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1 Introduction

Denote by Ω = {1, . . . , n} an n–element set. For all A, B ∈ (Ωk
)
, the k–element

subsets of Ω, define the relation ∼ as follows:
A ∼ B iff A and B have a common shadow, i.e. there is a C ∈ ( Ω

k−1

)
with C ⊂ A

and C ⊂ B. For fixed integer α, our goal is to find a family A of k–subsets with
size α, having as many as possible ∼ –relations for all pairs of its elements. For
k = 2 this was achieved by Ahlswede and Katona [2] many years ago. However,

it is surprisingly difficult for k ≥ 3, in particular there is no complete solution
even for k = 3. Perhaps, the reason is the complicated behaviour for “bad α” so
that the most natural and reasonable conjecture, which will be described in the
last section and was mentioned already in [2], is false. Actually, our problem can

also be viewed as a kind of isoperimetric problem in the sense of Bollobás and
Leader ([4], see also [6]). They gave two versions. Partition the vertex set V of
a graph G = (V, E) into 2 parts A and Ac such that for fixed α |A| = α and

I. The subgraph induced by A has maximal number of edges
or

II. The number of edges connecting vertices from A and Ac is as small as
possible.

When G is regular, the two versions are equivalent. In our case we define G =
(V, E) by V =

(
Ω
k

)
and E =

{{A, B} ⊂ V : A �= B and A ∼ B
}
. Thus the original

problem is an edge–isoperimetric problem for a certain regular graph. In order

to solve our problem, in Section 2 we reduce it to another kind of problem, which
we call “sum of ranks problem”: For a lattice with a rank function find a downset
of given size with maximal sum of the ranks of its elements. Similar questions
were studied in [3], [6], and [8]. In Section 3, we go over to a continuous version

of the problem and solve it for k = 3 and “good α”. Some of the auxiliary
results and ideas there extend also to general k. A related but much simpler

result concerning a moment problem is presented in Section 4.

2 From Edge–Isoperimetric to Sum of Ranks Problem

In this section we reduce the edge–isoperimetric problem to the sum of ranks
problem. Denote by L(n, k) = (Sn,k,≤) the lattice defined by
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Sn,k =
{
(x1, . . . , xk) : 1 ≤ x1 < x2 · · · < xk ≤ n, xi ∈ Z

+
}

and (x1, . . . , xk) ≤ (x′
1, . . . , x

′
k) ⇔ xi ≤ x′

i(1 ≤ i ≤ k). For xk ∈ Sn,k, the rank

of xk is defined as |xk| =
∑k

i=1 xi and for W ⊂ Sn,k, let ||W || =
∑

xk∈W |xk|.
In addition we let A = {x1, . . . , xk} ∈ (Ωk

)
, with elements labelled in increasing

order, correspond to xk = Φ(A) � (x1, . . . , xk) ∈ Sn,k, and, similarly, A ⊂ (Ωk
)

to Φ(A) =
{
Φ(A) : A ∈ A}. Moreover, for A ⊂ (Ωk

)
we introduce

P(A) =
{
(A, B) ∈ A2 : A ∼ B

}
.

Using for A ∈ A and 1 ≤ i < j ≤ n the following “pushing to the left” or
so–called switching operator Oi,j , which is frequently employed in combinatorial
extremal theory:

Oi,j(A) = (A � {j}) ∪ {i} if (A � {j}) ∪ {i} /∈ A, j ∈ A, and i /∈ A
A otherwise,

one can prove, by standard arguments, that for fixed α an A ⊂ (Ωk
)

with |A| = α,
which maximizes | P(A) |, can be assumed to be within a family of subsets, which
are invariant under the pushing to left operator. It is also easy to see that such
subsets correspond to a downset in L(n, k).

Lemma 1. For α ∈ Z
+ max|A|=α | P(A) | is assumed by an A ⊂ (Ωk

)
s.t. Φ(A)

is a downset in L(n, k).

Now we are ready to show the first of our main results.

Theorem 1. For fixed α ∈ Z
+, maximizing | P(A) | for A ⊂ (Ωk

)
, |A| = α, is

equivalent to finding a downset W in L(n, k) with |W | = α and maximal ||W ||.

Proof. Assume that A ⊂ (Ωk
)
, W = Φ(A) is a downset in L(n, k), and |A| = α.

For every xk ∈ W there are exactly

(xi+1 − xi − 1)
(

k − i

k − 1 − i

)
= (xi+1 − xi − 1)(k − i) (1.1)

yk’s with yk ≤ xk, whose first i components coincide with those of xk and the
(i + 1)-st components differ, and for which A and B have a common shadow if
xk = Φ(A) and yk = Φ(B). (Here x0 � 0.) By (1.1), for xk = Φ(A) fixed, there

is a total of
k−1∑
i=0

(xi+1 − xi − 1)(k − i) =
k∑

i=1

(k − i + 1)xi −
k−1∑
i=0

(k − i)xi −
k−1∑
i=0

(k − i)

=
k∑

i=1

xi −
(

k + 1
2

)
= |xk| −

(
k + 1

2

)
(1.2)
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B’s with Φ(B) = yk ≤ xk, B ∼ A, and with Φ(B) ∈ A, because Φ(A) is a
downset. Consequently

| P(A) |= 2
∑

xk∈W

|xk| − 2
(

k + 1
2

)
|A| = 2||W || − 2α

(
k + 1

2

)
. (1.3)

Thus our theorem follows from Lemma 1 and (1.3).

From now on we study our problem in the “sum–rank” version.

3 From the Discrete to a Continuous Model

A natural idea to solve a discrete problem for “good parameters” is to study
the related continuous problem. Every zk ∈ Z

k we let correspond to a cube

C(zk) �
{
xk : 
xi� = zi

}
in R

k. This mapping sends our SU,k for U ∈ Z
+ to

∼→ SU,k �
{
xk : 0 < x1 < x2 · · · < xk ≤ U , 
xi� �= 
xj�, if i �= j

}
. Thus, keeping

the partial order “≤”, we can “embed” our L(U, k) into a “continuous lattice”
∼→ L(U, k) = ( ∼→ SU,k,≤). Moreover, the image ∼→ W � Φ(W ) of a downset W in
L(U, k) is a downset in ∼→ L(U, k), with (finite) integer–components for maximal
points. Let μ be the Lebesgue measure on R

k′
, and let k′ ≤ k be specified by

the context. For W ⊂ R
k, define

||W || =
∫

W

|xk|dμ, where |xk| =
∑

j

xj . (3.1)

Let D be the set of downsets in ∼→ L(U, k) with finitely many maximal points.
Since it is of no consequence if we add or substract a set of measure zero, we will
frequently exchange “<” (or “>”) and “≤” (or “≥”) in the sequel. It is enough

in our problem for “good α” to consider max
μ(

∼→W )=α,
∼→W∈D ||W || in ∼→ L(U, k),

and the following lemma is the desired bridge.

Lemma 2. Suppose that ∼→ W ∈ D has only maximal points with integer com-
ponents, and so for a W ⊂ L(U, k) ∼→ W = Φ(W ).

Then

|| ∼→ W || = ||W || − k

2
α, where α = μ( ∼→ W ). (3.2)

Proof.

|| ∼→ W || =
∑

zk∈W ||C(zk)|| =
∑

zk∈W

∫
C(zk) |xk|μ(dxk)

=
∑

zk∈W

∫ zk

zk−1 dxk . . .
∫ z1

z1−1 dx1

∑k
j=1 xj

=
∑

zk∈W

∑k
i=1

∫ zi

zi−1
xidxi =

∑
zk∈W

∑k
i=1

1
2 (2zi − 1)

(3.3)

and (3.2) follows, because |W | = μ( ∼→ W ). We say that W ∈ D can be reduced
to W ′ ∈ D, if μ(W ′) = μ(W ) and ||W ′|| ≥ ||W ||.
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4 Cones and Trapezoids

Next we define cones and trapezoids, which will play important role in our
problem. A cone in ∼→ SU,k is a set

Kk(u) =
{
xk ∈ Rk : 0 < x1 < · · · < xk ≤ u and �xi� �= �xj� for i �= j

}
, with u ≤ U.

(4.1)

Clearly, ∼→ SU,k is a cone itself. It can be denoted by Kk(U). A trapezoid Rk(v, u)

in Kk(U) is a downset below (v, u . . . u), where 0 < v ≤ u ≤ U , i.e.

Rk(v, u) �
{
xk ∈ ∼→ SU,k : x1 ≤ v, xk ≤ u

}
(4.2)

and therefore Kk(u) = Rk(u, u). Moreover, for W ⊂ Kk(u) set

W
(u) � Kk(u) � W (4.3)

and
Ŵ (u) �

{
(
u�, . . . , 
u�) − xk : xk ∈ W

(u)}
. (4.4)

For integral u one can easily verify that

W = V̂ (u) for V = Ŵ (u) (4.5)

and
Rk(v, u) = K̂

(u)
k (u − v). (4.6)

Lemma 3. For W ∈ D and W ⊂ Kk(u), u ≤ U ,

||W || = ||Kk(u)|| − k
u�μ(Ŵ (u)) + ||Ŵ (u)||. (4.7)

Proof. According to the definitions of “∧(u)” and “|| ||”,

||W || =
∫

W
|xk|μ(dxk) =

∫
Kk(u)�W

(u) |xk|μ(dxk)
= ||Kk(u)|| − ∫

W
(u) |xk|μ(dxk)

= ||Kk(u)|| − ∫
Ŵ (u)

∑k
j=1

(
u� − xj)μ(dxk)
= ||Kk(u)|| − k
u�μ(Ŵ (u)

)
+ ||Ŵ (u)||.

Notice that for u /∈ Z
+ Ŵ (u) is not in L(u, k).

Corollary 1. For u ∈ Z
+

||Kk(u)|| =
ku

2
μ(Kk(u)). (4.8)

Proof. One can verify (4.8) by standard techniques in calculus for evaluating
integrals, however, Lemma 3 provides a very elegant and simple way.
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By (4.7) for W ⊂ Kk(u)

||W || − ||Ŵ (u)|| = ||Kk(u)|| − ku μ
(
Ŵ (u)

)
(4.9)

and by (4.5) and (4.7) one can exchange the roles of W and Ŵ . Therefore we
have

||Ŵ (u)|| − ||W || = ||Kk(u)|| − ku μ(W ). (4.10)

“Adding (4.9) and (4.10)” and using the fact μ(Kk(u)) = μ(W ) + μ
(
Ŵ (u)

)
, we

obtain (4.8). Next we establish a connection between ||Kk(u)|| and μ(Kk(u)) for

not necessarily integral u. It can elegantly be expressed in terms of densities. We
define the density of W ⊂ R

k′
(k′ ≤ k defined by context) as

dk′ (W ) =
||W ||
μ(W )

and set d = dk. (4.11)

Then Corollary 1 takes the form

d
(
Kk(u)

)
=

k

2
u, u ∈ Z

+. (4.12)

We extend this formula to general u.

Lemma 4. For u ≤ U not necessarily integers, denote by θ � {u} = u − 
u�
the fractional part of u. Then

(i) μ
(
Kk(u)

)
=
(�u	

k

)
+ θ
( �u	
k−1

)
,

(ii) ||Kk(u)|| = ku
2 μ
(
Kk(u)

)
+ k−1

2 θ(1 − θ)
( �u	

k−1

)
and therefore

(iii) d
(
Kk(u)

)
= ku

2 +
k−1
2 θ(1−θ)

1
k

(
�u	+1−k

)
+(k−1)θ

.

Proof. By its definition

Kk(u) = Kk

(
u�) ∪ {xk : 
u� < xk ≤ u and (x1, . . . , xk−1) ∈ Kk−1

(
u�)}
� Kk

(
u�) ∪ J (say).
(4.13)

On the other hand, according to the correspondence Φ between the discrete and
the continuous models,

μ
(
Kk(
u�)) =

(
u�
k

)
, μ
(
Kk−1(
u�)

)
=
( 
u�

k − 1

)
. (4.14)

Therefore μ(J) = θ
( �u	
k−1

)
and consequently (i) holds. Now

||Kk(u)|| = ||Kk

(
u�)|| + ||J ||. (4.15)



984 R. Ahlswede and N. Cai

By Corollary 1 and (4.14)

||Kk

(
u�)|| =
k
u�

2

(
u�
k

)
. (4.16)

Furthermore, by (4.8) for k − 1 and by (4.14)

||J || = μ
(
Kk−1(
u�

) ∫ u

�u	 xk dxk +
∫ u

�u	 dxk||Kk−1

(
u�)||
=
(
u� + θ

2

)
θ
( �u	
k−1

)
+ θ k−1

2 
u�( �u	k−1

)
.

(4.17)

Combination of these three identities gives

||Kk(u)|| =
k
u�

2

(
u�
k

)
+
(

u� +

θ

2
+

k − 1
2


u�
)

θ

( 
u�
k − 1

)

and thus

||Kk(u)|| =
k
u�

2

(
u�
k

)
+
(

k + 1
2


u�+
θ

2

)
θ

( 
u�
k − 1

)
. (4.18)

This and (i) imply

||Kk(u)|| − ku
2 μ
(
Kk(u)

)
= −kθ

2

(�u	
k

)
+
(

�u	
2 − k−1

2 θ
)

θ
( �u	

k−1

)

= −kθ
2

(�u	
k

)
+ �u	

2 θ
( �u	

k−1

)− k−1
2 θ2

( �u	
k−1

)

= − θ�u	
2

(�u	−1
k−1

)
+ �u	

2 θ
( �u	

k−1

)− k−1
2 θ2

( �u	
k−1

)

= �u	
2 θ
(�u	−1

k−2

)− k−1
2 θ2

( �u	
k−1

)
= k−1

2 θ
( �u	
k−1

)− k−1
2 θ2

( �u	
k−1

)
,

and therefore (ii).

Remark 1 (to Lemma 4).
Actually, we can derive a somewhat more general result along the same lines.
Let Jk(u, u′) �

{
(x1, . . . , xk) | u < x1 < · · · < xk ≤ u′ and 
xi� �= 
xj�, for

i �= j
}
, u < u′ ∈ R, θ � 
u� − u and θ′ = u′ − 
u′� � {u′}, then

μ
(
Jk(u, u′)

)
=
(
u′� − 
u�

k

)
+
(
u′� − 
u�

k − 1

)
(θ + θ′) + θθ′

(
u′� − 
u�
k − 2

)
(4.19)

and

||Jk(u, u′)||−k(u+u′)=
k − 1

2
[
(θ′−θ)[1−(θ+θ′)]

](
u′� − 
u�
k − 1

)
−θθ′

2
(θ′−θ)

(
u′� − 
u�
k − 2

)
.

(4.20)

This can be seen as follows.
By shifting the origin, we can assume w.l.o.g., that u = −θ, θ ∈ [0, 1), i.e.

u� = 0. Then

Jk(u, u′)=Kk

(�u′�)∪({x1 : −θ < x1 ≤ 0}×{(x2, . . . , xk) : (x2, . . . , xk) ∈ Kk−1(�u′�))
∪({(x1, . . . , xk−1) : (x1, . . . , xk−1) ∈ Kk−1(�u′�)} × {xk : �u′� < xk ≤ u′})

∪({x1 : −θ < x1 ≤ 0} × {(x2, . . . , xk−1) ∈ Kk−2(�u′�)} × {xk : �u′� < xk ≤ u′})

and by the same argument as the one used in the proof of Lemma 4 we obtain
(4.19) and (4.20).
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5 The Cases k = 2, 3

Using the same idea as in the proof of Theorem 1 in [2] simple calculations lead
to two alternatives.

Lemma 5. For k = 2, U ∈ Z
+ and W ∈ D consider

m1(W ) � max
{
x : (x, y) ∈ W for some y

}
. (5.1)

Then

(i) W can be reduced to a trapezoid, if m1(W ) ≤ U
2

and

(ii) W can be reduced to a cone, if m1(W ) ≥ U
2 .

Now we turn our attention to k = 3 and drop all subscripts k (for example write
K(U) instead of K3(U) and so on).
For W ⊂ K(U) we call the 2–dimensional set

Su(W ) �
{
(x, y) : (x, y, u) ∈ W and (x, y, u + ε) /∈ W for all ε > 0

}
(5.3)

a Z–surface of W at u.
We call this surface regular, when for some (x, y) ∈ Su(W ) and some ε > 0
(x, y, u + ε) ∈ K(U). Therefore Su(W ) is irregular iff u = U . The Y – and
X–surfaces are defined analogously. We present now the basic idea of “moving

top layers from lower density to higher density”.
Observe first that the condition μ

(
R(ν, u)

)
= α (for fixed α) forces v to depend

continuously on u, say
v = Vα(u). (5.4)

There are again two alternatives.

Lemma 6. For k = 3, u ≤ U , and U ∈ Z
+ any trapezoid R(v, u) can be reduced

to a cone or the trapezoid R
(
Vα(U), U

)
.

Proof. Fix α and U ∈ Z
+. Then ||R(Vα(u), u

)|| is a continuous function in u,
which achieves a maximal value. So, if the lemma is not true, then there are a
U ∈ Z

+, an α, and a u0 with v0 � Vα(u0) < u0 < U and R(v0, u0) achieves the
maximal value. R(v0, u0) has one regular Z–surface and one regular X-surface,
namely

S1 �
{
(x, y) : 0 < x < y ≤ 
u0� − 1, x ≤ v0 and 
x� �= 
y�}

and S2 �
{
(y, z) : 
v0� < y < z ≤ u0 and 
y� �= 
z�}. (5.6)

(c.f. Figure 1)
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�u0� − 1
v0

ũ − �v0�

Y

X
z = u0

: S1 : S′
1 : S3

�

�

�

�

v0

} δ1

Z

Y
x = v0

: S2 : S′
2 : S

(1)
2 : S(2)

ũ
−

�v
0
�

�

�

Fig. 1.

Case 1: d(S1) + u0 < d(S2) + v0. (5.7)

Choose δ1, δ2 > 0 and define

D1 = S1 × {z : u0 − δ1 < z ≤ u0}
and D2 = {x : v0 < x ≤ v0 + δ2} × S′

2.
(5.9)
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They satisfy

μ(D1) = μ(D2), (5.10)

δ1 ≤ u0 −
(
u0� − 1

)
, δ2 ≤ (
v0� + 1

)− v0, (5.11)

and
d(S1) + u0 < d(S′′

2 ) + v0 ≤ d(S′
2) + v0, (5.12)

where
S′′

2 � S2 �
{
(y, z) : u0 − δ1 < z ≤ u0

}
(5.13)

and

S′
2 �

{
S′′

2 �
{
(y, z) : v0 < y ≤ v0 + 1

}
if v0 ∈ Z

+

S′′
2 otherwise. (5.14)

The second inequality in (5.12) follows from Lemma 4 and our choice is possible
by (5.7). Then

R′ �
(
R(v0, u0) � D1

) ∪ D2 ∈ D (5.15)

is a trapezoid with measure α.
However by (5.9) - (5.14),

||R′|| − ||R(v0, u0)|| = ||D2|| − ||D1||
= μ(S′

2)
∫ v0+δ2

v0
xdx + δ2||S′

2||
] − [||S1||δ1 + μ(S1)

∫ u0
u0−δ1

zdz

=
[(

μ(S′
2)δ2

) (
v0 + δ2

2

)
+
(
δ2μ(S′

2)
)
d(S′

2)
]− [(μ(S1)δ1

)
d(S1) +

(
μ(S1)δ1

) (
u0 − δ1

2

)]
= μ(D2)

[
v0 + δ2

2
+ d(S′

2)
]− μ(D1)

[
d(S1) + u0 − δ1

2

]

= μ(D1)
[(

d(S′
2) + v0

)− (d(S1) + u0

)
+ δ1+δ2

2

]
> 0,

[(

[

a contradiction. Here the fourth equality follows from μ(S′
2)δ2 = μ(D2) and

μ(S1)δ1 = μ(D2) (by (5.9)), the fifth equality follows from (5.10) and the in-
equality follows from (5.12).

Case 2: d(S1) + u0 > d(S2) + v0. One can come to a contradiction just like in
case 1.
Case 3: d(S1) + u0 = d(S2) + v0. (5.16)

S2 is a “shifted cone”. One can calculate d(S2) and conclude with (5.16)


u0� − 2 > v0. (5.17)

Consequently the following two surfaces are not empty:

S′
1 �

{
(x, y) : 0 < x < y ≤ 
u0� − 2, x ≤ v0 and 
x� �= 
y�}

and S
(1)
2 �

{
(y, z) : 
v0� < y < z ≤ u0 − 1 and 
y� �= 
z�}

= S2 �
{
(y, z) : u0 − 1 < z ≤ u0

}
.

(5.19)
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(See Figure 1) Assume first that

μ(S′
1) ≥ μ(S(1)

2 ). (5.20)

Let

D1 �
{
(x, y, z) ∈ R(v0, u0) : u0 − 1 < z ≤ u0

}
= S1 × {z : �u0� − 1 < z ≤ u0

} ∪ S′
1 × {z : u0 − 1 < z ≤ �u0� − 1

}
� D′

1 ∪ D′′
1 ,

D2 �
{
(x, y, z) ∈ SU : v0 < x ≤ x0, z ≤ u0 − 1

}

=
{
x : v0 < x ≤ �v0�

} × S
(1)
2 ∪

[⋃
i≥2

({
x : �v0� + i − 1 < x ≤ v(i)

} × S
(i)
2

)]
,

(5.22)

where
S

(i)
2 = S

(i−1)
2 �

{
(y, z) : 
v0� + 2 − i < x ≤ 
v0� + 3 − i

}
,

the last v(i) equals x0, for the other i’s v(i) = 
v0�+i, and finally x0 is specified by

μ(D1) = μ(D2), if such an x0 exists.

Otherwise continue with Case 4. Introduce now

R′ =
(
R(v0, u0) � D1

) ∪ D2.

R′ is a trapezoid with measure α. Now we have, with justifications given

afterwards,

||D1|| =
[
μ(S1)

(
u0 − u0−�u0�+1

2

) (
u0 − �u0� + 1

)
+ ||S1||

(
u0 − �u0� + 1

)]

+
[
μ(S′

1)
(
�u0� − �u0�−u0

2 − 1
) (�u0� − u0

)
+ ||S′

1||
(�u0� − u0

)]

= μ(D′
1)
(
d(S1) + u0 − u0−�u0�+1

2

)
+ μ(D′′

1 )
[
d(S′

1) + �u0� − �u0�−u0
2 − 1

]

=
[
μ(D′

1)d(S1) + μ(D′′
1 )d(S′)

]
+(u0 − 1)

(
μ(D′

1) + μ(D′′
1 )
)

+ 1
2μ(D′

1)
(
u0 − �u0� + 1

)
+ 1

2

(�u0� − u0

)(
2μ(D′

1) + μ(D′′
1 )
)

< μ(D1)
(
d(S1) + u0 − 1

)
+ 1

2

(
u0 − �u0� + 1

)
μ(D′

1) + 1
2

(�u0� − u0

)(
2μ(D′

1) + μ(D′′
1 )
)

= μ(D1)
(
d(S1) + u0 − 1

)
+ 1

2

[
μ2(D′

1)
μ(S1)

+ 2μ(D′
1)μ(D′′

1 )
μ(S′

1) + μ(D′′
1 )2

μ(S′
1)

]

<
(
d(S1) + u0 − 1 + μ(D1)

2μ(S′
1)

)
μ(D1).

(5.23)
Here the second and the fourth equality are obtained by

μ(D′
1) = μ(S1)

(
u0 − 
u0� + 1

)
and μ(D′′

1 ) = μ(S′
1)
(
u0� − u0

)
.

The first inequality follows from d(S1) > d(S′
1) and μ(D1) = μ(D′

1)+μ(D′′
1 ) and

the second one follows from μ(S1) > μ(S′
1). Similarly, since d(S(1)

2 ) < d(S(i)
1 )

and μ(S(1)
2 ) > d(S(i)

2 ) for i ≥ 2

||D2|| >

(
d(S(1)

2 ) + v0 +
μ(D2)

2μ(S(1)
2 )

)
μ(D2). (5.24)
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Finally, as S2 and S
(1)
2 are shifted cones, by (iii) in Lemma 4, (5.6), (5.16), and

(5.19)
d(S(1)

2 ) + v0 > d(S2) − 1 + v0 = d(S1) + u0 − 1. (5.25)

So a contradiction ||R′|| − ||R(v0, u0)|| = ||D2|| − ||D1|| > 0 follows from (5.19),
(5.23), and (5.25). Therefore (5.20) must be false, i.e.

μ(S′
1) < μ(S(1)

2 ). (5.26)

Let now ∼→ u � 
u0� − 2, S3 � K( ∼→ u) � S′
1 (c.f. Figure 1), ξ = 1 − {v0}, and

η = u0 −
(
u0� − 1

)
, then by (5.26)

μ(S3) − μ(S′
1) > μ(S3) − μ(S(1)

2 ) =
(∼→ u − 
v0�

)
(ξ − η), (5.27)

and by (i) in Lemma 4

μ(S3) =
1
2
[( ∼→ u−�v0�

)2 − ( ∼→ u−�v0�
)
+ 2ξ

(∼→ u− �v0�
)]

=
∼→ u − �v0�

2
(∼→ u− �v0� 1 + 2ξ .

(5.28)
However, by their definitions

μ(S′
1) + μ(S3) = μ

(
K( ∼→ u)

)
=

1
2
( ∼→ u2− ∼→ u

)
. (5.29)

Adding (5.27) to (5.29) we obtain

μ(S3) >
1
4
( ∼→ u − 1) ∼→ u +

1
2
(∼→ u − 
v0�

)
(ξ − η). (5.30)

(5.28) and (5.30) imply

( ∼→ u − 
v0�
)( ∼→ u − 
v0� − 1 + ξ + η

)
>

∼→ u

2
( ∼→ u − 1). (5.31)

Simplifying (5.31), we obtain
( ∼→ u − �v0�

)2
>

∼→u2

2
+

∼→u
2

− �v0� − (ξ + η)
( ∼→ u − �v0�

)
>

∼→u2

2
− 3

2

∼→ u + �v0�
(as

∼→ u ≥ �v0�, see (5.17) and as ξ + η ≤ 2)

= 1
2

( ∼→ u − 3
2

)2

− 9
8

+ �v0�, i.e.

∼→ u − �v0� >
√

2
2

∼→ u − 3
√

2
4

, or

�v0� <
(
1 −

√
2

2

) ∼→ u + 3
√

2
4

=
(
1 −

√
2

2

)
u − 1 + 5

√
2

4
,

(5.32)

where u � 
u0�−1 = ∼→ u+1. On the other hand, by (iii) in Lemma 4 and (5.16)

with η′ = {u0}

d(S1) = d(S2) + v0 − u0 ≤
(
u0 + 
v0� + η′(1−η′)

u−
v0�−1

)
+ v0 − u0

= v0 + 
v0� + η′(1−η′)
u−
v0�−1 .

(5.33)
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Consider that S1 is the union of a rectangle and a 2–dimensional cone (a
triangle).

||S1|| = 1
2

(
v0�2 − 
v0�
)
v0� + v0

(
u − 
v0�

) (
v0� + v0+u−
v0�
2

)

= 1
2

[
v0�2
(
v0� − 1

)
+ v0

(
u − 
v0�

)(
v0 + 
v0� + u

)]
,

(5.34)

and
μ(S1) =

1
2
(
v0�2 − 
v0�

)
+ v0

(
u − 
v0�

)
. (5.35)

(5.33) - (5.35) imply

(
v0 + �v0� + η′(1−η′)

u−�v0�−1

) (
1
2

(�v0�2 − �v0�
)

+ v0

(
u − �v0�

))

≥ 1
2

[�v0�2
(�v0� − 1

)
+ v0

(
u − �v0�

)(
v0 + �v0� + u

)]
, i.e.

�v0�
(�v0� − 1

) η′(1−η′)
u−�v0�−1 ≥ v0

(
u − �v0�

) (
u − v0 − �v0� − 2η′(1−η′)

u−�v0�−1

)
− v0

(�v0�2 − �v0�
)

= v0

(
u2 − 3�v0�u + �v0�2

)
+ v0�v0� + v0

(
u − �v0�

) [(�v0� − v0

)− 2η′(1−η′)
u−�v0�−1

]

≥ (�v0� − 1
) [(

u2 − 3u�v0� + �v0�2
)

+ �v0� −
(
u − �v0�

) 2η′(1−η′)
u−�v0�−1

]
,

i.e.
u2 − 3u
v0� + 
v0�2 ≤ (2u − 
v0�

) η′(1−η′)
u−
v0�−1 − 
v0�

≤ 1
4

2u−
v0�
u−
v0�−1 − 
v0�.

(5.36)

Comparing (5.32) and (5.36), one can conclude
[(

1 −
√

2
2

)
+ 5

√
2−4
4u

]2
− 3

[(
1 −

√
2

2

)
+ 5

√
2−4
4u

]
+ 1

< 1
u · 1

2
√

2u−5
√

2
− 1

u

[(
1 −

√
2

2

)
+

√
2−4
4u

]

= 1
u

(
1

2
√

2u−5
√

2
− 5

√
2−4
4u

)
− 1

u

(
1 −

√
2

2

)
, or

(
1 −

√
2

2

)2

− 3
(
1 −

√
2

2

)
+ 1 <

1
4u (3

√
2 + 2) + 1

u

(
1

2
√

2u−5
√

2
− 4(5

√
2−4)+(5

√
2−4)

16u

)
.

(5.37)

One can check that (5.37) does not hold unless u < 8, or 
u0� ≤ 8. However,

it is not difficult to check that (5.16) and (5.26) cannot hold simultaneously for
4 < u ≤ 8. Finally using the condition U /∈ Z

+ it follows that U ≥ 4. One can

also check the lemma for 3 < u ≤ 4.

Case 4
If an x0 with μ(D1) = μ(D2) does not exist, i.e. D1 is too big to find a D2 with
the same measure, we choose a proper h, 0 < h < 1, such that for

D1 �
{
(x, y, z) ∈ R(v0, u0) : u0 − h < z ≤ u0

}
and

D2 �
{
(x, y, z) ∈ SU : v0 < x < y ≤ u0 − h

}
, μ(D1) = μ(D2).
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D2 is a shifted cone. By the arguments leading to Lemma 4, (c.f. (4.18), (4.19)
in Remark to Lemma 4) we get for its density

d(D2) ≥ 3
v0� + 3
2

[
u0 − h − 
v0� −

(
1 − {v0}

)]− {v0}
(
1−{v0}

)
∣∣u0−h−
v0�

∣∣++2
(
1−{v0}

)

= 3
2 (u0 + v0 − h) − {v0}

(
1−{v0}

)
∣∣u0−h−
v0�

∣∣++2
(
1−{v0}

) .

However, by (5.16) and Lemma 4

d(D1) = d(S1) + u0 − h

2
= d(S2) + v0 − h

2
≤ v0 + 
v0� + u0 − h

2
+

1
4
.

Then

d(D2) − d(D1) ≥ u0
2 + v0

2 − 
v0� − h − 1
4 − {v0}

(
1−{v0}

)
∣∣u0−h−
v0�

∣∣++2
(
1−{v0}

)
> 1

2

(
u0 − 
v0�

)− h − 3
4 .

Thus by (5.16), for u0 > 8
d(D2) > d(D1).

For 
uo� ≤ 8 we check it directly.

Remark 2. For m ∈ Z
+ denote by Dm the set of downsets of ∼→ L(U)

(
� ∼→

L(U, 3)
)

with m maximal points. We can show that maxμ(W )=α,W∈Dm
||W || can

be achieved, as well.

More precisely, define a metric on the set
{
(xi, yi, zi)k

i=1 : (xi, yi, zi) ∈ R
3
}

as
the sum of Euclidean (or L1−) metrics of the k components points. Then for
fixed μ(W ) = α, W ∈ Dm, ||W || is a continuous function of its maximal points.

6 On Regular Surfaces

Lemma 7. Every W ∈ D can be reduced to a W ′ ∈ D, which has of each of the
regular X−, Y− and Z− surfaces at most one (for U ∈ Z+).

Proof. Suppose there exists a W that canot be reduced to such kind of W ′.
W.l.o.g. by Remark 1 we assume W achieves →

m′≤m
maxμ(W )=α,W∈Dm′ ||W ||,

(recalling D =
⋃∞

m=1 Dm by its definition).

Case 1: Suppose W has at least 2 regular z–surfaces, say Si at i, for i = 1, 2,
and

d(S1) + u1 ≤ d(S2) + u2. (6.1)
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Using the same method as in the proof of Lemma 6, Case 1, one can obtain a
contradiction. Furthermore, we can see that W has 2 regular X–surfaces iff Ŵ (u)

has 2 regular Z–surfaces. Since W and Ŵ (u) must achieve the maximal value
simultaneously, we are left with Case 2: W has at least 2 regular Y –surfaces S1

at v1 and S2 at v2 with

d(S1) + v1 ≤ d(S2) + v2 (6.2)

and of each of the regular Z− and X− surfaces at most one. Let S′
2 = S2,

if v2 /∈ Z, and otherwise let S′
2 = S2 �

{
(x, z) | v1 < z ≤ v1 + 1

}
. Since

W has no 2 regular Z–surfaces nor X–surfaces, S2 is rectangular, consequently
d(S′

2) > d(S2). Thus we can use S′
2 to replace S2 and play the same game as

before to arrive at a contradiction.

7 Main Result in Continuous Model, k = 3

Theorem 2. For U ∈ Z
+ and fixed α every W ∈ D with μ(W ) = α can be

reduced to a cone or the trapezoid R
(
Vα(U), U

)
.

Proof. Assume the theorem is not true. Then by Remark 1 and Lemma 6 there
exists a W ∈ D with m maximal points achieving maximal value of ||W || over⋃

m′≤m Dm, which is neither a cone nor a trapezoid. Moreover, by Lemma 7 we
can assume that W has at most one regular X−, at most one regular Y −, and
at most one regular Z− surface.

Case 1: W has only one (regular or irregular) Z–surface at u ≤ U . Then W has
one or two maximal points, whose third components must be u. Subcase 1.1:
W has one maximal point, say P = (w, v, u). Because v = 
u� − 1 implies W is
a trapezoid, we assume w < v ≤ 
u� − 1. Thus, W has one Z–surface S1 and
one Y –surface, which are shown in Figure 2 (a).
We are going to use the same idea as before. However, it is not enough to
exchange the layers. Instead of it we will exchange cylinders. (a) Suppose w ≥
u − 
v�.
We choose 0 < h1 < u − 
v� and define S2 �

{
(y, z) : v < y < z ≤ u − h1 and


y� �= 
z�}, D1 = S1 ×
{
z : u − h1 < z ≤ u

}
, D2 �

{
x : 0 < x ≤ w

} × S2, and
W ′ = (W � D1) ∪ D2 such that

μ(D1) = μ(D2). (7.1)

Then W ′ ∈ D and furthermore, if we denote {v} by θ and use the arguments of
the proof of Lemma 4 (see Remark to Lemma 4), then we obtain

d(S2)−(v+u−h1) =
(θ′ − θ)

[
1 − (θ′ + θ)

]− θθ′(θ′ − θ)
(�u − h1� − �v�)−1

(�u − h1� − �v� − 1
)

+ 2(θ′ + θ) + 2θθ′(�u − h1� − �v�)−1 � η1,

(7.2)
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S1

Y - surface

(a) (b)

h2

D′
2

S′
1

Y Z

X X
y = vz = u

P (w, v, u)
P (w, v, u)

�

�

�

�

Fig. 2 (a).

where θ′ � {u− h1} and θ = 1− θ = 
v� − v, if u− h1 − 
v� > 1. By Lemma 4

and Corollary 2,

d(S1) − v ≤ θ(1 − θ)

v� − 1 + 2θ

� η2. (7.3)

Consequently
d(S2) −

(
d(S1) + u

) ≥ −h1 + η1 − η2. (7.4)

Therefore, by simple calculation

||W ′|| − ||W || = ||D2|| − ||D1||
= μ(D2)

(
d(S2) + w

2

)− μ(D1)
(
d(S1) + u − h1

2

)
= μ(D2)

[
d(S2) −

(
d(S1) + u

)
+ w

2 + h1
2

] ≥ μ(D2)
[

w
2 − h1

2 + η1 − η2

]
.

(7.5)

By (7.2),

η1 ≥ − θ(1 − θ)

u − h1� − 
v� − 1 + 2θ

=
−θ(1 − θ)


u − h1� − 
v� − 1 + 2(1 − θ)
. (7.6)
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P (w, v, u)

Z

Y

W

S2

D1 h1

(c)

�

�

Fig. 2 (b).

Thus, (7.3) and (7.6) imply

η1 − η2 ≥ −1
2
. (7.7)

However, when h1 ≤ u − 
v� − 1, (7.5) and (7.2) imply the contradiction

||W ′|| > ||W ||. (7.8)

When u − 
v� − 1 ≤ h1 < u − 
v�, S2 becomes a rectangle (c.f. Figure 3) and
d(S2) = v + u − h1 + θ

2 − u−
v�−h1
2 . Then use

η1 =
1 − θ

2
− u − 
v� − h1

2
, (7.9)

and (7.8) holds again. (b) If w < u − 
v�, then we choose 0 < h2 < w and let
S′

1 = S1 �
{
(x, y) : 0 < x ≤ h2

}
, S′

2 =
{
(y, z) : v ≤ y < z < u, 
y� �= 
z�},

D′
1 � S′

1 × {z : 
v� < z ≤ u
}
, and D′

2 = S2 × {x : 0 < x ≤ h2} with
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(v, �v�)

(v, u − h1)

Z

Y

�

�

Fig. 3.

μ(D′
1) = μ(D′

2). Considering (W � D′
1) ∪ D′

2 in a similar way we arrive at
a contradiction. (c.f. Figure 2 (a)) Subcase 1.2: W has 2 maximal points.

According to our assumption on regular surfaces the Z–surface S1 of W must
be as in Figure 4.

Then we follow the same reasoning as in the previous subcase in the shadow
part (i.e. exchange cylinders in the shadow part

{
(x, y, z) ∈ SU | x ≤ vo

}
,

where v0 is the smaller first component in the 2 maximal points) and obtain a
contradiction.

Case 2: W has 2 Z–surfaces. Since W and Ŵ always simultaneously achieve
their maximum, we can assume Ŵ has 2 Z–surfaces too, because otherwise we
can use Ŵ , which has been studied in Case 1 already, instead of W . However,
Ŵ has 2 Z–surfaces iff W has one regular X–surface, and

{
(0, y, z) ∈ SU

}
� W �= ∅. (7.10)

Thus we can assume W has one regular X–surface and (7.10) holds.

Then by our assumption W has 2 maximal points, say P1 = (w1, v1, U) and
P2 = (w2, v2, u) and v1 < 
U� − 1. Subcase 2.1: 
v1� ≥ 
u�. Then w1 < w2,

because P2 is maximal. Recalling that in our proof under subcase 1.1 we only
exchange the points (x, y, z) with x ≤ w, and y ≥ 
v�, in the present case we
can use the plane x = w1 to cut SU into 2 parts and repeat the same reasoning
as in subcase 1.1 to obtain a contradiction in the part x ≥ w1.

Moreover, for this kind of W ’s, Ŵ (U) has 2 maximal points, P̂1 = (ŵ1, v̂1, U) and
P̂2 = (ŵ2, v̂2, û) with ŵ1 = U − 
v1�, v̂1 = U − v1, ŵ2 = U − u, v̂2 = U − 
w1�,
û = U − w1, i.e. ŵ1 = 
v̂1� − 1, v̂2 = 
û� − 1 and ŵ2 ≥ ŵ1. Therefore, the
following subcase 2.2 can be cancelled from our list. Subcase 2.2: w1 = 
v1�−1,
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S1

P1(w, v, u)

Y

X
z = u

�

�

Fig. 4.

v2 = 
u�−1, and w2 ≥ w1. Subcase 2.3: w1 = 
v1�−1, v2 = 
u�−1, w2 < w1,

and 
v1� < u. In this subcase, there are one regular Z–surface and one regular
Y –surface passing P1.

Denote by S1 =
{
(x, y) : y ≤ v1 
x� �= 
y�} the irregular Z–surface, by S2

the regular X–surface at w2, a shifted cone, and by S3 =
{
(y, z) : 
y� �= 
z�,

(0, y, z) ∈ SU � W
}

as in Figure 5.
Then ∼→ W � W ∩ {(x, y, z) : y > v1

}
is a cylinder with base S2. Therefore we

can assume
v2 − v1 = 
u� − 1 − v1 > U − u, (7.11)

because otherwise, by Lemma 5, we can replace ∼→ W by a cylinder with the
same size 2–dimensional trapezoid base and the same height, and then reduce
W to a downset with 2 regular Y –surfaces. If d(S1) + U < d(S3), then we can
repeat our reasoning as before and arrive at a contradiction. So we only need to
consider

d(S1) + U ≥ d(S3), (7.12)

which, in fact, is also impossible. By Lemma 4

d(S1) = v1 +
θ(1 − θ)

| 
v1� − 1 |+ +2θ
� v1 + η. (7.13)
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Y

X
z = U

P1

S1

(a)
�

�

Fig. 5 (a).

Partitioning S3 into a rectangle S′
3 and a (2–dimensional) cone S′

3, we obtain

||S3|| =
1
2
(
u� − 1 + v1 + U + u

)
μ(S′

3) +
(
U + 
u� − 1

)
μ(S′′

3 ), (7.14)

μ(S′
3) =

(
u� − 1 − v1

)
(U − u), μ(S′′

3 ) =
(

U − (
u� − 1)
2

)
, (7.15)

and
μ(S3) = μ(S′

3) + μ(S′′
3 ). (7.16)

(see Figure 5 (c).) Thus, it follows from (7.12) – (7.16) that

1
2
[
U−u−(�u�−1

)
+v1

](�u�−1−v1

)
(U−u)−(�u�−1−v1

)(U − (�u� − 1)
2

)
+η μ(S3) ≥ 0.

(7.17)
(7.11) and (7.17) imply

η μ(S3) >
(
u� − 1 − v1

)(U − (
u� − 1)
2

)
. (7.18)
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(b)

W

S2

P2

Z

Y
x = W2

�

�

Fig. 5 (b).

(c)

x = 0
Y

Z

S′′
3

S3

S′
3

W

�

�

Fig. 5 (c).

However, by (7.15) and (7.16)

μ(S3)(�u� − 1 − v1

)(
U−(�u�−1)

2

) =
U − u(

U−(�u�−1)
2

) +
1

�u� − 1 − v1
≤ 4, if U − (�u� − 1

) ≥ 2.

(7.19)

On the other hand, by the definition of η, η ≤ 1
4 , which contradicts (7.18) and

(7.19). When U − 
u� − 1 ≤ 1, we can directly derive a contradiction.

Thus we are left with the case w1 < 
v1� − 1 (and 
v1� < u), i.e. both of the
regular X− and Y –surfaces pass through P1, or in other words neither of the
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surfaces passes through P2 unless P2 shares one of them with P1. In fact, all of
the following 3 subcases are not new to us.

Subcase 2.4: There is no regular surface passing through P2, i.e. P2 =
(
u� −

2, 
u� − 1, u
)
. Then the top part of W , namely, Wt � W ∩ {(x, y, z) : z > u

}
is

a cylinder with a 2 dimensional trapezoid R2(w1, v1) (its irregular Z–surface) as
base. By similar reasoning with Lemma 5 as after (7.11) we can assume v1 = 
u�,
which has been treated in the subcase 2.1.

Subcase 2.5: P1 and P2 share a regular X–surface, i.e. w1 = w2 and v2 = 
u�−1.
Then Ŵ (U) falls into subcase 2.4.

Subcase 2.6: P1 and P2 share a regular Z–surface, i.e. v1 = v2, and w2 =

v2� − 1. Then Ŵ (U) falls into subcase 2.3.

8 A Last Auxiliary Result

Lemma 8. For U ∈ Z
+, U ≥ 6, α =

(
U
3

)− (m3
)

< 1
2

(
U
3

)
and m ∈ Z

+

||R(Vα(U), U
)|| > ||K(u)||, if μ

(
K(u)

)
= α = μ

(
Rα(U), U

)
. (8.1)

Proof. At first let us restrict ourselves to U ≥ 12. We know from (i) in Lemma
4 that

6μ
(
K(u)

)
= 6

(
�u�
3

)
+ 6θ

(
�u�
2

)
= (u − 1)3 −

{[
3

(
θ − 1

2

)2

+
1

4

]
�u� − (1 − θ)3

}
.

(8.2)

Therefore,

d
(
K(u)

) ≥ 3
2
u >

3
2

[
6μ
(
K(u)

) 1
3 + 1

]
=

3
2

[
(6α)

1
3 + 1

]
. (8.3)

On the other hand for η > 0, by (8.2)
[
u − (1 + η)

]3
= (u − 1)3 − 3η(u − 1)2 + 3η2 − η3

= 6μ
(
K(u)

)−
[
3η(u − 1)2 − 3η2(u − 1) + η3 −

[
3
(
θ − 1

2

)2
+ 1

4

]
�u� + (1 − θ)3 + η3

]

= 6μ
(
K(u)

) − [3η�u�2 − 3
(
2ηθ + η2 − θ(1 − θ) + 1

3

) �u� + (θ + η)3
]

≤ 6μ
(
K(u)

)− 3�u� [�u�η − (2η + η2 + 1
3

)]
,

where θ � 1 − θ.
(8.4)

Let

η = ξ − 2θθ

(
u� − 2) + 6θ
> 0 (8.5)

and η, ξ will be defined later. Then by (8.4) and (8.5),
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d
(
K(u)

) ≤ 3
2

[
6μ
(
K(u)

) 1
3 + (1 + ξ)

]
. (8.6)

when


u� ≥ 2η + η2 + 1
3

η
, (8.7)

Choose ξ1 = 0.12 and ξ2 = 0.035, to estimate d
(
K(u)

)
and d

(
K(U)

)
, resp. By

our assumption u ≥ 7 20
29 , if U = 12, and u > 8, if U ≥ 13. Then one can verify

(8.6) with (8.5) for u, ξ1 (or U, ξ2). So, by (8.7)

d
(
K(u)

) ≤ 3
2

[(
6μ(u)

) 1
3 + 1 + ξ1

]
= 3

2

(
(6α)

1
3 + 1 + ξ1

)
(8.8)

d
(
K(U)

) ≤ 3
2

[(
6μ
(
K(U)

)) 1
3 + 1 + ξ2

]
. (8.9)

Setting α = λμ
(
K(U)

)
, by Lemmas 3 and 4, (8.3), and (8.8), we obtain

||R(Vα(U), U
)|| − ||K(u)|| = 3

2Uμ
(
K(u)

)− 3
(
μ
(
K(U)

)− α
)

+ ||R̂(U)
(
Vα(U), U

)|| − ||K(u)||
≥ 3

2

{[(
6μ
(
K(U)

)) 1
3 + 1 + ξ2

] (
2α − μ

(
K(U)

))
+
[(

6
[
μ
(
K(U)

)− α
]) 1

3 + 1
]

·(μ(K(U)
)− α

)−
[
(6α)

1
3 + 1 + ξ1

]
α
}

= 3
2

3
√

6μ
(
K(u)

)
f(λ), where

f(λ) = 2λ − 1 + (1 − λ)
1
3 − λ

1
3 − ξ2+(ξ1−2ξ2)λ(

6μ
(
K(U)

)) 1
3
,

(8.10)

is concave in λ. Let ε1 = 2.7(
6μ
(
K(U)

)) 1
3
, ε2 = 2.68/2

5
3(

6μ
(

K(U)
)) 1

3
and M ∈ Z

+ be

specified by (
M

3

)
≤ 1

2

(
U

3

)
<

(
M + 1

3

)
. (8.11)

Then

ε1 <
3
U

=

(
U−1

2

)
(
U
3

) =

(
U
3

)− (U−1
3

)

μ
(
J(U)

) , (8.12)

and as [2(M+1
2 )]3

[6(M
3 )]2

= M(M−1)
(M+1) , by (8.11) and M > 9 (when U > 12),

1
2

(M
2 )

(U
3)

= 1
4

[
M(M−1)
(M+1)2

] 1
3 (6(M+1

3 ))
1
3

μ
(

K(U)
) > 3

2

(
1
2

) 2
3
[

M(M−1)
(M+1)

] 1
3 1[

6μ
(
K(U)

)] 1
3

≥ 3

2
5
3
(0.72)

1
3 1[

6μ
(
K(U)

)] 1
3

= 2.68884...

2
5
3

1[
6μ
(
K(U)

)] 1
3

> ε2.
(8.13)

However, with Taylor’s expansion,

f(ε1) ≥ 2ε1 − 4
3ε1 + 4

9ε2
1 − ε

4
3
1 − ξ2+(ξ1−2ξ2)ε1(

6μ
(

K(U)
)) 1

3

= 1[
6μ
(

K(U)
)] 1

3

(
2
3 × 2.7 − 2.7 × ε

1
3
1 − ξ2

)

+ ε1[
6μ
(
K(U)

)] 1
3

[
4
9 × 2.7 − (ξ1 − 2ξ2)

]
> 0.

(8.14)
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Moreover, set g(x) = (1 + x)
4
3 − (1 − x)

4
3 . Then

g(0) = g′′(0) = 0, g′(0) =
8
3

and g′′(x) > −0.6254,

when 0 ≤ x ≤ 2ε2 < 0.1551. Thus, by the definition of ε2 and Taylor’s expansion

again

f
(

1
2 − ε2

)
= −2ε2 +

(
1
2

) 4
3 g(2ε2) − ξ1( 1

2−ε2)+2ξ2ε2[
6μ
(
K(U)

)] 1
3

≥ −(2ε2) +
(

1
2

) 4
3 8

3 (2ε2) − 0.6254(2ε2)3 − ξ1( 1
2−ε2)+2ξ2ε2[

6μ
(

K(U)
)] 1

3

= 2ε2

[
−1 + 2

5
3

3 − 0.6254(2ε2)2 − 2
2
3

2.68

[
1
2ξ1(1 − 2ε2) + ξ2(2ε2)

]]

≥ 2ε2[−1 + 1.05826 · · · − 0.0150 · · · − 0.0332 . . . ] > 0.

(8.15)

(8.14), (8.15) and the convexity of f imply f(λ) > 0, when λ ∈ [ε1,
1
2 − ε2

]
,

or, in other words, if U ≥ 12 and ε1μ
(
K(U)

) ≤ α ≤ (
1
2 − ε2

)
μ
(
K(U)

)
, then

||R(Vα(U), U
)|| > ||K(U)||. On the other hand (8.12) and the assumption on α

together imply α > ε1μ
(
K(U)

)
. Moreover it follows from the assumption on α,

(8.11) and (8.13), that α ≤ ( 1
2 − ε2

)
μ
(
K(U)

)
, unless

α =
(

U

3

)
−
(

M + 1
3

)
and

(
M

3

)
≤ α ≤

(
M + 1

3

)
, (8.16)

where M is defined by (8.11).

However (8.16) implies R̂(U)
(
Vα(U), U

)
= K(M +1) and u ∈ [M, M +1]. There-

fore

R̂(U)
(
Vα(U), U

)
� K(u) =

{
(x, y, z) : u < z ≤ M + 1, 0 < x < y < M, �x� �= �y�} � Δ, say.

(8.17)
This and Lemma 4 imply

d(Δ) = M +
M + 1 + u

2
≥ 2M +

1
2
. (8.18)

Moreover, one can easily check in our case (i.e. U ≥ 12) that M ≥ 3
4U , which

together with (8.18) means that

d(Δ) >
3
2
U. (8.19)

This and Lemmas 3, 4 imply

||R(Vα(U), U
)|| − ||K(U)|| = 3

2Uμ
(
K(U)

)− 3
2U
(
μ
(
K(U)

)− α
)

+
(
||R̂(U)

(
Vα(U), U

)|| − ||K(u)||
)

= 3
2U
[
α − (μ(K(U)

)− α
)]

+ ||Δ||
= 3

2U
(
μ
(
K(u) − R̂(U)

(
Vα(U), U

))
+||Δ|| =

(
d(Δ) − 3

2U
)
μ(Δ) > 0.

(1)
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i.e. so far, we have shown (8.1) for U ≥ 12. Finally, we check (8.1) directly for

U = 6, 7, . . . , 11.

Remark 3. For U < 6, there is no room for α =
(
U
3

)− (M2
)

< 1
2

(
U
3

)
.

9 Main Result for k = 3 and Good α

Now let us return to our main problem in the discrete model. Denote by R∗(v, u)

the downset of (v, u − 1, u) (v, u ∈ Z
+) in L(U, 3) and by K∗(u) the downset of

(u − 2, u − 1, u) (u ∈ Z
+) in L(U, 3). Then Lemmas 2,3, and 8 and Theorems 1

and 2 together imply immediately this solution.

Theorem 3. Let U ∈ Z
+, U ≥ 6, then

(i) For α =
(
U
3

)− (m3
) ≤ (U

3)
2 for some m ∈ Z

+,
max|A|=α P(A) is achieved by R∗(U − m, U).

(ii) For α =
(
m
3

) ≥ (U
3)
2 for some m /∈ Z

+

max|A|=α P(A) is achieved by K∗(m).

10 A False Natural Conjecture for k = 3 and General α;
There Is “Almost” No “Order” at All

We conclude our paper by taking a look at general α. Both, the result for k = 2
in [2] and our result for k = 3 and good α suggest that the following conjecture
is reasonable, namely, that for k = 3 and α with

(
U

3

)
−
(

a + 1
3

)
< α <

(
U

3

)
−
(

a

3

)
≤ N(α) <

(
U
3

)
2

, (10.1)

where a ∈ Z
+ and N(α) is a function depending only on α, if U is big enough,

the following configuration W is optimal for maximizing P(A):

(i) take the
(
U
3

)− (a+1
3

)
points (x, y, z) with x ≤ U − (a + 1) in SU,3

(ii) add the α −
[(

U
3

)− (a+1
3

)]
points (U − a, y, z) where (y, z) are points of a

quasi–star or a quasi–complete graph in the sense of [2] according to the
value of α −

[(
U
3

)− (a+1
3

)]
.

However, this conjecture, which has been made by several authors, is false.

Example 1: For α0 �
[(

U
3

)− (U−2
3

)]− (U −2)− (U−3) =
(
U
3

)−(U−2
3

)−2U +5

(when U is big enough), theW described above is S1 � (S2 ∪ S3) where S1 �{
(x, y, z) ∈ SU,3 : x = 1, 2

}
.

S2 �
{
(2, 3, U), (2, 4, U), . . . , (2, U − 2, U), (2, U − 1, U)

}
,

and S3 is listed in (10.2) below.
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Now let us consider the configuration W ′ with W ′ � S1 � (S2 ∪S′
3), where S′

3 is
also listed in (10.2).

S3 : (2, 3, U−1), (2, 4, U−1), . . . , (2, U−2, U−1), (2, U−3, U−2), (2, U−4, U−2)

S′
3 : (1, 2, U), (1, 3, U), (1, 4, U), . . . , (1, U − 2, U), (1, U − 1, U). (10.2)

Thus, ||S3|| > ||S′
3|| when U > 10 and therefore ||W || < ||W ′||. This example

tells us that a solution for general α, even when k = 3, is much more challenging.
Actually, if we pay a little bit more attention to it, we will find a deeper result
just at our hands. People working on these kinds of problems usually wish to

find “an order”, more precisely a nested optimal sequence such as

W1 ⊂ W2 ⊂ W3 ⊂ . . .

where Wi is optimal for size i. It is not surprising that in many cases, obviously

including our problem, there is no order at all. In these cases, and in particular
for our case, we define Mk as the maximal integer s.t. the optimal nested chain
with length Mk i.e. the optimal nested chain

W1 ⊂ W2 ⊂ W3 ⊂ · · · ⊂ WMk
(10.3)

exists. Considering our problem we only need to study the α-s with α ≤ 1
2

(
U
3

)
,

because we can take “complements”. Therefore we wish Mk to be close to 1
2

(
U
3

)
.

In fact in [2], it was shown that M2 ≥ 1
2

(
U
2

) − U
2 , and that therefore M2 is

asymptotically equal to 1
2

(
U
3

)
(i.e.

1
2 (U

2)−M2

(U
2)

→ 0).

However, it is surprising that there is a jump between M2 and M3, because
M3 is asymptotically close to zero as can be seen from the following result.

Theorem 4.

M3 <

(
U

3

)
−
(

U − 2
3

)
� α2 for U > U0. (10.4)

Proof. Assume the result is false. Then there is a nested optimal chain W1 ⊂
W2 ⊂ · · · ⊂ Wα2 .

Let α0, W and W ′ be defined as in Example 1 and set α1 �
(
U
3

)− (U−1
3

)
. Then

(when U is big enough) α1 < α0 < α2 and therefore Wα1 ⊂ Wα0 ⊂ Wα2 . First
of all, we draw attention to the fact that in the proofs in Section 3, we actually
have already proved that the optimal configurations in Theorem 3 are unique
(except if α = 1

2

(
U
3

)
.) Therefore, Wα1 = R∗(1, U) and Wα2 = R∗(2, U) or

(1, U − 1, U) ∈ Wα1 and (2, U − 1, U) ∈ Wα2 (10.5)
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and so
(1, U − 1, U) ∈ Wα0 . (10.6)

Consequently,
Wα0 �= W ′. (10.7)

Moreover, there exists an (x0, y0, z0) ∈ Wα0 with x0 ≥ 3, because otherwise
by Theorems 2 and 3 in [2] ||Wα0 || = ||W ||, which would contradict Example 1
(here W and W ′ are defined as in Example 1). However, (x0, y0, z0) /∈ R∗(2, U) =

Wα2 ⊃ Wα0 , a contradiction.

11 A Related Topic: The Maximal Moments for the
Family of Measurable Symmetric Downsets

Next let us drop the condition 
x� �= 
y�, 
y� �= 
z� used in the definition of
SU,3 in previous sections, i.e. consider the lattice α′(U, 3) � (S′

U,3,≤), S′
U,3 �{

(x, y, z) ∈ R3 : 0 ≤ x ≤ y ≤ z
}
. The problem becomes more smooth and

therefore much simpler. To see this, we mention here two observations.

(a) To guarantee the formula analogous to (4.8), we don’t have to require u ∈ Z
+.

(b) One can simply derive a lemma analogous to Lemma 6, by standard methods
in calculus (such as to take right derivatives and so on).

In fact, in a similar but much simpler way we can prove the following result.

Theorem 5. For U ∈ R let IU = [0, U ]3 ⊂ R
3 and let Fα be the family of the

Lebesgue measurable subsets S of IU , satisfying

(i) For every S ∈ Fα μ(S) = α.
(ii) For every permutation π on {1, 2, 3} and every S ∈ Fα (x1, x2, x3) ∈ S

implies xπ(1), xπ(2), xπ(3) ∈ S.
(iii) For every S ∈ Fα, (x, y, z) ∈ S and (x′, y′, z′) ≤ (x, y, z). Also (x′, y′, z′) ∈

S.

Then maxS∈Fα ||S||, where ||S|| =
∫

S
(x + y + z)dx dy dz, is achieved by a set

S∗ ∈ Fα of the form

S∗ =

{{
(x, y, z) : min{x, y, z} ≤ v

}
for some v = v(α), if α ≤ U3

2{
(x, y, z) : 0 ≤ x, y, z ≤ u

}
for some u = u(α), if α ≥ U3

2 .
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