonal latin squares of
order |A|.
The problem of deciding when there exist such two orthogonal latin squares
has an interesting history. Euler knew (c.1780) that there was no orthogonal

Problems in Network Coding and Error Correcting Codes 863

Latin square of order 2 and he knew constructions when n is odd or divisible
by 4. Based on much experimentation, Euler conjectured that orthogonal Latin
squares did not exist for orders of the form 4k + 2, k = 0, 1, 2, In 1901,
Gaston Tarry proved (by exhaustive enumeration of the possible cases) that
there are no pairs of orthogonal Latin squares of order 6 - adding evidence to
Euler’s conjecture. However, in 1959, Parker, Bose and Shrikhande were able to
construct two orthogonal latin squares of order 10 and provided a construction
for the remaining even values of n that are not divisible by 4 (of course, excepting
n = 2 and n = 6). From this it follows:

Proposition 2 ((corollary to the solution to Euler’s question)). The flow
problem in figure 2 has a solution if and only if the underlying alphabet does not
have 2 or 6 elements.

The flow problem in figure 2 might be considered somewhat ‘unnatural’ however
the link to orthogonal latin squares is also valid for very natural families of
networks. The multicast problem N2,4,2 defined below has for example recently
been shown to be essentially equivalent to Eulers question [6].

3 Network Coding and Its Links to Error Correcting
Codes

The task of constructing orthogonal latin squares can be seen as a special case
of constructing error correcting codes. There is, for example, a one-to-one corre-
spondence between orthogonal latin squares of order |A| and (4, |A|2, 3) |A|-ary
error correcting codes.1

Next consider the flow problem in figure 3.

Fig. 3.

Assume each channel in this multi-cast network has the capacity to carry
one message (pr. unit time). Assume that the task is to send two messages
1 Recall that a (n, c, d) r -ary error correcting code C consists of c words of length

n over an alphabet containing r letters. The number d is the minimal hamming
distance between distinct words w, w′ ∈ C .

864 S. Riis and R. Ahlswede

x, y ∈ A from the top nodes to each of the 10 bottom nodes. It can be shown
that this flow problem has a solution over the alphabet A if and only if there
exist an (5, |A|2, 4) |A|-ary error correcting code. It has been shown that there
exit such codes if and only if |A| /∈ {2, 3, 6}. The flow-problem in figure 3 can
be generalized. Consider a network Nk,r,s such that it consists of k messages
x1, x2, . . . , xk ∈ A, that are transmitted from a source node. The source node is
connected to a layer containing r nodes, and for each s element subset of r (there
are

(
r
s

)
= r!

(r−s)!r! such) we have a terminal node. The task is to insure that each
message x1, x2, . . . , xk ∈ A can be reconstructed in each of the terminal nodes.
Notice the previous network flow problem is N2,5,2 . In general it can be shown
[9], [8]:

Proposition 3. The flow problem Nk,r,s has a solution if and only if there exists
an (r, |A|k, r − s + 1) |A|-ary error correcting code.2

Essentially, there is a one-to-one correspondence between solutions to the net-
work flow problem N2,4,2 and (4, 4, 3) binary error correcting codes, i.e. orthog-
onal latin squares. Thus despite of the fact that the flow problem in figure 2 has
a topology very different from the N2,4,2 problem, the two problems essentially
have the same solutions!

Next, consider the famous Nordstrom-Robinson code: This code is now known
to be the unique binary code of length 16, minimal distance 6 containing 256words.
The point about this code is that it is non-linear, and is the only (16, 256, 6) bina-
ry code. Again we can apply the proposition to show that the multi-cast problem
N8,16,11 has no linear solution over the field F2, while it has a non-linear solution.
Are phenomena like this just rare isolated incidences or much more widespread?

4 The Classical Theory for Error Correcting Needs
Extensions

The previous sections indicate how it is possible to recast and translate network
flow problems into the theory of error correcting codes (thus, using standard
results in coding theory, it is possible to translate network flow problems into
questions about finite geometries). Another approach is outlined in [7].

In [9], [8] the first example with only non-linear solutions was constructed.
Unlike other examples this construction seems to go beyond standard results in
error correcting codes. The construction is based on the network in figure 4. The
network N in figure 4 has the curious property (like N8,16,11) that the maximal
through-put can only be achieved if non-linear flows are allowed (i.e non-linear
boolean functions are needed in any solution). Furthermore it turns out that any
code optimizing the vertical flows has to be a “minimal distance code” [9], [8].
This phenomena is interesting since a minimal distance code from a traditional
perspective is very bad (as it essentially has the worst possible error correcting

2 The fact that known bounds on maximum distance separable codes can be applied
to bound the required alphabet-size was shown in [10].

Problems in Network Coding and Error Correcting Codes 865

Fig. 4.

capability). This example is one of a collection of examples that suggests that
the classical theory of error correcting codes needs to be extended and developed
in order to serve as a basis for network coding. See also [3], [1], [2] more results
pointing in this direction.

References

1. R. Ahlswede, Remarks on Shannon’s secrecy systems, Probl. of Control and Inf.
Theory, 11, 4, 301308, 1982.

2. R. Ahlswede and G. Dueck, Bad codes are good ciphers, Probl. of Control and Inf.
Theory, 11, 5, 337351, 1982.

3. R Ahlswede and L.H Khachatrian, The diametric theorem in hamming spaces
optimal anticodes, Advances in Applied Mathematics, 20, 429 449, 1996.

4. N. Cai and R.W. Yeung, Network coding and error correction, in ITW 2002 Ban-
galore, 119122, 2002.

5. S. Deb, C. Choute, M. Medard, and R. Koetter, Data harvesting: A random cod-
ing approach to rapid dissemination and efficient storage of data, in INFOCOM,
submitted.

866 S. Riis and R. Ahlswede

6. R. Dougherty, C. Freiling, and K. Zeger, Linearity and solvability in multicast
networks, in Proceeding of CISS, 2004.

7. C. Fragouli and E. Soljanin, A connection between network coding and convolu-
tional codes, in IEEE International Conference on Communications, 2004.

8. S. Riis, Linear versus non-linear boolean functions in network flow, in Proceeding
of CISS 2004.

9. S Riis, Linear versus non-linear boolean functions in network flow (draft version),
Technical report, November 2003.

10. M. Tavory, A. Feder, and D. Ron, Bounds on linear codes for network multicast,
Technical Report 33, Electronic Colloquium on Computational Complexity, 2003.

Appendix

Utilising Public Information in Network Coding

Draft Version

S. Riis

Abstract. We show that an information network flow problem N in
which n messages have to be sent to n destination nodes has a solution
(that might utilize Network Coding) if and only if the directed graph
GN (that appears by identifying each output node with its correspond-
ing input node) has guessing number ≥ n. The guessing number of a
(directed) graph G is a new concept defined in terms of a simple cooper-
ative game. We generalize this result so it applies to general information
flow networks.

We notice that the theoretical advantage of Network Coding is as
high as one could have possibly hoped for: for each n ∈ N we define a
network flow problem Nn with n input nodes and n output nodes for
which the optimal through-put using Network Coding is n times as large
as what can be obtained by vector routing or any other technique that
does not allow interference (between messages) . In the paper we obtain
a characterisation of the set of solutions for each flow problem Nn.

1 Network Coding

1.1 A. The Wave Approach to Information Network Flow

In recent years a new area called Network Coding has evolved. Like many fun-
damental concepts, Network Coding is based on a simple mathematical model
of network flow and communication first explicitly stated in its simplicity in [3].
Recently, ideas related to Network Coding have been proposed in a number of dis-
tinct areas of Computer Science (e.g. broadcasting in wireless networks [25,?,23],
data security [4], distributed network storage [6,?] and wireless sensor networks

Problems in Network Coding and Error Correcting Codes 867

Fig. 1.

[15]). Network Coding has also a broad interface with various Mathematical
disciplines (error correcting codes [18,5,10], circuit complexity [17], information
theory [11], algebra [13,12] and graph theory).

The basic idea underlying Network Coding has been explained in numerous
papers e.g. [13,3,17,7].The idea can be illustrated by considering the “butterfly”
network in figure 1a.

The task is to send the message x from the upper left corner to the lower
right corner and to send the message y from the upper right corner to the lower
left corner. The messages x, y ∈ A are selected from some finite alphabet A.
Assume each information channel can carry at most one message at a time. If
the messages x and y are sent simultaneously there is a bottleneck in the middle
information channel. On the other hand if we, for example, send x ⊕ y ∈ A
through the middle channel, the messages x and y can be recovered at ‘output’
nodes at the bottom of the network.

The network in figure 1a can be represented as the network in figure 1b. In
this representation (which we will call the ‘circuit representation’) each node in
the network computes a function f : A × A → A of its inputs, and sends the
function value along each outgoing edge. Historically, it is interesting to note that
in this slightly different (but mathematically equivalent) form, the idea behind
Network Coding (i.e. the power of using non-trivial boolean functions rather than
“pushing bit”) was acknowledged already in the 70s (though never emphasized or
highlighted) in research papers in Circuit Complexity (see e.g. [22,20,16,21,2]).
It is also worth mentioning that in Complexity Theory many lower bounds are
proved under the assumption that the algorithm is conservative or can be treated
as such. Conservative means that the input elements of the algorithm are atomic
unchangeable elements that can be compared or copied but can not be used to
synthesize new elements during the course of the algorithm. From a perspective
of Circuit Complexity, Network Coding is an interesting theory of information
flows since it corresponds to unrestricted models of computation.

Information flow in networks falls naturally within a number of distinct
paradigms. Information flow can, for example, be treated in a fashion similar to
traffic of cars in a road system. In this view each message is treated as a packet
(e.g. a car) with a certain destination. Messages (cars!) cannot be copied, or
divided. This way of treating messages is almost universally adopted in today’s

868 S. Riis and R. Ahlswede

Fig. 2.

information networks (e.g. wireless communication, communication on the web,
communication within processors or communication between processors and ex-
ternal devices). Another, less used possibility, is to treat messages in some sense
as a liquid that can be divided and sent along different routes before they reach
their destination. This approach (like, for example, in vector routing [9]) allows
messages to be spread out and distributed over large parts of the network. An-
other and more radical approach is to treat messages as “waves”. Recall that
the signals carrying the messages are digital (discrete) and thus certainly do
not behave like waves. It is, however, possible to transmit and handle the digi-
tal (discrete) signals in a fashion where the messages (not the bits carrying the
messages) behave like waves subject to interference and super position. More
specifically, assume A is a (finite) alphabet of distinct (wave) signals that can be
sent through a channel. The superposition of (wave) signals w1, w2 ∈ A creates
a new (wave) signal w = w1 ⊕ w2 ∈ A. Thus mathematically, in the wave pic-
ture the set A of wave signals forms a (finite) commutative group with neutral
element 0 ∈ A representing the zero-signal.

The network in figure 2 illustrates the point that in specific network topologies
there can be quite a large advantage of treating messages as waves. The task of
the network is to send messages x, y and z from the source (input) nodes i1, i2
and i3 to the three output nodes o1, o2 and o3. The receiver (output) node o1

requires x, node o2 requires y and node o3 requires z. We assume that channels
are one way and that the messages are only sent downwards in the figure. All
crossings in the figure are ‘bridges’ and it is, for example, only possible to move
from i1 to o1 by moving through channel p.

If messages are treated as packets (cars) like in traditional routing, or if mes-
sages are treated as a liquid, there is no point in sending information through
l1, l2 or l3. All messages x, y and z must pass through the channel labelled with
p (for ‘public’). This clearly creates a bottleneck in channel p if we assume that
only one message can pass at a time.

If, however, messages are treated as waves we can send p(x, y, z) := x⊕ y ⊕ z,
the superposition of the messages x, y and z, through channel p. And we can
send superpositions l1 := −(y⊕z), l2 := −(x⊕z) and l3 := −(x⊕y) through the
nodes with these labels. Node o1 can take the superposition of l1 and p(x, y, z)

Problems in Network Coding and Error Correcting Codes 869

and then reconstruct the message x = −(y ⊕ z)⊕ (x⊕ y ⊕ z). Similarly, node o2

(or o3) can take the superposition of l2 (or l3) and p(x, y, z) and then reconstruct
the message y = −(x ⊕ z) ⊕ (x ⊕ y ⊕ z) (or z = −(x ⊕ y) ⊕ (x ⊕ y ⊕ z). This
shows that the wave approach allows us to eliminate the bottleneck in channel
p in figure 2. Notice also that the wave approach increases the overall network
performance (of the network in figure 1) by a factor 3. 3

In general the advantage of the wave approach (compared to any approach
that does not allow interference) can be as large as one could have possibly hoped
for. We will later notice that there exists information flow networks (with n
source nodes and n receiver nodes) for which the optimal throughput is n times
larger using the wave approach. Actually, there are even networks where the
success rate for each active channel using the wave approach are close (as close as
we wish) to n times the success rate for each active channel in a routing solution.
The wave approach usually requires more information channels to be involved
than traditional routing (or other methods that do not allow interference). Yet,
by allowing interference, the total network performance divided by number of
active information channels can for some network topologies be close to n times
higher than any approach that is unable to utilise interference.

Network Coding allows messages to be sent within the wave paradigm. In
fact superpositioning of signals (described above) represents an important type
of Network Coding we will refer to as Linear Network Coding (see also [14]). Al-
though Linear Network Coding represents a very important subclass of network
coding, in general network coding involves methods that go beyond linear net-
work coding. Certain network problems have no linear solutions, but require the
application of non-linear boolean functions [17,7]. Non-Linear Network Coding
has no obvious physical analogue. Rather general Network Coding represents a
paradigm of information flow based on a mathematical model where ‘everything
goes’ and where there are no a priory restrictions on how information is treated.
Thus in Network Coding packets might be copied, opened and mixed. And sets of
packets might be subject to highly complex non-linear boolean transformations.

2 Coherence: Utilising Apparently Useless Information

2.1 A. Guessing Game with Dice

While I was researching various flow problems related to Circuit Complexity it
became clear that a key problem is to characterize and formalism what pieces of
information are ”useful” and what pieces of information are genuinely ”useless” .
It became clear that this distinction can be very deceptive. A piece of information
that is useless in one context, can sometime be very valuable in a slightly different
context [17].
3 Notice that this increase of a factor 3 comes at a certain expense. In the routing ap-

proach only 7 channels are active (namely, (i1, p), (i2, p), (i3, p), (p, o1), (p, o2), (p, o3)
and channel p), while in the Network Coding solution all 19 channels are active. The
success rate 3

19
for each active channel is higher in the Network Coding solution than

in the ordinary solution 1
7
.

870 S. Riis and R. Ahlswede

To illustrate the problem, consider the following situation [19]: Assume that n
players each has a fair s-sided dice (each dice has its sides labelled as 1, 2, . . . , s).
Imagine that all players (simultaneously) throws their dice in such a manner
that no player knows the value of their own dice.

1. What is the probability that each of the n players is able to guess correctly
the value of their own dice?

2. Assume that each player knows the values of all other dice, but has no
information about the value of their own dice. What is the probability that
each of the n players correctly guesses the value of their own dice? (Hint: The
probability is NOT (1

s)n- The players can do much better than uncoordinated
guessing!!)

3. Assume the ith player receives a value vi = vi(x1, x2, . . . , xi−1, xi+1, . . . , xn) ∈
{1, 2, . . . , s} that is allowed to depend on all dice values except the i’th player’s
own dice. What is the probability that each of the n players correctly manages
to guess the value of their own dice?

In question 1 the probability that each player is right is 1
s and thus with prob-

ability (1
s)n all n players successfully manage to guess correctly their own dice’

value simultaneously. Maybe somewhat surprisingly in question 2, the answer
depends on the ‘protocol’ adopted by the players! An optimal protocol appears,
for example, if the players agree in advance to assume that the sum of all n dice’
values is divisible by s. This protocol ensures that all players simultaneously
‘guess’ the value of their own dice with probability 1

s .
Question 3, can be answered using a minor modification of the protocol just

discussed. Let vi be defined as the sum x1⊕x2⊕. . . ,⊕xi−1⊕xi+1⊕. . .⊕xn modulo
s. Each player then ‘guesses’ that xi = −vi modulo s. Again, the probability
that all n players simultaneously guess the correct value of their own dice is 1

s .

2.2 B. Playing the Guessing Game on a Graph

We will now define a generalisation of the dice guessing game that is (surpris-
ingly?) directly related to a certain type (the so called multiple-unicast type) of
information flow problems.

Definition
The Guessing Game (G, s) is a cooperative game defined as follows: As-
sume that we are given a directed graph G = (V, E) on a vertex set V =
{1, 2, . . . , n} representing n players. Each player v ∈ {1, 2, . . . , n} sends the
value of their dice ∈ {1, 2, . . . , s} to each player w ∈ {1, 2, . . . , n} with
(v, w) ∈ E. Or in other words each node w receives dice’ values from a
set Aw := {v ∈ V : (v, w) ∈ E}. Each player has to guess the value of their
own die. We want to calculate (assuming the players in advance have agreed
on an optimal protocol) the probability that all the players (nodes) simulta-
neously guess their dice values. Question 2 (in Section 1 (A)) corresponded
to the case where G is the complete graph on n nodes.

Problems in Network Coding and Error Correcting Codes 871

Fig. 3.

Definition
A (cooperative) guessing strategy for the Guessing Game (G, s) is a set of
functions fω : {1, 2, . . . , s}Aw → {1, 2, . . . , s} with ω ∈ {1, 2, . . . , n}. Notice
that each player (node) ω is assigned exactly one function fω.

In figure 3, we consider six simple examples:
In (i) and (ii) corresponds to the dice guessing game we already considered

(with 3 and 5 players). The players have a guessing strategy that succeeds with
probability 1

s . In the guessing game based on (iii) (or in general the cyclic graph
on n points) an optimal protocol appears if each node ‘guesses’ that its own dice
value is the same as the value as it receives. This strategy succeeds if each of the
four dice has the same value i.e. with probability (1

s)3 (or in general (1
s)n−1).

Though this probability is low, it is s times higher than if the players just make
uncoordinated random guesses.

In (iv) the graph contains no cycles so the players cannot do any better than
just guessing i.e. the players can achieve probability at most (1

s)4.
In (v) it can be shown that there are a number of distinct guessing strategies

that guarantee the players’ success with probability (1
s)4 (one, optimal strategy

appears by dividing the graph into two disjoint cycles (triangles)).
Finally, in (vi) we consider a graph with 12 nodes (one for each hour on a

clock) and edges from (i, j) if the ’time’ from i to j is at most 5 hours. We will
show (and this will be fairly simple given the general methods we develop) that
the players in the Guessing Game (G, s) have an optimal guessing strategy that
ensures that the players with probability (1

s)7 (i.e. with a factor s5 better than
pure uncoordinated guessing) all simultanously guess the value of their own dice.

Definition
A graph G = (V, E) has for s ∈ N guessing number k = k(G, s) if the players
in the Guessing Game (G, s) can choose a protocol that guarantees success
with probability (1

s)|V |−k.

Thus the guessing number of a directed graph is a measure of how much better
than pure guessing the players can perform. If the players can achieve a factor
sk better than pure random uncoordinated guessing, the graph has guessing

872 S. Riis and R. Ahlswede

number k = k(G, s). Notice that a directed graph has a guessing number for
each s = 2, 3, 4,

For many directed graphs (though not all) the guessing number is independent
of s. The directed graphs in figure 3 have guessing numbers 4, 2, 1, 0, 2 and 5
(independently of s ≥ 2). From the definition there is no reason to believe that
the guessing number of a directed graph is in general an integer. Yet remarkably
many graphs have integer guessing numbers. Later we will show that there exist
directed graphs for which the guessing number k = k(G, s) (for alphabet of size
s ∈ N) of a graph is not an integer. We will show that there exist graphs where
the guessing number k(G, s) even fails to be an integer for each s ∈ {2, 3, 4, . . . , }.
Observation(A)

In the Guessing Game (G, s) the graph G allows the players to do better
than pure uncoordinated guessing if and only if G contains a cycle.

Observation(B)
A graph G = (V, E) contains a cycle if and only if its guessing number is
≥ 1. If a graph contains k disjoint cycles its guessing number ≥ k (for each
s ≥ 2). A graph is reflexive if and only it has guessing number |V |. Assume
that the set of nodes V in the graph G can be divided in r disjoint subsets
V1, V2, . . . , Vr of nodes such that the restriction of G to each subset Vj is a
clique. Then the graph G has guessing number ≥ |V | − r (for each s ≥ 2).

From Observation (A), we notice the curious fact that, the players have a “good”
strategy that ensures that they all succeed with higher probability than uncoor-
dinated random guessing if and only if the players have a “bad” strategy that
insures they never succeed.

Sometimes it is convenient to focus on certain more limited guessing strategies.

Definition Let B be a class of functions f : Ad → A for d = 1, 2, 3,
An important class appears if we let A denote a fixed algebraic structure
(e.g. a group, a ring or a vector space) of s = |A| elements, and let the
class B = LIN consist of all homomorphisms (linear maps) Ad → A for
d = 1, 2, 3, If all the functions fw belong to the class B we say the
players have chosen a guessing strategy in B. If B = LIN we say that the
players use a linear guessing strategy.

Definition A graph G = (V, E) has guessing number k = kB(G, s) with
respect to the functions in B if the players in the Guessing Game (G, s)
have a protocol with all guessing functions in B that guarantee success with
probability (1

s)|V |−k. We say G has (special) linear guessing number klin =
klin(G, s) if the players have a linear guessing strategy that guarantee success
with probability ≥ (1

s)|V |−k.

3 Network Coding and Guessing Games

In this section we show that mathematically there is a very close link between
Network Coding and the guessing games we just defined. We will show that each
information flow problem is equivalent to a problem about directed graphs.

Problems in Network Coding and Error Correcting Codes 873

The translation between information networks and directed graphs is most
clean if we represent information networks such that we place all computations
(Network Codings) in the nodes of the network. As already indicated, we refer to
this representation as the Circuit representation. This representation is slightly
more economical (usually save a few nodes) than the standard representation
in Network Coding. The representation is more in line with circuit complexity,
where the task of the network in general is a computational task. Formally, each
source node is associated with a variable. Each node computes a function of
incoming edges signals. Each outgoing edge from a node transmits the same
signal (function value of node). Each receiver node is required to produce a
specific input variable.

In general given an information flow problem N (in the Circuit representa-
tion) we obtain a directed graph GN by identifying each source node with the
corresponding receiver node.

In figure 4 we see a few examples of simple information networks together
with their corresponding directed graphs.

Fig. 4.

The information network N in figure 4a (or figure 1b) is the usual ‘butterfly’
network (presented in circuit represention). If we identify the input node (source
node) x with the output node (receiver node) x, and identify input node (source
node) y with the output node (receiver node) y, we get the graph in figure 4b.

The information network in figure 4c does not have any obvious symmetries,
but when input and output nodes are identified we get the directed graph in
figure 4d that clearly contains a number of symmetries. The translation shows
that nodes x and u (as well as y and v) are equivalent points. The guessing
number of the graph in (b) as well as the graph in (d) can be shown to have the
value 2.

In general we let Cmultiple−unicast (the class of multiple-unicast directed infor-
mation networks) consist of information networks N for which for some n ∈ N ,
n messages m1, m2, . . . , mn ∈ A (selected from some alphabet A) has to be sent

874 S. Riis and R. Ahlswede

from input (source) nodes i1, i2, . . . , in to output nodes o1, o2, . . . , on. Some-
what formally, to each source node ij is associated a variable xj and each node
w (except the source nodes) are assigned a function symbol fw representing a
function fw that is mapping all incoming signals a1, a2, . . . , akw to an element
a = f(a1, a2, . . . , akw) ∈ A. Each outgoing edge from a node transmits the same
signal (the function value a of the node). Each receiver node is required to pro-
duce a specific input variable.

For an information network N ∈ Cmultiple−unicast we associate a directed
graph GN that appears by identifying each source (input) node ij in N with its
corresponding receiver (output) node oj . If N has n input nodes, n output nodes
and m inner nodes (2n + m nodes in total) the graph GN has n + m nodes.

We are now ready to state the surprising link that shows that each information
flow problem is equivalent to a problem about directed graphs.

Theorem 1
An information Network flow problem N ∈ Cmultiple−unicast with n in-
put/output nodes has a solution over alphabet A with |A| = s elements
if and only if the graph GN has guessing number ≥ n.

The main point of the theorem is that it replaces the flow problem - a problem
that mathematically speaking involves slightly complicated concepts like set of
source nodes, set of receiver nodes as well as set of requirements (demands) that
specifies the destination of each input - with an equivalent problem that can
be expressed in pure graph theoretic terms (no special input or output nodes).
Actually we show the theorem in a slightly stronger form:

Theorem 2
The solutions (over alphabet A with |A| = s) of an information network flow
problem N ∈ Cmultiple−unicast with n input/output nodes are in one-to-one
correspondence with the guessing strategies (over alphabet A with |A| = s)
that ensure that the players in the guessing game played on GN have success
with probability (1

s)|GN |−n (where |GN | is the number of nodes in GN).

The following simple observation highlights (in a quite geometric fashion) the
difference between Network coding and traditional routing:

Observation(C)
An information flow network N ∈ C has through put k using ordinary
routing (i.e. pushing each message along a unique path) if and only the
graph GN contains k disjoint cycles.

Consider the three information flow problems in figure 5(i-iii). They are in cir-
cuit representation (i.e. all functions are placed in their nodes and each outgoing
edge from a node transmits the same function value). The three information
networks in 5(i)-(iii) are non-isomorphic and are clearly distinct. However if we
identify the sauce nodes and the receiver nodes in each of the networks we get
the same directed graph in figure 5 (iv).

Problems in Network Coding and Error Correcting Codes 875

Fig. 5.

According to Theorem 2 there is a one-to-one correspondence between so-
lutions of each of the three information networks 5(i)-5(iii) and the successful
strategies in the Guessing Game (G, s). Thus, the set of solutions to each of
the three information networks 5(i)-5(iii) are in a natural one-to-one correspon-
dence. Before we prove Theorem 1 and Theorem 2, let us have a closer look at
the networks in figure 5. A (cooperative) strategy for the players in the guessing
game with the directed graph in figure 5 (iv) consists of 6 functions g1, g2, . . . , g6

such that:

aguess = g1(b, d)
bguess = g2(a, c, e)
cguess = g3(b, f)
dguess = g4(a, b)
eguess = g5(d, f)
fguess = g6(b, c)

For all players to guess their own message correctly we must have aguess = a i.e.
we must have a = g1(b, d). Thus assuming that we work under the conditional sit-
uation with aguess = a, we can substitute a with g1(b, d) leading to the equations:

bguess = g2(g1(b, d), c, e)
cguess = g3(b, f)
dguess = g4(g1(b, d), b)
eguess = g5(d, f)
fguess = g6(b, c)

Now pick any equation of the form xguess = h where x does not appear in the
expression h. We might for example assume c = g3(b, f) (i.e. the cguess = c).
Substituting c with g3(b, f) in the equations we get:

876 S. Riis and R. Ahlswede

bguess = g2(g1(b, d), g3(b, f), e)
dguess = g4(g1(b, d), b)
eguess = g5(d, f)
fguess = g6(b, g3(b, f)
This system of equations contains still one equation of the form xguess = h
where x does not appear in the expression h. Let e = g5(d, f) (assuming eguess =
g5(d, f)) and substitute this into the equations we get:

bguess = g2(g1(b, d), g3(b, f), g5(d, f))
dguess = g4(g1(b, d), b)
fguess = g6(b, g3(b, f))

For any fixed choice of functions g1, g2, g3, g4, g5 and g6 let 0 ≤ p ≤ 1 denote the
probability that a random choice of b, d and f satisfies the equations:

b = g2(g1(b, d), g3(b, f), g(d, f))
d = g4(g1(b, d), b)
f = g6(b, g3(b, f))

It is not hard to show that the probability that aguess = a, cguess = c and
eguess = e with probability (1

s)3 (for a more general argument see the proof
of Theorem 2). Thus the conditional probability that the remaining players all
guess correctly their own dice value is p and the probability that all players are
correct is p(1

s)3. Thus - in agreement with Theorem 1 - the guessing number of
the graph in figure 4 (iv) is 3 if and only if there exist functions g1, g2, . . . , g6

such that the equations hold for all b, d and f (i.e. hold with probability 1).
As it happens we can solve the equations by turning the alphabet A into a

commutative group (A,⊕) and the by letting g1(b, d) = b⊕d, g2(α, β, γ) = α�γ,
g3(b, f) = b ⊕ f , g4(α, β) = α � β, g5(d, f) = d and g6(α, β) = �α ⊕ β. Thus
the players have a (cooperative) guessing strategy that ensures that all players
simultaneously are able to guess their own message correctly with probability
(1

s)3. One strategy is given by:
aguess = b ⊕ d
bguess = a � e
cguess = b ⊕ f
dguess = a � b
eguess = d
fguess = c � b
Figure 6 (i)-(iii) shows how this strategy naturally corresponds to network

codings in the three information flow problems in figure 5(i)-(iii). Figure 6 (iv)
shows the strategy as a guessing strategy.

4 Proof of Theorems

Before we prove Theorem 1 and Theorem 2 we need a few formal definitions
of information networks. As already pointed out, the translation between infor-
mation networks and directed graphs is most clean if we represent information
networks such that we place all computations (Network Codings) in the nodes
of the network. An information flow network N (in circuit representation) is an

Problems in Network Coding and Error Correcting Codes 877

acyclic directed graph with all source nodes (input nodes) having in-degree 0
and all receiver nodes (output nodes) having outdegree 0. Each source node is
associated with a variable from a set Γvar of variables. In the receiver node there
is assigned a demand i.e. variable from Γvar . In each node w that is not a source,
there is assigned a function symbol fw. The function symbols in the network are
all distinct.

Messages are assumed to belong to an alphabet A. Sometimes we assume A
has additional structure (e.g. a group, a ring or a vector space). Each outgoing
edge from a node transmits the same signal (function value of node).

An actual information flow is given by letting each function symbol f represent
an actual function f̃ : Ad → A where d is the number of incoming edges to the
node that is associated the function symbol f . The information flow is a solution,
if the functions compose such that each demand always is met.

We let Cmultiple−unicast denote the class of information networks N for which
for some n ∈ N , n messages m1, m2, . . . , mn ∈ A (selected from some alphabet
A) have to be sent from nodes i1, i2, . . . , in to output nodes o1, o2, . . . , on.

Let Cmultiple−unicast be an information network in this model. We define the
graph GN by identifying node i1 with o1, node i2 with o2, . . . and node ij with
oj in general for j = 1, 2, . . . , n.

Theorem 1 follows directly from Theorem 2. So to prove the theorems it
suffices to prove Theorem 2.

Proof of Theorem 2: Let N be an information network with input (source)
nodes i1, i2, . . . , in, output (receiver) nodes o1, o2, . . . , on and inner nodes n1,
n2, . . . , nm. The network N is acyclic so we can assume that we have ordered
the nodes as i1 < i2 < . . . < in < n1 < n2 < . . . < nm < o1 < o2 < . . . < on

such that any edge (i, j) in N has i < j in the ordering. Any selection of coding
functions (whether they form a solution or not) can then be written as:

z1 = f1(x1, x2, . . . , xn)
z2 = f2(x1, x2, . . . , xn, z1)
z3 = f3(x1, x2, . . . , xn, z1, z2)
............
zm = fm(x1, x2, . . . , xn, z1, z2, . . . , zm−1)
xo

1 = g1(x1, x2, . . . , xn, z1, z2, . . . , zm)
xo

2 = g2(x1, x2, . . . , xn, z1, z2, . . . , zm)
.............
xo

n = gn(x1, x2, . . . , xn, z1, z2, . . . , zm)

where xj is the variable denoting the value assigned to the input node ij, zj is
the variable denoting the value computed by the inner node nj and xo

j is the
variable denoting the output value computed by the node oj for j = 1, 2, . . . , n
for a given choice of values of x1, x2, . . . , xn ∈ {1, 2, . . . , s}.

Next consider the corresponding graph GN we get by identifying nodes ir and
or for r = 1, 2, . . . , n. We consider the guessing strategy given by the functions
above i.e. the strategy given by:

878 S. Riis and R. Ahlswede

Fig. 6.

zguess
1 = f1(xreal

1 , xreal
2 , . . . , xreal

n)
zguess
2 = f2(xreal

1 , xreal
2 , . . . , xreal

n , zreal
1)

zguess
3 = f3(xreal

1 , xreal
2 , . . . , xreal

n , zreal
1 , zreal

2)
.............
zguess

m = fm(xreal
1 , xreal

2 , . . . , xreal
n , zreal

1 , zreal
2 , . . . , zreal

m−1)
xguess

1 = g1(xreal
1 , xreal

2 , . . . , xreal
n , zreal

1 , zreal
2 , . . . , zreal

m)
xguess

2 = g2(xreal
1 , xreal

2 , . . . , xreal
n , zreal

1 , zreal
2 , . . . , zreal

m)
............
xguess

n = gn(xreal
1 , xreal

2 , . . . , xreal
n , zreal

1 , zreal
2 , . . . , zreal

m)

Conversely each guessing strategy for GN can be written on this form and can
thus be viewed as an attempt to solve the information flow problem N . To prove
Theorem 2 we show that the guessing strategy succeeds with probability (1

s)m

if and only if the corresponding information flow functions solves the informa-
tion Network problem. This boils down to showing that the probability that all
inner nodes guess their own dice values correctly is (1

s)m. To see this assume we
have shown this. Then the probability all players guess correctly is at most as
large as the probability all players corresponding to inner nodes n1, n2, . . . , nm

guess correctly. Thus all the players guess simultaneously their own die values
correctly with probability ≤ (1

s)m. Equality holds if and only if the conditional
probability xguess

j , j = 1, 2, . . . , n takes the correct value with probability 1. This
happens if and only if the functions f1, f2, . . . , fm, g1, . . . , gn form a solution for
the information flow problem. So to complete the proof of Theorem 2 it suffices
to show:

Lemma 3. For any set of functions f1, . . . , fm and g1, . . . , gn the probability
that players n1, n2, . . . , nm (i.e. players in nodes corresponding to inner nodes
in the information Network) guess their own die values correctly is (1

s)m (i.e.
independent of the chosen guessing functions).

Problems in Network Coding and Error Correcting Codes 879

Proof: We are asking for the probability zguess
j = zreal

j for j = 1, 2, . . . , m where
zguess
1 = f1(xreal

1 , xreal
2 , . . . , xreal

n)
zguess
2 = f2(xreal

1 , xreal
2 , . . . , xreal

n , zreal
1)

zguess
3 = f3(xreal

1 , xreal
2 , . . . , xreal

n , zreal
1 , zreal

2)
.............
zguess

m = fm(xreal
1 , xreal

2 , . . . , xreal
n , zreal

1 , zreal
2 , . . . , zreal

m−1)
The number of choices of xreal

1 , xreal
2 , . . . , xreal

n and zreal
1 , zreal

2 , . . . , zreal
m is

sn+m. We want to count the number of “successful” choices for which zguess
j =

zreal
j for j = 1, 2, . . . , m. That is the number of choices for which:
zreal
1 = f1(xreal

1 , xreal
2 , . . . , xreal

n)
zreal
2 = f2(xreal

1 , xreal
2 , . . . , xreal

n , zreal
1)

zreal
3 = f3(xreal

1 , xreal
2 , . . . , xreal

n , zreal
1 , zreal

2)
.............
zreal

m = fm(xreal
1 , xreal

2 , . . . , xreal
n , zreal

1 , zreal
2 , . . . , zreal

m−1)
But for each choice of xreal

1 , xreal
2 , . . . , xreal

n there is exactly one choice of
zreal
1 , zreal

2 , . . . , zreal
m . Thus the number of successful choices is sn. The probability

is number of successful choices
number of choices = sn

sn+m = 1
sm . ♣

4.1 A. Standard Representation

There are a few slightly different ways to represent flows in information net-
works. In the previous section we considered the Circuit representation. We call
the standard (and “correct”) way of representing information flows in Network
Coding the Standard representation. If we use the standard representation
we get slightly different versions of Theorem 1 and Theorem 2. The actual the-
orems can be stated in the same way (verbatim)! The Theorems are modified to
fit the standard representation in the way the graph GN is defined.

An information network N is a directed acyclic multi-graph. Each source node
has indegree 0, while each receiver node has outdegree 0. Associated with each
source node is a variable from a set Γvar of variables. Each outgoing edge is
associated with a distinct function symbol with an argument for each incoming
edge. Each receiver node has a list of demands which is a subset of variables from
Γvar. In the receiver node there is assigned a function symbol for each demand.
All function symbols are distinct.

Messages are assumed to belong to an alphabet A. An actual flow (using
Network Coding) is given by letting each function symbol f represents an actual
function f̃ : Ad → A where d is the number of incoming edges to the node that
is associated with the function symbol f . The flow (that might utilise Network
Coding) is a solution if the functions compose such that each demand is given
by the functional expression of the involved terms.

We let Cmultiple−unicast denote the class of information networks N for which
for some n ∈ N , n messages m1, m2, . . . , mn ∈ A (selected from some alphabet
A) has to be send from nodes i1, i2, . . . , in to output nodes o1, o2, . . . , on.

We convert a given information network N ∈ Cmultiple−unicast to a directed
graph GN as follows:

880 S. Riis and R. Ahlswede

Step 1: For each variable or function symbol assigned to an edge or a node
we introduce a node in the new graph GN .

Step 2: We identify nodes i1 with o1, i2 with o2, . . . and ij with oj in general
for j = 1, 2, . . . , n.

With this translation of N to GN Theorem 1 and Theorem 2 remain valid
(verbatim).

5 General Results for Information Networks

Theorem 1 and Theorem 2 only apply for information networks N ∈
Cmultiple−unicast . In this section we generalize the results so they essentially
cover all (!) instantaneous information networks.

Let N be an information network and let A be an (finite) alphabet with s
elements. For a selection of fixed network functions f̄ we define the networks N ’s
global success rate p(N, s, f̄) of a specific network coding flow as the probability
that all outputs produce the required outputs if all inputs are selected random-
ly with independent probability distribution. The maximal global success rate
p(N, s) of the information flow network N (over alphabet of size s) is defined
as the supremum of all global success rates p(N, s, f̄) that can be achieved by
any choice of coding functions f̄ . Since the set of functions f̄ (for a fixed finite
alphabet A) is finite p(N, s) is the maximal global success rate of p(N, s, f̄).

Fig. 7.

Problems in Network Coding and Error Correcting Codes 881

Assume that N is an information network over an alphabet A with s ele-
ments. Assume that N has n source nodes (input nodes) and that r of these
are required by at least one receiver node (output node). Usually, n = r since
in most information networks each source message is required by at least one
receiver node.

Definition
We define the source transmission bandwidth k = k(N, s) of the information
network N (over alphabet of size s) as k(N, s) = logs(p(N, s)) + r.

The notion is motivated by the Theorem 4 below, and can be viewed as a
generalisation of the guessing number of a graph.

Notice, that a network has source transmission bandwidth k if all output
nodes simultaneously can calculate their required messages with probability sk

higher that what can be achieved by the “channel free” network. An information
network N that sends n distinct source messages (each message is required at
one or more receiver nodes), has source transmission bandwidth k(N, s) = n if
and only if it has is solvable (in the sense of network coding) over an alphabet
of size s.

For each directed graph G = (V, E) we want to define an information flow
problem NG = (W, F) with |V | source nodes (input nodes) and |V | receiver nodes
(output nodes). Expressed slightly informally, we define NG by splitting each
node w ∈ V into two nodes winput and woutput (thus the vertex set W consists of
two copies of V). For each edge (w, v) ∈ E we add an edge (winput, voutput) ∈ F .
Let NG = (W, F) denote the flow problem that appears through this transfor-
mation where each output node voutput requires the message assigned to vinput.
Notice that the information network NG usually is very far from being solv-
able since most source (input) nodes have no path to its corresponding receiver
(output) node.

Observation
Let G be a directed graph. Then NG ∈ Cmultiple−unicast and G has guessing
number k = k(G, s) if and only if NG has source transmission bandwidth
k = k(NG, s).
For each p ∈ [0, 1] there is a one-to-one correspondence between guessing
strategies f̄ in the Guessing Game (G, s) that achieve success with proba-
bility p and information flows f̄ in NG that have global success rate p.

The Observation is too trivial to deserve to be called a theorem. It is however
quite interesting since it shows that the notion of source transmission bandwidth
generalizes the guessing number of a directed graph.

We now introduce a simple move we call “split”. Given an information network
N = (V, E) (with E being a multiset) the move “split” can be applied to any
inner node w ∈ V in N (a node is an inner node if it is not a source or a
receiver node). The move “split” copy the inner node w into two nodes winput

and woutput. In other words the move convert the vertex set V to the set V ′ = V ∪
{winput, woutput}\{w} containing all point in V but with two copies (winput and

882 S. Riis and R. Ahlswede

woutput) of w. For each outgoing edge (w, u) ∈ E from w we introduce an edge
(winput, u) ∈ E′ (with the same multiplicity as (w, u)). For each incoming edge
(u, w) ∈ V we introduce an edge (u, winput) ∈ E′ (with the same multiplicity as
(w, u)).

The information network N ′ = (V ′, E′) has as source (input) nodes all source
(input) nodes in V together with {winput}. The set of receiver (output) nodes
consists of the receiver (output) nodes in V together with {woutput}. We associate
a new variable z to the node winput and node woutput demands (requires) z. All
other nodes keep their demands.

In figure 7, we see how the split move can be applied. We say that the infor-
mation network N ′ appear from the information network N by a “reverse split
move”, if N appears from N ′ using a split move.

The split move always result in an information network that have no solution
(since there is no path from the source node winput to the receiver node woutput).

The next Theorem can be considered as a generalization of Theorem 1 and
Theorem 2.

Theorem 4
Let N and N ′ be two information networks that appear from each other by
a sequence of split and inverse split moves (in any order). The network N
and N ′ has the same source bandwidth (i.e. k(N, s) = k(N ′, s))

More specifically let N be an information flow network, let A be an
alphabet with |A| = s letters and assume f̄ is a selection of coding functions
over this alphabet. Assume N has source messages x1, x2, . . . , xr (they might
be transmitted from more than one input edge). Assume that the coding
functions have global success rate p = p(N, s, f̄) ∈ [0, 1]. Let N ′ be any
information network that appears from N by application of the split move.
Then N ′ with the coding functions f̄) has global success rate p(N ′, s, f̄) = p

s .
In general if N has global success rate p (over alphabet A) any network

N ′ that appears from N by application of r split moves and t reverse split
moves (in any order) has global success rate p × st−r.

Proof: The first part follows from the more detailed second part since each
application of the split rule increase the value of r by one and each application
of the inverse split rule decrease the value of r by one.

Assume that the information network N = (V, E) has global success rate
p = p(N, s, f̄) ∈ [0, 1] with respect to the coding functions f̄ . Let w ∈ V be
any inner node in N . Replace (split) w into two nodes winput and woutput as
already explained. The incoming coding function to node woutput is the same
function as the inner coding function to node w in the network N . Each outgoing
coding function of winput is the same as each outgoing function for node w. The
network N ′ has got a new input node. Let us calculate the probability p(N ′, s, f̄)
that all output nodes produce the correct outputs. The probability that node
woutput produce the correct output is exactly 1

s . Assume now woutput = winput.
The conditional probability (i.e. the probability given zoutput = zinput) that all
output nodes in the network N produce the correct output is p = p(N, s, f̄).

Problems in Network Coding and Error Correcting Codes 883

But, then the probability all output nodes in N ′ produce the correct output is
exactly p

s .
The second part of the theorem follows from the first part. Assume f̄ is a se-

lection of coding functions such that p(N, s, f̄) = p(N, s) (the alphabet is finite so
there are only finitely many functions f̄ and thus there exists functions that achieve
the maximum value p(N, s)). We already showed that p(N ′, s, f̄) = p(N,s,̄)

s . We
claim that p(N ′, s) = p(N ′, s, f̄). Assume that p(N ′, s, ḡ) > p(N ′, s, f̄). But then
p(N, s, ḡ) = s × p(N ′, s, ḡ) > s × p(N ′, s, f̄) = p(N, s, f̄) which contradicts the
assumption that f̄ was an optimal coding function for the information network N
(over alphabet of size s). ♣

6 Utilising Public Information

6.1 A. Another Game

Consider the directed graph in figure 8(i) (introduced in 4 (iv)). Each node has
to derive their own message. This is, of course, impossible and we know that
the best the players can hope for (if they use a suitable coordinated guessing
strategy) is that they are all correct on s3 distinct inputs (out of the s6 different
input). If the players have access to s3 public messages and these are carefully
chosen, it is possible for the players (through a cooperative strategy) to ensure
that each player can derive his/her own message.

Fig. 8.

If, for example, the values a� b� d ∈ A, c� b� f ∈ A as well as e� d ∈ A are
common knowledge (broadcast through public messages) each node can derive
its own message (since a = (a�b�d)⊕b⊕d, b = (e�d)�(a�b�d)⊕(a�e), c =
(c�b�f)⊕b⊕f , d = (a�b)⊕(a�b�d), e = (e�d)⊕d and f = (c�b)�(c�b�f)).

Another equivalent way of stating this is to consider the bipartite flow problem
in figure 8 (ii), with public channel of bandwidth 3. Notice that figure 8 (i) and
figure 8 (ii) are different representations of the problems that are mathematically
equivalent.

884 S. Riis and R. Ahlswede

Are the solutions (public messages a � b � d ∈ A, c � b � f ∈ A as well as
e � d ∈ A) in figure 8 (i) and figure 8 (ii) optimal? Is it possible to send fewer
than s3 message through the public channel (and still have all players being able
to deduce their own message)? From the analysis of the guessing game in figure
5 (iv) we know that the probability that the players in nodes a, c and e guess
their own messages is independent (for any guessing strategy) and thus nodes
a, c and e guess correctly their own message with probability (1

s)3. We claim
that if node a, c and e in general are able to derive their own message they must
have access to at least s3 distinct messages in the public channel. To see this
assume that it were possible for the players in figure 8 (i) to deduce their own
messages from a public channel that sends < s3. The players could then all agree
to guess if the public channel is broadcasting a specific message m they agreed
on in advance. Since there are less than s3 public messages there is a message
m that is broadcast with probability > (1

s)3). This contradicts the fact that the
players (especially the players in nodes a, b and c) cannot do better than (1

s)3.
Thus the solutions in figure 8 (i) (and in figure 8 (ii)) are optimal.

Let G = (V, E) be a directed graph. Assume like before that each node is
being assigned a message x randomly chosen from a fixed finite alphabet A
containing s = |A| elements. Like in the guessing game each node transmits its
message (dice value) along all outgoing edges. In other words each node j knows
the messages (dice values) of exactly all nodes i with (i, j) ∈ E.

The task of the players is to deduce their own message. This is of course
impossible (unless the graph is reflexive) since in general the players have no
direct access to their own message (dice values). The task of the players is to
cooperate and agree on a protocol and a behaviour of a public channel that
ensure that all players are always able to derive their own messages.

Definition
Let G = (V, E) be a directed graph and let A denote an alphabet with s
letters. Let P be a finite set of public messages. Consider the following Public
Channel Game (G, A, P). The game is played as follows. Each node j ∈ V is
assigned to a message xj ∈ A. A public message p = p(x1, x2, . . . , xn) ∈ P
(given by a function p : An → P) is broadcast to all nodes. Each node j has
access to the message p ∈ P as well as xi for each i with (i, j) ∈ E. In the
game each player j needs to deduce the content of their own message xj .

Each player (node) v ∈ {1, 2, . . . , n} sends its message to each person
w ∈ {1, 2, . . . , n} with (v, w) ∈ E. Or in other words each node w receives
messages from a set Aw := {v ∈ V : (v, w) ∈ E}. The task is to design the
function p(x1, x2, . . . , xn) such that each player always (i.e. for any choice of
x1, x2, . . . , xn ∈ S) can deduce their own message. If this is possible, we say
that the Public Channel Game (G, A, P) has a solution.

Definition
A directed graph G = (V, E) has (general) linear guessing number k = ks

if the Public Channel Game (G, A, P) has solution for some A with |A| = s
and with P = s|V |−k.

Problems in Network Coding and Error Correcting Codes 885

In the case of figure 3(iii) each player would be able to calculate his own
dice value if, for example, x1 ⊕ x4, x2 ⊕ x4 and x3 ⊕ x4 modulo s were known
public information. [To see this, notice that node 1 receives x4 from which it
can calculate x1 = (x1 ⊕ x4) � x4, node i = 2, 3 receives xi−1 from which it can
calculate xi = (xi ⊕ x4) � (xi−1 ⊕ x4) ⊕ xi−1. Finally, node 4 receives x3 from
which it can calculate x4 = (x3 ⊕ x4) � x3].

For any information network N we can apply the split move until all inner
nodes have been spilt. In this case N becomes a bipartite graph BN with no
inner nodes. Notice that BN is uniquely determined by N .

Fig. 9.

This example suggests that it is always possible to replace the guessing part
of guessing game, and instead let all players have access to a suitable public
channel of information. We will show (Corollary 10) that this is possible for
linear solutions (also sometimes called matrix linear) for the guessing game, but
it is never possible if only non-linear solutions exists. Notice, that this analysis
is only meaningful when the alphabet (i.e. the dice values) can be organized
as a vector space U (of dimension d) over a finite field F (with a number q of
elements being a prime power). The number |U | of element of U is given by
s := qd.

Theorem 5
Assume that the alphabet U is a vector space of dimension d over a finite field
F with q elements (i.e. q is a prime power). Then the following statements
are equivalent:

(1) The players have a linear guessing strategy in the Guessing Game
(G, U) that succeeds with probability (1

qd)k

(2) G has a special linear guessing number k = klin(G, qd).
(3) The Public Channel Game (G, U, Uk) has a solution (possible non-

linear).
(4) The Bipartite information flow problem BG associated to G has a

solution (over U and possible non-linear) that uses a public channel
P of bandwidth k.

(5) The Bipartite information flow problem associated to G has a linear
solution (over U) that uses a public channel of bandwidth k.

(6) The Public Channel Game (G, U, Uk) has a linear solution.

886 S. Riis and R. Ahlswede

From this we get:

Theorem 6
Assume that the alphabet U is a finite dimensional vector space over a
finite field F . The nodes in a directed graph G can calculate their messages
(selected from U) if they have access to a public channel of bandwidth ≤ k
if and only if the (special) linear guessing number of G is ≥ |V | − k.

Theorem 6 explain the terminology of the (special) linear guessing number. In
the case where the alphabet is a vectorspace the linear guessing number (in sense
of linear maps) agree with the (general) linear guessing number. The two notions
of linear guessing numbers agree when they are both defined. The general linear
guessing number is, however, defined for all s ∈ {2, 3, 4, . . . , }, while the special
linear guessing number only is defined when s is a prime power (since a finite
dimensional vector space always has a number of elements being a prime power).

6.2 B. Proof of Theorem 5

First notice that (1) and (2) are equivalent (by definition). We claim:

Lemma 7
(1) implies (3):

Proof: We are given a graph G = (V, E) and we consider the Guessing Game
(G, U, Uk), for U being a vector space of dimension d over a field F with q
elements (q being a prime power). The number k is given by (1). We assume
that the players have a linear guessing strategy, i.e. a strategy where all functions
fw : U rω → U are linear (i.e. given by a rωd ⊗ d matrix with entries in F).
Furthermore we assume this linear guessing strategy makes it possible for the
players to guess correctly all their own dice values with probability (1

qd)k.
Consider Ũ := U |V |, the linear subspace of vectors (v1, v2, . . . , v|V |) ∈ U |V |

with vj ∈ U for j = 1, 2, . . . , |V |. Let W ⊆ Ũ denote the linear subspace of dice
values for which the players all successfully guess their own dice value (while
using the linear guessing strategy for which we assume that it exists). Since the
strategy is successful with probability (1

q)dk and since the number of points in
Ũ is qd|V | the number of points in W is qd|V |−dk. Since W is a linear subspace
with qd|V |−kd points, its dimension d|V | − dk must be an integer (thus dk must
be an integer while k might not be an integer).

For each vector u ∈ Ũ we consider the linear “side” space u + W . Let
u1, u2, . . . , ul denote a maximal family of vectors with W, u1+W, u2+W, . . . , ul+
W all being disjoint. It follows that l = qdk − 1, i.e. that there are qdk disjoint
side spaces of W and that W ∪j (uj + W) = U .

We can now convert this into a solution to the Public Channel Game (G, U, Uk).
We do this by broadcasting a public message as follows: Assume each node in V
has been assigned a value from U . The information of all dice values are contained
in a vector u ∈ Ũ . There exists exactly one index j ∈ {1, 2, . . . , l} such that u ∈

Problems in Network Coding and Error Correcting Codes 887

uj +W . Broadcast the index j ∈ {0, 1, 2, . . . , qdk−1} by selecting a bijection from
{0, 1, . . . , qdk−1} to U . Now each node can calculate its own message by correcting
their guess (they could have played the Guessing Game) by the suitable projection
of uj.

This shows that the Public Channel Game (G, U, Uk) has a solution (possi-
ble non-linear) with the public message being selected from the set of public
messages Uk. ♣
In this construction, the public channel broadcasts different messages for each
index j ∈ {1, 2, . . . , l}. In general this map is not linear. We will show that any
non-linear strategy can be turned into a linear strategy.

Lemma 8
(4) implies (5)

Before we prove this implication we make a few general observations and defin-
itions. Assume the flow problem has a solution with the public channel broad-
casting

p1(x1, x2, . . . , xn), . . . , pw(x1, x2, . . . , xn).

Since pj : An → A and A is a field, each function pj can be expressed as a
polynomial pj ∈ A[x1, x2, . . . , xn]. Each output node oj receives p1, p2, . . . , pw ∈
A as well as xj1 , xj2 , . . . , xjv ∈ A. The task of output node oj is to calculate
xj ∈ A. For any q ∈ A[x1, x2, . . . , xn] let L(q) ∈ A[x1, x2, . . . , xn] denote the
sum of all monomials (with the original coefficients) of q that only contains one
variable (e.g. xj , x

3, or x7
j). In other words L(q) consists of q where the constant

term, as well as all monomials containing more than one variable, have been
removed. If for example q = 5x1x3−7x1x2+3x1−5x2+1, then L(q) = 3x1−5x2.

We first consider the special case where the alphabet U is a one dimensional
vector space (i.e a finite field) rather than a general finite (dimensional) vector
space.

Lemma 9
A bipartite information flow problem B has a solution with public infor-
mation given by polynomials p1, p2, . . . , pw ∈ A[x1, x2, . . . , xn] then B has a
solution with public information given by linear expressions l1, l2, . . . , lw ∈
A[x1, x2, . . . , xn].

Remark: In general non-linear flows cannot be eliminated from information
networks. In a general network a non-linear solution might for example involve
that two nodes send messages (x + y) and (y + z) to a node r where their
product (x + y)(y + z) = xy + xz + yz + y2 = xy + xz + yz + y is being
calculated. Removing mixed monomials would lead to L(x + y) = x + y and
L(y + z) = y + z to be sent to node r where L((x + y)(y + z)) = y2 must be
calculated. Since it is not possible to derive y2 (or y) from x + y and y + z
the process of removing monomials with mixed variables fails in general. The
networks in [17] and [7] show that certain flow problems only have non-linear
solutions. For such networks any attempt of removing non-linear terms (not just

888 S. Riis and R. Ahlswede

using local linearisation) will fail. The point of the lemma is that the network
B together with any public channel is structured in such a fashion that allows
us to remove mixed terms and then replace the resulting function with linear
functions. Information networks in which only two messages are transmitted
provide another case where linearisation is always possible [8].

Proof of Lemma 9: We apply the operator L that removes all monomi-
als with two or more distinct variables. The public information then becomes
L(p1), L(p2), . . . , L(pw). These functions can be realized (since there are no re-
strictions on the public channel and all functions An → Aw can be calculated).
Using the same argument we can remove all mixed terms and insure that each
output node oj receives a function of its inputs (the input from input nodes as
well as from the public channel). This completes the proof of Lemma 9. ♣
In general, when A is a vector space the operator L removes all monomials that
contain variables associated to distinct inputs.

Thus it is easy to prove Theorem 5. We have shown (1) → (3) (Lemma 7) ,
as well as (4) → (5) (Lemma 8).

The implications (5) → (6) → (1) as well as (3) ↔ (4) are all almost trivial
and are left as easy exercises for the reader. This completes the proof of Theorem
5. Theorem 6 follows as an easy corollary.

7 Some Corollaries

In general the Guessing Game (G, s) might only have non-linear optimal guessing
strategies. When this happens G has linear guessing number klin that is strictly
smaller than G’s guessing number k. We have the following characterisation:

Corollary 10
Let G = (V, E) be a graph and let U be a finite vector space. The linear
guessing number klin of G over U is smaller or equal to the guessing number k
of G. Equality holds if and only if the Public Channel Game (G, U, U |V |−k))
is solvable.

We have seen that the problem of solving information network flow problems (of
class C) can be restated to that of calculating the guessing number of a graph.
The linear guessing number of a graph is an important concept:

Corollary 11
The information flow problem N ∈ C with n input/output nodes has a linear
solution (i.e. a solution within the “wave paradigm”) over an alphabet of size
s if and only if GN has its linear guessing number k(G, s) ≥ n (which happens
if and only if k(G, s) = n).

8 Algebraic Solution to the Case Where |A| = 2

Consider a directed graph G = (V, E). In this section we show that the linear
guessing number (for an alphabet of size 2) has an algebraic definition. Assume

Problems in Network Coding and Error Correcting Codes 889

G has no edges (v, v) ∈ E for v ∈ V . We say G′ = (V, E′) is a subgraph of G if
E′ ⊆ E. The reflexive closure ref (G) of G′ = (V, E′) is the graph that appear if
we add all the edges (v, v) to the edge set E′.

Theorem 12
Let G be a directed graph. Assume that the alphabet A contains two ele-
ments. Then G has linear guessing number k = klin,2 (for alphabet of size
2) if and only if there exists a subgraph G′ of G such that the rank of the
incident matrix for ref (G′) = k.

Proof: We assume A = {0, 1}. Assume G has linear guessing number k. Ac-
cording the Theorem 5 G has linear guessing number k if and only if the Public
Channel Game (G, 2) has a linear solution S with a public channel of bandwidth
k. We say an edge (v1, v2) ∈ E in G is active (with respect to the solution S)
if the message in v1 affects the guessing function in v2. Let E′ ⊆ E consists of
all active edges in G. Let G′ = (V, E′) be the subgraph of G that consists of all
active edges in G.

Consider a node w ∈ V such that (v1, w), (v2, w), . . . , (vd, w) are all active in-
coming edges. The (linear) signal being send to node w is s = mv1 +mv2 + . . .+
mvd

i.e. the sum of all incoming signals, as well as the signals that are send from
the public channel. Next we assume that the rank of ref (G′) is k for some G′ ⊆ G.
Let l1(x1, x2, . . . , xn), l2(x1, x2, . . . , xn), . . . , lk(x1, x2, . . . , xn) denote the k lin-
early independent rows of ref (G′). Send these signals as public messages. Let w
be an arbitrary node. The node receives a signal mv1 + mv2 + . . . + mvr from
the channels in G′. The node w needs to derive mw so it suffice to show that the
node w can derive mv1 + mv2 + . . . + mvd

+ xw from the public messages. But,
the row mv1 +mv2 + . . .+mvd

+mw appears in ref (G′) and thus it belong to the
span of the k vectors l1(x1, x2, . . . , xn), l2(x1, x2, . . . , xn), . . . , lk(x1, x2, . . . , xn)
that are send through the public channel. ♣
For a graph G let Ref(G) denote the reflexive closure of G. Let rank(G) denote
the rank over the field {0, 1} of the incident matrix of G.

Theorem 13
Assume the alphabet A = {0, 1} only contains two elements. Let G be a
graph. Then the Public Channel Game (G, {0, 1}, {0, 1}k) has a solution if
and only if

k ≥ minG′⊆Grank(Ref(G′))

9 More Games

Suppose N ∈ Cmultiple−unicasts is an information network where some nodes
have indegree > 2. For each node n with indegree d > 2 we can replace the
incoming d edges with a tree with d leaves and a root in n (see figure 11).

Theoretically this replacement restricts the power of the information network
since not all functions f : Ad → A can be written as a composition of d functions

890 S. Riis and R. Ahlswede

gj : A2 → A, with j = 1, 2, . . . , d. Let Sd denote the class of d-ary functions
f : Ad → A that can be written as a composition of d, 2-ary functions.

Given a directed graph G = (V, E) and assume that each node with indegree d
can only compute functions that belong to Sd. How does this affect the guessing
number of the graph? How does it affect the set of solutions?

The network in figure 2 corresponds to a type of games that can be described
as follows:

– Public Channel Game Variant(G, s): As before let G = (V, E) be a graph on a
vertex set V = {1, 2, . . . , n} of persons. The game is played by n players. Each
player is assigned a message selected from some alphabet {1, 2, . . . , s}. Each
person w ∈ {1, 2, . . . , n} receive the function value (a value in {1, 2, . . . , s})
from the set Aw = {v ∈ V : (v, w) ∈ E} ⊆ V. Each player also have access
to a public information channel p. How many messages should the public
channel p be able to broadcast for all players to be able to deduce there own
message? Problem 3 (in section I(A)) corresponded to the case where G is
the complete graph on n nodes.

As we already pointed out there exists graphs G for which the dice guess-
ing game only can achieve maximal probability, if the players uses non-linear
functions.

We will show (and this will follow as a corollary of Theorem 16) that:

Theorem 14
Assume that the public information is given by a function p : An → A. Then
the Public Channel Game Variant (Kn) played on the complete graph Kn has
a solution if and only if there exists a commutative group (A,⊕) structure
on the alphabet A and there exists n permutations π1, π2, . . . , πn ∈ SA of
elements in A such that the public channel broadcast

p(x1, x2, . . . , xn) = π1x1 ⊕ π2x2 ⊕ . . . ⊕ πnxn

Roughly, Theorem 14 states that the set of solutions consists of all the “obvious”
solutions (where p(x1, x2,xn) = x1 ⊕x2 ⊕ . . .⊕xnfor a commutative group),
together with all “encryptions” π : A → A of these.

10 On the Power of Network Coding

In this section we show that the advantage of (linear) Network Coding compared
to any method that does not allows “interference” is as high as one could possible
have hoped for. Consider the information networks N in figure 10. The networks
corresponds to the Guessing Game on the complete graph Kn.

Theorem 15
For each n there is a network N with n input nodes and n output nodes
such that the through-put is n times higher than any method that does not
allow interference.

Problems in Network Coding and Error Correcting Codes 891

Fig. 10.

For any n ∈ N and for any ε > 0 there exists a network N(n, ε) such that
the through-put divided by the number of active channel using Network
Coding, is n − ε times as high as the maximal through-put divided by the
number of active channels using methods that does not allow interference.

If each inner node is required to have in-degree (and out-degree) ≥ 2 the
result remains valid.

Proof: For each n ≥ 2 (and each ε > 0 we base the construction on the network
in figure 10. Assume that the public channel consists of m channels in serial. In
any “solution” (operating at rate 1

n) that does not allow mixture of datapackets
all messages must go through these m channels. Thus the number of active
channels is m+2. In the Network Coding solution (operating at rate 1) all n(n−
1)+(m+2) channels are active. We can choose m such that n×((m+2)

n(n−1)+(m+2)) >

n − ε. For this m the through-put divided by the number of active channel (in
the Network Coding solution) is n− ε times as high as the maximal through-put
divided by the number of active channels using methods that does not allow
interference.

Fig. 11.

The serial construction in this proof might be considered unacceptable. It
might be argued that the cost of using the serial channels ought to count as
1 rather than m. To overcome this criticism we can modify the serial channels
as indicated in figure 11 and select m such that each path through the public
channel still must involve ≥ m active channels (m chosen as before). ♣

892 S. Riis and R. Ahlswede

11 Analysis of Specific Networks

Consider the information network Nn sketched in figure 12. The network N(3)
is displayed in in figure 2.

The networks Nn corresponds to the Public Channel Game Variant (Kn, s)
played on the complete graph Kn.

Fig. 12.

Consider, again the information network N(3) in figure 2. The three output
nodes receive the messages l1(x2, x3) ∈ A, l2(x1, x3) ∈ A and l3(x1, x2) ∈ A.
Besides this, each output node has access to public message p = p(x1, x2, x3) ∈
A. We notice that a solution to the flow problem associated with N3 consists of six
functions l1, l2, l3, r1, r2, r3 : A×A → A as well as one function p : A×A×A → A
such that x1 = r1(p(x1, x2, x3), l1(x2, x3)), x2 = r2(p(x1, x2, x3), l2(x1, x3)) and
x3 = r3(p(x1, x2, x3), l3(x1, x2)).

The solution we already considered can be achieved (within the framework of
linear NetworkCoding) as follows: Let (A,⊕) be an Abelian group, let p(x1, x2, x3)
:= x1 ⊕ x2 ⊕ x3, let li(x, y) := x ⊕ y for i = 1, 2, 3 and let ri(x, y) := x � y for
i = 1, 2, 3. We leave to the reader to check that this defines a solution to the flow
problem associated with the network N3.

Actually, for each Abelian group (A,⊕) and for any three permutations π1, π2,
π3 : A → A the network has a solution with p(x1, x2, x3) := π1x1 ⊕ π2x2 ⊕ π3x3,
l1(x2, x3) := π2x2⊕π3x3, l2(x1, x3) := π1x1⊕π3x3 and l3(x1, x2) := π1x1⊕π2x2.
We will show that all solutions are essentially of this form. More generally let
Nn denote the network:

The network Nn has n input nodes. These transmit messages x1, x2, . . . , xn ∈
A. The messages x1, x2, . . . , xn are independent so we assume that the network
cannot exploit hidden coherence in the data. The network Nn has n internal
nodes l1, l2, . . . , ln. The node lj is connected to each input node except the node
that transmits message xj . The network has n output nodes that are required
to receive the messages x1, x2, . . . , xn−1 and xn (one message for each output
node). The node required to receive xj is connected to lj as well as to the public
channel p. The public channel broadcasts one message p = p(x1, x2, . . . , xn) ∈ A
to all output nodes. First we notice that:

Problems in Network Coding and Error Correcting Codes 893

Observation
The network Nn has a solution over any (finite) alphabet A. Using routing
only one message can be transmitted at a time. Thus the through-put using
Network coding is n-times as large as the through-put using any type of
routing method that does not allow interference. This is optimal since any
network problem with n input nodes that is solvable using network coding
can be solved using routing if the bandwidth is increased by a factor n.

The next Theorem gives a complete classification of the set of solutions (all
utilising Network coding) to the network Nn.

Theorem 16
Consider the network flow problem Nn over a finite alphabet A. Assume
n ≥ 3. Let p : An → A be any function. The network flow problem Nn has a
solution with public information p if and only if for some group composition
⊕ on A that makes (A,⊕) an Abelian group, there exist n permutations
π1, π2, . . . , πn : A → A such that p(x1, x2, . . . , xn) = ⊕n

j=1πjxj .

Proof: In general if Theorem 16 have been shown for Nr for some r ≥ 3 the
theorem is also valid for each Ns with s ≥ r. Thus to prove the theorem it
suffices to show that the theorem is valid for N3.

Let p : A3 → A be defined by p(x1, x2, x3). Assume that the network has a
solution when the public signal is given by p. The function p : A3 → A must be
‘latin’ (i.e. fa,b(z) := p(a, b, z), ga,c(y) := p(a, y, c) and hb,c(x) := p(x, b, c) for
each a, b, c ∈ A define bijections fa,b, ga,c, hb,c : A → A). Notice that p defines
a latin cube of order |A|. The functions l1.l2, l3 : A2 → A are also forced to be
latin i.e. they define three latin squares each of order |A|. In order to proceed
we need to prove a number of lemmas.

Lemma 17
Denote one element in A by 1. The network N3 has a solution for some
functions l1, l2, l3 : A2 → A if and only if the network N3 has a solution
when l1(x2, x3) := p(1, x2, x3), l2(x1, x3) := p(x1, 1, x3) and l3(x1, x2) =
p(x1, x2, 1).

Proof of Lemma 17: We introduce a new and interesting type of argument
that might be useful when reasoning about ‘latin’ network flow in general. For
each output node we draw a triangle with a coding function assigned to each
corner. The triangle corresponding to the output node that required output x1

has assigned p(x1, x2, x3), l1(x2, x3) and x1 to its corners. If p and l1 are func-
tions that produce a solution to the network flow problem, x1 ∈ A can uniquely
be calculated from p(x1, x2, x3) ∈ A and l1(x2, x3) ∈ A (i.e. there exists a (latin)
function f : A2 → A such that x1 = f(p(x1, x2, x3), l1(x2, x3))). Notice, that
any coding function assigned to one of the corners can be calculated uniquely
from the two other functions. More specifically l1(x2, x3) ∈ A is uniquely deter-
mined by x1 ∈ A and p(x1, x2, x3) ∈ A. And the value p(x1, x2, x3) is uniquely
determined by x1 and l1(x2, x3). We say that a triangle with a coding function

894 S. Riis and R. Ahlswede

assigned to each corner is ‘latin’ if each of the three coding functions can be
calculated from the two other functions. For any solution of the network flow
problem N3 each of the following three triangles are latin:

Fig. 13.

Letting x1 = 1 in triangle (i) we notice that p(1, x2, x3) can be calculat-
ed from l1(x2, x3) and conversely we notice that l1(x2, x3) can be calculated
from p(1, x2, x3). Thus we can replace the function l1(x2, x3) with the function
l1(x2, x3) = p(1, x2, x3). Similarly, by letting x2 = 1 in triangle (ii) and letting
x3 = 1 in triangle (iii) we obtain a solution with l2(x1, x3) = p(x1, 1, x3) and
l3(x1, x2) = p(x1, x2, 1). This completes the proof. ♣

Lemma 18
Assume that there is a solution to the flow problem N3 with public informa-
tion given by p : A3 → A. Then the latin function p(x1, x2, x3) determines
(uniquely) two latin functions (i.e two latin squares) l : A2 → A (l stands
for ‘left’) and r : A2 → A (r stands for ‘right’) defined by the two equations:

– p(1, l(x1, x2), x3) = p(x1, x2, x3)
– p(x1, r(x2, x3), 1) = p(x1, x2, x3)

Proof of Lemma 18: Certainly (since p is latin), there exist uniquely defined
functions l′, r′ : A3 → A such that p(1, l′(x1, x2, x3), x3) = p(x1, x2, x3) and
p(x1, r

′(x1, x2, x3), 1) = p(x1, x2, x3). To show Lemma 18 it suffices to show that
l′ is independent of x3 and that r′ is independent of x1. Consider the two latin
triangles:

Fig. 14.

Problems in Network Coding and Error Correcting Codes 895

In each triangle (iv) and (v) each coding function is uniquely determined
by the two other coding functions in the triangle. Thus there exists f, g :
A2 → A such that p(x1, x2, x3)=f(p(x1, x2, 1), x3) and such that p(x1, x2, x3)=
g(x1, p(1, x2, x3)). Let l(x1, x2) = l′(x1, x2, 1) and let r(x2, x3) = r′(1, x2, x3) and
notice that p(x1, x2, 1) = p(1, l(x1, x2), 1) and p(1, x2, x3) = p(1, r(x2, x3), 1).
But then p(x1, x2, x3) = f(p(x1, x2, 1), x3) = f(p(1, l(x1.x2), 1), x3) = p(1,
l(x1, x2), x3) and p(x1, x2, x3) = g(x1, p(1, x2, x3)) = g(x1, p(1, r(x2, x3), 1) =
p(x1, r(x2, x3), 1) . Thus l and r satisfies the same equations that uniquely deter-
mined l′ and r′ and thus l′(x1, x2, x3) = l(x1, x2) and r′(x1, x2, x3) = r(x2, x3).
This completes the proof. ♣
Lemma 19

Assume that p : A3 → A has a solution and that p(x1, x2, x3) = p(1,
l(x1, x2), x3) and assume that p(x1, x2, x3) = p(x1, r(x2, x3), 1). Then the
functions l, r : A2 → A satisfy the equation r(l(x1, x2), x3) = l(x1, r(x2, x3)).

Proof: Since p is latin and p(x1, x2, x3) = p(1, r(l(x1, x2), x3), 1) = p(1,
l(x1, r(x2, x3)), 1). ♣
The next three lemma are straight forward to prove.

Lemma 20
Assume p(x1, x2, x3) allows a solution and that l(x1, x2) and r(x2, x3) are
defined such that p(1, l(x1, x2), x3) = p(x1, x2, x3) and p(x1, r(x2, x3), 1) =
p(x1, x2, x3). Then for each pair π1, π3 :A→A of permutations p′(x1, x2, x3) =
p(π1x1, x2, π3x3) allows a solution and l′(x1, x2)=l(π1x1, x2) and r′(x2, x3) =
r(x2, π3x3) satisfies the equations

p′(1, l′(x1, x2), x3) = p′(x1, x2, x3) and p′(x1, r
′(x2, x3), 1) = p′(x1, x2, x3).

Lemma 21
There exists permutations π1, π3 : A → A such that l(π1x1, 1) = x1 and such
that r(1, π3x3) = x3.

Lemma 22
If p(x1, x2, x3) is a solution, there is another solution p′(x1, x2, x3) = p(π1x1,
x2, π3x3) such that the two functions l′(x1, x2) and r′(x2, x3) that satis-
fy the equations p′(1, l′(x1, x2), x3) = p′(x1, x2, x3), p′(x1, r

′(x2, x3), 1) =
p′(x1, x2, x3) as well as l′(x1, 1) = x1 and r′(1, x3) = x3.

Without loss of generality (possibly after having replaced x1 and x3 by π1x1

and π3x3) we can assume that we are given a latin function p(x1, x2, x3) and
two latin functions l(x1, x2) and r(x2, x3) that satisfies l(x1, 1) = x1, r(1, x3) =
x3, and have l(x1, r(x2, x3)) = r(l(x1, x2), x3) for all x1, x2, x3 ∈ A. But, then
r(x1, x3) = r(l(x1, 1), x3) = l(x1, r(1, x3)) = l(x1, x3) and thus l = r. But then
l is transitive i.e. l(x1, l(x2, x3)) = l(l(x1, x2), x3). Furthermore since l(x, 1) = x
and l(1, x) = r(l, x) = x we notice that l defines a group operation on A. Thus
we have shown that for any function p(x1, x2, x3) that allows a solution to the

896 S. Riis and R. Ahlswede

network flow problem N3, there exist permutations π1, π3 : A → A such that if
we let p′(x1, x2, x3) = p(π1x1, x2, π3x3) then there is a group structure ∗ on A
such that p′(x1, x2, x3) = p′(1, x1 ∗ x2 ∗ x3, 1) for all x1, x2, x3. But then there
is a permutation π : A → A such that if we let p′′(x1, x2, x3) = π(p′(x1, x2, x3))
then p′′(1, b, 1) = b for all b ∈ A. Notice, that p′′(x1, x2, x3) = π(p′(x1, x2, x3)) =
π(p′(1, x1 ∗ x2 ∗ x3, 1)) = p′′(1, x1 ∗ x2 ∗ x3, 1) = x1 ∗ x2 ∗ x3. This shows:

Lemma 23
Let p : A3 → A be the public information in the network N3. Then, if there is
a solution to the network flow problem N3, there exists a group composition ∗
on A such that ‘essentially’ p(x1, x2, x3) = x1∗x2∗x3 (modulo the application
of suitable permutations to x1, x3 and p (or x2)).

Lemma 24
Let (A, ∗) be a group and let p(x1, x2, x3) = x1 ∗ x2 ∗ x3. Then the flow
problem N3 has a solution if and only if (A, ∗) is a commutative group.

Proof: Assume that p(x1, x2, x3) = x1∗x2∗x3 (or just x1x2x3 for short) allows a
solution. Then we have the following ‘derivation’ from latin triangle with coding
functions p(a, b, c) = abc, p(a, 1, c) = ac and b.

Fig. 15.

Figure 15, represents the fact that b can be uniquely determined from abc
and ac. But, then given c−1bc and ac we can calculate abc = (ac)c−1bc and
thus we can determine b. Now ac can take any value (depending on a) and
thus this equation is useless in calculating b. This shows that b is uniquely
determined from c−1bc. The expression c−1bc must be independent of c and
thus c−1bc = 1−1b1 = b. But, then bc = cb for all a, b, c ∈ A which shows that
the group (A, ∗) must be a commutative group. The converse is rather obvious,
since if (A, ∗) is an ablean group and p(x1, x2, x3) = x1x2x3, we get a solution
by letting l1(x1, x2) = x1x2, l2(x1, x3) = x1x3 and l3(x1, x2) = x1x2. This
completes the proof of Lemma 19 which in turn clearly implies the theorem for
N3. This in turn easily implies the validity of Theorem 2 for general Nn with
n ≥ 3. ♣

References

1. S. Medard, R.Koetter, M. Acedanski, and S. Deb, How good is random linear
coding based distribued network storage? to appear.

2. A. Aggarwal and J.S. Vitter, The input/output complexity of sorting and related
problems, Communications of the ACM, 31, 9, 1116–1126, 1988.

3. R Ahlswede, N Cai,S.Y.R. Li, and R.Yeung, Network information flow, IEEE Trans.
Inf. Theory, Vo. 46, No. 4, 1204-1216, 2000.

Problems in Network Coding and Error Correcting Codes 897

4. K.R. Bhattad and K. Narayanan, Weakly secure network coding, to appear.
5. N. Cai and R.W. Yeung, Network coding and error correction, ITW Bangalore,

119–122, 2002.
6. S. Deb, C. Choute, M. Medard, and R. Koetter, Data harvesting: A random coding

approach to rapid dissemination and efficient storage of data, INFOCOM, 2005,
submitted.

7. R. Dougherty, C. Freiling, and K. Zeger, Insufficiency of linear coding in network
information flow, Technical report, February 2004.

8. R. Dougherty, C. Freiling, and K. Zeger, Linearity and solvability in multicast
networks, Proceeding of CISS, 2004.

9. R. Dougherty, C. Freiling, and K. Zeger, Network routing capacity, IEEE/ACM
TRANSACTIONS ON NETWORKING, October 2004, submitted.

10. C. Fragouli and E. Soljanin, A connection between network coding and convolu-
tional codes, IEEE International Conference on Communications, 2004.

11. T. Ho, M. Medard, and R. Koetter, An information theoretic view of network
management, Proceeding of the 2003 IEEE Infocom, 2003.

12. R. Koetter and M. Medard. An algebraic approach to network coding, Proceedings
of the 2001 IEEE International Symposium on Information Theory, 2001.

13. R. Koetter and M. Medard, Beyond routing: an algebraic approach to network
coding, Proceedings of the 2002 IEEE Infocom, 2002.

14. S.-Y.R. Li, R.W.Yeung, and N. Cai, Linear network codes, IEEE Trans. Inform.
Theory, Vol. 49 ,371-381, 2003.

15. K. Rabaey, J. Petrovic, and D. Ramchandran, Overcomming untuned radios in
wireless networks with network coding, to appear.

16. L.G. Pippenger and N. Valiant, Shifting graphs and their applications, JACM, 23,
423–432, 1976.

17. S. Riis, Linear versus non-linear boolean functions in network flow, Proceeding of
CISS, 2004.

18. S. Riis and R. Ahlswede, Problems in network coding and error correcting codes,
NetCod 2005.

19. M. Thorup and S. Riis, Personal communication, 1997.
20. L. Valiant, Graph-theoretic arguments in low-level complexity LNCS, Springer

Verlag, No. 53, 162-176, 1997.
21. L. Valiant, On non-linear lower bounds in computational complexity, Proc. 7th

ACM Symp. on Theory of Computing, 45–53, 1975.
22. L. Valiant, Why is boolean circuit complexity theory difficult? In M.S. Patterson,

editor, Springer Lecture Series, 84–94, 1992.
23. C. Boudec J.Y. Widmer, and J. Fragouli, Low-complexity energy-efficient broad-

casting in wireless ad-hoc networks using network coding, to appear.
24. Y. Wu, P.A. Chou, and S.Y. Kung, Information exchange in wireless networks with

network coding and physical-layer broadcast, Technical Report MSR-TR-2004-78,
Microsoft Technical Report, Aug. 2004.

25. R. Yeung and Z. Zhang, Distributed source coding for satellite communications,
IEEE Trans. Inform. Theory, Vol. 45, 1111–1120, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

