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Abstract— After Ahlswede introduced identification for source the expected number of checkings in the worst case for a best

coding he discovered identification entropy and demonstrad code, and finally, ifv’s are chosen by a RW independent

that it plays a role analogously to classical entropy in Shamon’s of U and defined by Pray’ = v) = Q,, for v € V = U, we
Noiseless Source Coding. v '

We give now even more insight into this functional interpretng consider
its two factors.
Index Terms— Source coding for identification, identification Le(P.Q) = Z QuLe(P,v), (1.4)
entropy, operational justification veU
the average number of expected checkings, if dddie used,
I. INTRODUCTION and also
A. Terminology L(P,Q) = min Lc(P, Q) (1.5)

Identification in Source Coding started in [3]. Then identifi
cation entropy was discovered and its operational sigmifiea
in noiseless source coding was demonstrated in [4].

Familiarity with that paper is helpful, but not necessargehe
As far as possible we use its notation. N

Differences come from the fact that we use nowg-ary Z

Q) fo
L(P

the average number of expected checkings for a best code.
A natural special case is the mean number of expected
checkings

, if U =[N], (1.6)

2 |

coding alphabet’ = {0,1,...,¢—1}, whereas earlier only the

caseq = 2 was considered and it was remarked only that alfhich equalsL¢ (P,
results generalize to arbitragy In particular the identification

entropy, abbreviated as ID-entropy, for the soufte P, U)

has the form

=(%,---»%), and
) mln Le(P). .7)

Another special case of some “intuitive appeal” is the case

Hl,q(P) = qz—l <1 — Z P3> . (11) Q = P. Here we write
- L(P,P) = min Le(P, P). 18)

Shannon (1948) has shown that a soute P,U) with ) o
outputU satisfying ProbU = u) = P,, can be encoded in a It is known that Huffman codes minimize the expected code

prefix codeC = {c, : u € U}  {0,1,...,q— 1}* such that 'ength for PC.

for the g-ary entropy This is not always the case féf P) and the other quantities
in identification.
P)=Y " —Pylog, Py <Y Pylcul| < Hy(P)+1, In this paper an important incentive comes from Theorem
ueU ueU 4 of [4]
where||c,|| is the length ofc,,. For PN = (27%,...,27%), that is with 2-powers as

We use a prefix code for another purpose, namelyprobabilities L(P"Y, PY) = H;(P"). Here the assumption
noiseless identification, that is every user who wants foeans that there is@mpleteprefix code (i.e. equality holds
know whether av (v € U) of his interest is the actual in Kraft's equality).
source output or not can consider the RV with ¢ = B. A terminology involving proper common prefices
cu = (Cuyy--,Culen))) If U = u and check whethe€ = The quantityL¢ (P, Q) is defined below also for the case
(Cy,Cy,...) coincides withe, in the first, second etc. letterof not necessarily independebt and V. It is conveniently
and stop when the first different letter occurs or widge: ¢,,. described in a terminology involving proper common prefices
Let L¢(P,u) be the expected number of checkings, if cade  For an encoding: : & — X we define for two words
is used. w,w' € X*  cp(w,w’) as the number of proper common

Related quantities are prefices including the empty word, which equals the length of

the maximal proper common prefix plus 1.
For examplecp(11,000) = 1, ¢p(0110,0100) = 3 and
1001,1000) = 4 (since the proper common prefices are

Le(P) = max Le(P,v), (1.2)
ve

that is, the expected number of checkings for a person in t

. . 01,100).
worst case, if cod€ is used, T : .
Now with encodinge for PC C and RV's U and V
L(P)= mcin Le(P), (1.3) ¢p(ey,cv) measures the time steps it takes to decide whether

U andV are equal, that is, the checking time or waiting time,
Both authors are with the University of Bielefeld. which we denote by



WherePC(L), and QéL) are row vectors obtained by deleting
We(U, V) = cp(ey, cv). (1.9) the componentg ¢ X<,

Sometimes the expressions (1.17) or (1.19) are more conve-
nient for the investigation of.¢ (P, Q). For example it is easy
EWe (U, V) = Ecp(cy, cv). (1.10) to see that\ and therefore alsa(X) are positive semidefinite.
Indeed, letA (resp. A(Y)) be a matrix whose rows are
labelled by sequences iki* (resp.X<%) and whose columns
are labelled by sequences iti* (resp. XY<L—1 U {empty

Clearly, we can write the expected waiting time as

It is readily verified that for independerif, V, that is,
PT’(U:U,V:'U) :PuQ'U

EWe(U, V) = Le(P, Q) = Eep(cy, ey ). (1.11) sequencp) such that its(z, y)-entry is
We give now another description fa&W, (U, V). For a 5 (z) = 1 if y is a proper prefix oft
word w € X* and a cod& define as subset éf Y710 otherwise
UC,w)={u€elU:c, has properprefixw} (1.12) Then
and its indicator functiory,c, .. Now AAT=A and AB(AENT = AL (1.21)
E cp(co,ev) = Y Pr(U=u,V =v)ep(cu, cy) and hence\ and A(") are positive semidefinite.
el Therefore by (1.19Y¢ (P, P) is (U)-convex in P.
_ Z Pr(U =u,V =v)x Furthermore for source§/, P) with [U/| = 2% and the
o ’ block codeC = {0, 1}* the uniform distribution o/ achieves
: . . min Le (P, P).t
zw: () (W) lue,w) (V) Another interesting observation on (1.20) is that asithe

th component ofPC(L)A(L) (resp.QéL)A(“) is P(U(C,w))
(resp.Q(U(C,w))), application of the Cauchy-Schwarz in-
equality to (1.20) yields

[PEAD Q)T
< [PPABPENT] - [P AP (QE)T] (1.22)

=" Pr(U € UC,w),V €UC,w))

and by (1.11).
E We(U,V) =Y Pr(Ucl(C,w),VeUC w). (113)

C. A matrix notation and equality holds iff for alkw
Next we look at the double infinite matrix
\ w.) L14) PU(C,w)) = QU(C,w)).
= (@) er- wen- ' We state this in equivalent form as
and its minorA(%) labelled by sequences ==, Lemma 1:
Henceforth we assume that and V' are independent and 9
have distributions” and Q. We can then use (1.11) Le(P, Q)" < Le(P P)Le(@, Q) (1.23)
For a prefix cod€ P induces the distributio®: and@ and equality holds iff for alkw
induces the distributiod)c, when foru,v € U
P(U(Ca ’LU)) = Q(U(Ca ’LU)),
PC(Cu) :PquC(Cv) =Qy (1.15) L .
which impliesL¢(P,Q) = Le(P, P) = Le(Q, Q).
and This suggests to introduce
Pe(z) = z)=0 for ze€X*\C. 1.16 Le(P,Q)?
Rl =) (1.16) he(P.Q) = - (Pc]g)LQgQ g <!
Viewing both, P and Q¢ as row vectors, then for the corre- Al Cls
sponding column vecta@? equation (1.11) can be written inas a measure of similarity of sourcesand( with respect to
the form the codeC.
Le(P,Q) = PeAQL. (1.17) Intuitively we feel that for a good code for sour¢e and

(@ as user distribution? and @ should be very dissimilar,

It is clear from (1.10) that a non-complete prefix code, t8at |)o 5,56 then the user waits less time until he knows that the
one for which the Kraft sum is smaller than 1, can be |mprov%qltput of U is not what he wants.

for identification by shortening a suitable codeword. Heace
optimal ID source code is necessarily completdn such a
code

This idea will be used later for code construction. Actually
it is clear even in the general case whéfeand V' are not
necessarily independent.

To simplify the discussion we assume here that the alphabet
X is binary, i.e.q = 2.

< U -1 1.1
max [|ey|| < U] (1.19)

and one can replack by its submatrixA (%) for L = |U| — 1.

This implies A proof is given in the forthcoming Ph.D. thesis “L-identiion for

(L) A (L (LT sources” written by C. Heup at the Department of Mathemati€sthe
Le(P,Q) = P, Al )(QC ), (1.20) university of Bielefeld.



Then the first bit of a codeword partitions the sourtéto a treeT, wherels; corresponds to the set of codewor€ls
two parts/(iy); iy = 0, 1; whereld (i) = {u €U : cyy = i1}. U UU = U.

By (1.13) to minimizeE W¢(U,V) one has to choose a The leaves are labelled so thdy = {1,2,..., Ny} and
partition such thatPr(U € U(i1),V € U(ir))'s are small Uy = {No +1,...,No + N1}, Ng + N; = N. Using
simultaneously fori; = 0,1. To construct a good code oneprobabilities
can continue this line: pal’tltlobl(zl) to U(i1,i)’s such that Qi = Z P,, i=0,1
PT(U € u(ll,lg) Ve Z/[(Zl,ZQ) | U e U(zl) Ve Z/[(h)) weld;
are as small as possible for, i = 0,1 and so on.

When U and V are independent the requwement for 4/e can give the decomposition in N
good code is that the difference betwe(¥/(i1, . . ., i;)) and Lemma 2: [4] For a codeC for (i, P)

Q(U(i1,...,1x)) Is large. -

<\Ne call this>the LOCAL UNBALANCE PRINCIPLE in “e{(Pr o Prn), (P, Pr)) =
contrast to the GLOBAL BALANCE PRINCIPLE below. 1 4 [, ((ﬁ7 L PNO) (Pl Py, )) Q2+

Another extremal case is thdf and V' are equal with Qo Qo Qo Qo
probability one and in this case one may never use tllec ((PN0+1 PN0+N1) (PN0+1 Pnyin, )) 02
unbalance principle. However in this case the identificatio ' Ty QT @ =
for the source makes no sense: The user knows that hig his readily yields
output definitely comes! But still we can investigate the Theorem 1: [4] For every sourcdi{, P™)
problem by assuming that with high probability =
More specifically, we consider the limit dE We¢ (Uy, Vi) L(PN) =z L(PN_’PN)_Z HI(PN)'

Proof: We proceed by induction o®v. The base case

for a sequence of random variablé8y, V;)¢2, such that )
U, converges toVi in probability. Then it follows from 1V = 2 can be established as folows. Far = 2 and any
C Le(P?,P%) > P+ P, =1, but

Proposition 1 thafE W (U, Vi) converges to the average
length of codewords, thelassical object in source coding 2\ _ 2 2
In this sense identification for sources is a generalizatibn Hi(P) =201 - P = (1=P))
source coding (data compression).

One of the discoveries of [4] is that ID-entropy is a lower
bound toL¢(P, P). In Section 2 we repeat the original proofro
and we give in Section 3 another proof of this fact via tw
basic tools, Lemma 3 and Lemma 4 fbg(P™, P"), where

=2(2P, —2P?) =4P/(1-P) <1

For the induction step use for any cafi¢he decomposition
rmulain Lemma 2 above and of course the desired inequality
for Ny and N7 as induction hypothesis.

P™ is the distribution of a memoryless source. It provides arLe((P,...,Py),(PL,...,Py))
clear information theoretical meaning of the two facteq}ﬁs1
2
and <1 — Zng) of ID-entropy. >1+42 <1 _ Z <%) ) Q32
ue
Next we consider in Section 4 sufficient and necessary uello 0
conditions for a prefix code& to achieve the ID-entropy 5 (1 P\? 9
lower bound forL¢ (P, P). Quite surprisingly it turns out + a Z 01 1
that the ID-entropy bound for ID-time is achieved by a ueth
variable length code iff the Shannon entropy bound for > i L O2HA(POY 1+ 02H, (PW) = H (PN
the average length of codewords is achieved by the same = Hi(Q) + QoHi( )+ Qi ) 1P7),
code(Theorem 2). hereQ = (Qo, Q1) 1 > Hy(Q), PO = (&), andthe
Finally we end the paper in Section 5 with a global balanc %
principle to find good codes (Theorem 3). grouping identity is used for the equality. This holds foegy
C and therefore also fonncm Le(PY). a

The approach readily extends also to thary case.
II. AN OPERATIONAL JUSTIFICATION OFID-ENTROPY AS

LOWER BOUND FORL¢(P, P)
IIl. AN ALTERNATIVE PROOF OF THEID-ENTROPY LOWER

Recall from the Introduction that fay = 2 BOUND FOR L¢ (P, P)

N
9 First we establish Lemma 3 below, which holds for the more
Hi(P) =2 (1 B z:lp’“> for P = (... Py). general cas& Wc (U, V). Let (U™, V™))" be a discrete
“ memoryless correlated source with generlc pair of var&able
We repeat the first main result fdr(P, P) from [4]. (U,V). AgainU™ serves as (random) source ant serves as
Central in our derivation is a proof by induction based orandom user. For a given codefor (U, V) let C™ be the code
a decomposition formula for trees obtained by encoding the components of sequerfce 1"

Starting from the root a binary tre® goes via 0 to the iteratively. That is, for alu™ € U™
subtreeTy and via 1 to the subtre®; with sets of leaves(, ,
andi{,, respectively. A cod& for (I, P) can be viewed as Cun = (Curs Cugy - -+ Cuy ) (3.1)



Lemma 3: Proof: For givens > 0 we choose) > 0 such that for a

n—1 7> 0 and sufficiently large: for familiar sets7p s of typical
E Wen (U™, V") =E We(U,V) <1 + Z Pr(U sequences
P (Tgs)>1-27"7
(3.2)
and therefore and for allu™ € 77,
E We(U,V n) < 9-n(H(P)-5)
lim E We- (U™, V") = c( ) (3.3) Pu™) <2 7)),

n—oo ’ 1-— P?“(U V)
Proof: Since Pr(U™ = V") = HPr(Ut =W =
Pr*(U = V) (3.3) follows from (3.2) immediately by the

summation formula for geometric series.
To show (3.2) we define first for afl > 2 random variables 7 (llcun[l < Ln) = Pr(|lcyn| < Ln)

Since for a prefix cod€

[{u" €U Jleva | < La}| < g™ (3.10)

<Pr(V" ¢ T5s)+ Pr(V" € 155, |lcyn|| < Ln
- < Pr(V™ ¢ Tig) + Pr(V” € T v | < L)
Zy = . (3.4) <27 4 {u" ¢ ||eyn]|| < Lyn}| -2 MHEP)75
1 otherwise .
< 9—nT | qu,Q—n(H(P)—E). (311)

and fort = 1 we let Z; be a constant for convenience of

notation. Further we I&t;, be the waiting time for the random However, (3.8) implies that

userV™ in the t-th block. gl < gnH(P)=)
Conditional onZ; = 1 it is defined likeW¢ (U, V) in (1.9) - '

and conditional orZ; = 0 obviously Pr(W; =0 | Z, = 0) = This together with (3.11) yields

1, because the random user has made his decision before the

—nT —ns< —nd

t's step. Moreover by the definition @ r(lleon|l < Ln) <2777 42772 <2 (3.12)

for § £ min ( )
EWy | Zy =1 =E We(U,V 35 204)"
We | 22 ] el ) (3:5) Next, for the distribution” and the codeC over U™ we

and consequently construct a related sourgé/, P) and a codeC over U as
follows.

E[E(W; | Zt)]

The new set/ contains{u" € U" : [lc,»|| < L,} and
{Pr(Ut L= VtO)E We(U,V) fort=2,3,...,n forits elementsP(u") = P™(u") and the new~-coding is

E We(U,V) fort =1 Cyn = Cyn. 3 S
(3.6) _ Now we define the additional elementslihwith its P and
C

where (3.6) holds in case= 1, because the random user has. We partition{u” € U™ : ||cyn

> L} into subsetsS; (1 <

to wait for the first outcome. Therefore it follows that j < J) according to theL,-th prefix and use lettey; to
u i v = 1< < i Y
EWen (U™, V") = EW™ = ZEWt ZE[E Wi | Z :ﬁgtresenﬁj and put the setl = {g; : 1 < j < J} into U so
net U={u" €U : |cun|| < Ly} UU.
_ t oyt B
= EWe(U,V) + ;PT(U VOEWe (U, V) Then we defineP(g;) = > P(u") and let¢,, be the
- ur€S;
as we wanted to show. common L,-th prefix of thecun s for the «™'s in S;. That
Next we consider the case whereandV are independent IS, We consider alt.” sharing the samé,,-th prefix inc, as
and identically distributed with distributio®® so that a single element. Obviously,
Le(P™, P") > Ls(P, P). (3.13)

P?”(Un _ un’ vn = vn) _ ]:[Put 'Pﬂt' (37) B R
bl Finally let U,, andV,, be random variables for the new source
nand new random user with distributioR and let Z be a

More specifically we are looking for a lower bound o
P y 9 random variable such that

Le(P™, P™) for all prefix codesC overi/™.
Lemma 4: For alle > 0 there exists am > 0 such that for 7= {0 if both ||cyn

sufficiently largen and all positive integers 1 otherwise
Ly, = [n(H(P) —¢)(logq) "] (3-8) Then
for all prefix codesC overi™ Lé(fa, P)=EW =E(W | Z) > Pr(Z =0)E(W | Z =0)
Lnfl N X
Lec (Pn Pn) 2—m} Z q -t (39) = PT(HCU”H > Ln)Pr(”CV”H > Ln) : LE(Pvp)

—o (3.14)



where W is the random waiting tlme,P _is the common Letting n — oo we obtain a geometric distribution.

conditional dlstrlbutlon ofUn given . U, € U andV, given  TNe expected waiting time is

Vo € L{ ie. P( i) = ceu andC is the restriction

[ee]
EW =Y (Pr(U=V)"'(1-Pr({U=V))
of ¢ to Ul N =0
Nc~)tic~e thatC is a blgck code of lengtlh,,. In order to bound
Lz(f?, 15) we extend/ to a set of cardinality/L in the case

tqu

(L+1)Pr{U=V)" ZPrU V)

£=0
of necessity and assign zero probabilities and a codeword of > 1
y_ A .g_ p“ . . :Z r(U = V) —_ (3.19)
length ,, not in C. This little modification obviously does not 1-Pr(U=YV)

~
Il
o

change the value df~ (P, P). Thus, if we denote the uniform
¢ val ( P). Thus, ifw un which equalsﬁ in the case of independent, identically

distribution over the extended sZeft by P, we have distributed random variables.
I (15 15) > L.(P, P) (3.15) (Actually (3.2) holds for all stat_mnqy sources and we
c choose a memoryless source for simplicity.) In general)(3.3

12

has the form
WhereC is a bijective block codé{ — XLn,

It is clear thatt/(C,w) # 0 iff the length ofw is smaller lim EWen (U™, V™)
thanL,, — 1 and e

n—1
UC,w) =X if |w]|=¢< L, —1. =EWc(U,V) - Lhnéo <1+ZP7“ =V ) . (3.20)
Then it follows from (1.13) that
L1 By monotonicity the limit at the right hand side and therefor
L~(P,P) = Z ¢lghrt g Zq—t. (3.16) also at the left hand side exists and equals a positive fimite o
¢ i—o o infinite value.

Finally we combine (3.12), (3.13), (3.14), (3.15) and (3.16 When itis finite one may replacer(U = V)t PT(U =

An immediate consequence is Ve, _PT(Ut =V | U=V and Pr(U* = Vt)

Corollary 1: respectively, and obtain

q n—1

lim L(P", P") > Zq =T (3.17) lim <1 + ZPr Vt)>

Furthermore for mdependent, |dent|cally distributed dam =1

variablesU, V" with distribution P we have _ i’f Pr(UY = V1) Pr(U, £ Vi | U1 = Vi)
PrU=V)=Y P: =0
uel =EL, (321)

and from (3.3) and (3.17) follows the ID-entropy bound.

Corollary 2: (See Theorem 2 of [4]) the expectation of random leaving time for a stationary

source.

Le(P.P) > q 1 1 Z P2 (3.18) Thus (3.20) is rewritten as
q— . ,
weld n ny __
This derivation provides a clear information theoreticaian- Am E Wen (U, V") = E We(U, V)EL. (3:22)

ing to the two factors in ID- entropy— is a universal lower
bound on the ID-waiting time for a discrete memoryless seur
with an independent user having the same distribufon

Now the information theoretical meaning of (3.22) is quite
Glear. One encodes a sour@g™, V™), with alphabeti/
1 is the cost paid for coding the source compones component by component by a variable length c6d€he first
1—“% P term at the right hand side of (3.22) is the expected waiting
twise and leaving time for the random user in the followintime in a block and the second term is the expected waiting
sense. time for differentU; and V4.
Let us imagine the following procedure:
At a unit of time the random sourcE™ outputs a symbol
U; and the random usev™, who wants to know whether
U™ = V", checks whethel/; coincides with his own symbol
V;. He will end if not. Then the waiting time for him &with
probability Quite surprisingly the ID-entropy bound to ID-waiting time
Pr(UY = VI Pr(Uy # Vi) is achieved by a variable length code iff the Shannon entropy

1 bound to the average lengths of codewords is achieved by the
=Pr(U=V)" (1 —Pr(U = V)) for £ < n. same code.

IV. SUFFICIENT AND NECESSARY CONDITIONS FOR A
PREFIX CODEC TO ACHIEVE THE ID-ENTROPY LOWER
BOUND OF L¢(P, P)



For the proof we use a simple consequence of the Cauchkyphabet/,(C) and distributionP,, such that for allu

Schwarz inequality, which states for two sequences of rddl,(

numbers(ay, az, ..., ar) and (b1, b, ..., by) that

(B) < () ()

with equality iff for some constant, say, a; =« b; for all ¢
orb; = c a; for all 7.
Choosingb; = 1 for all 7 one has

k 2 k
<Z az-) <k Z a?
i=1 i=1

with equality iff a1 = as =

4.1)

(4.2)

= Ak

Theorem 2: Let C be a prefix code. Then the following

statements are equivalent
(i) Z Pulleu]| = H(P)
(ii) For all w e x* with U(C,w) # 0

PU(C,w)) = ¢ I« (4.3)
and for allu, v’ € U such that ||c,|| = ||c.|| @and such
thatc, andc, share the same prefix of length, || — 1
implies

P, = P,. (4.4)
(iii)
Le(P,P)=—— (1= P3> (4.5)
ueU
Proof: It is well-known that (i) is equivalent to
(") Forall u el
llcull = —[logq] ' log P, or P, = g Meull, (4.6)

Notice that for (i) the cod€ is necessarily complete. We shall

show that
(i') = (i1) = (745i) = (i').

Ad (") = (ii): For all w with U(C,w) # () the code
C,, obtained by deleting the common prefix from all the
codewordse,, u € U(C,w), is a complete code ot (C,w),
because& is a complete code. That is,

Z q*[HCuH*HwH] =1
uweU (C,w)

and consequently by (4.6)

p(u(c w)) = Z P, = Z g lleull
uweU (C,w) uweU(C,w)
— q—HWH Z q(HCu”—”w”) — q—||w||.
uweU (C,w)

Ad (ii) = (iii): Suppose (4.3) holds for all and we prove
(iii) by induction on¢,,x(C) = meach II.

C)and X’ = {c, : u € Us(C)}
Ploy(u) = P71 (Ua)(C)) Pu-

Then (4.3) and (4.4) imply that (ii) holds for &), a €
U,(C) and for all g € Uy (C)

Py = U1 (C)| ' P(th(C)).

Next we apply (4.3) to allv with #/(C,w) and |lw|| = 1 and
obtain

(4.7)

Pr(U ¢ th(C)) = (¢ - a(C)l)a, (4.8)
which with (4.7) yields for allg € U, (C)
Ps=q " (4.9)

Moreover, by the induction hypothesis for &), and P,

OzELﬁ(C)
Le, (P, Py) = —2— | 1
Clay\(a)r () = q—1

- ) Pj) (4.10)

uEU(a)(C)
as by (4.3)
P(U)(C) =q " (4.11)
forall a € X2 =X~ {c, :u € Us(C)} (say).
Finally, like in the proof of (1.11) we have
Le(P,P) =1+ Y P*(Uiw(C))Leg,, (Plays Pla)
aeXxA
2
1+ Z @D > oop2
acXA UEU(Q)(C)
X2 2
=1+ Z P?
-1 —
a@-1 ¢-1,0,
q— |U1 (C 2
=1+ Pyt
q(¢—1) qflz T ©la”
1-Y P?|, thatis (4.5)
q o 1 uweld

where the second equality holds by (4.10), the third equalit
holds, becausgl(;(C),U)(C),a € X'} is a partition oft/,
and the fourth equality follows from (4.9) and the definition
of X2,

Ad (i) = (i"): Again we proceed by induction on the
maximum length of codewords.

Suppose first that for a codé /(.,.x(C) = 1. Then
Le(P,P) =1 and|U| < q. Applying (4.2) to the ID-entropy

we get
q—1<

ZP2> < —=@1-u

ueU

In caselmax(C) = 1 both sides of (4.5) are one. Assumdvith equality iff P is the uniform dlstrlbutlon On the other
(iii) holds for all codesC’ with (1. (C') < L — 1 and let hand, sinceld| < ¢, ;L5 (1 - U|7!) < 1-2) =1
lmax(C) = L. LetU;(C) andU(,)(C), be as in the proof of and the equality holds iff{| = q. Then (4.5) holds iffP is
(1.11) and letC(,) be the prefix code for the source withuniform and|i/| = ¢, i.e. (4.6).



Assume now that the implication (i (i’) holds for all By (4.13) the first inequality holds if?, = ¢ lle«ll for
codes with maximum lengths L — 1 and thatC is a prefix , (L—1)
code of maximum lengti,,..(C) = L. welUnl and Z Puig) = ¢~ fori=12....k
Without loss of generality we can assume tfiad complete, it follows from (4 2) that the last inequality holds and with
because otherwise we can add “dummy” symbols with €quality iff
probability to 2/ and assign to them suitable codewords so

that the Kraft sum equals 1, but this does not change equality Pu(i0) = Pugin) = -+ = Pugig-1y TOri=1,2,.... k.
(4.5). ] In order to have
Having completeness we can assume that(dd) < ¢~—!
there arekq symbolsu(i,j) (1<i<k0<j<qg—1)inU Lo(P P 1— p?
with | c,(;,5 ]| = L and such that,, (1,007 Cu(i 1)1+ -+ Culig—1) c(P.P) = ;{
share a prefixv; of lengthL. — 1 fori =1,2,.
Let u(1),...,u(k) bek “new symbols” not |n the original the two inequalities in (4.15) must be equalities. Howetres,
U and consider is equivalent with (4.6), i.e. (i').
1<i<k0<j<qg-1
= [{ui) —_ <k0<j<q-1}] V. A GLOBAL BALANCE PRINCIPLE TO FIND GOOD CODES
U{u(i):1<i<k} _ . . _—
o A In caseU andV are independent and identically distributed
and the probability distributiod’ defined by there is no gain in using the local unbalance principle (LUP)
P, if ' ceUnU But in this case Corollary 1 and (4.2) provide a way to find a
P, = a1 (4.12) good code. We first rewrite Corollary 1 as
“ > Py if w = wu(i) for somes. '
i=o EWe(U,V)=>_ > Pr(Ucl(Cw),Vecl(C,w)).
Next we define a prefix codé’ for the source(l/’, P’) by n wex”n
usingC as follows: By the assumptions ofi and V" with their distribution P
H ! !
C;, _ e Fu eUdUnld (413) LC P P Z Z P2 ) (51)
w; if v =wu(i) for somei. n wexn
Then ﬁoru ﬁcmu’ lcw I = llewl @andllc), ) | = [l¢;, )/l = Notice that in caseP,o £ Y P(U(C,w)) is a con-
cu K - 1. A )
Therefore by induction hypothesis stant wgn P?2(U(C,w)) is minimized by choosing the
/ . P(U(C,w))’s uniformly. This gives us a global balance prin-
Le/(P', P') > —— (1= > P? (4.14) ciple (GBT) for finding good codes.
u' €U’ We shall see the roles of both, the LUP and the GBP in the

and equality holds iffP, = ¢ llc«l for w € 4 N’ and proof of the following coding theorem for DMS's.
Theorem 3: For a DMS (U™, V™), with generic distri-
. — — ,—(L-1) _ ) n=1
J;O Puiigy = Pay = fori =1,2,....k Further- y ion py = PQ), i.e. the generic random variablé&s and
more, it follows from (4.2) and the definition afc(P,P) V are independent anfly = P, Py = Q
and L¢/ (P’ P') that

1 if P
2 lim L(P",Q") =% :f P#g (5.2)
n—oo — =
q—1 ’
Le(P,P) = Le/(P', P') + E (E Pu(u)) Proof: Trivially L¢(P,Q) > 1 and by Corollary 2 43
=1 \s=0 is a lower bound tolim L(P", P"). Hence we only have to

construct codes to achieve asymptotically the bounds B).(5.
Case P # Q: We choose @& > 0 so that for sufficiently
largen

_ LC/ P/ + ZPIQ

w U’ and for ad > 0
- < > P2> + Z < > Pty P(Tps) > 1-2" andQ(75 ) > 1 —2"°. (5.4)
wedNU’
- 9 Partition/™ into two partsify andi; such thatlfy O 7, P
_q 9 andif; D 7575
T g1 Z Py Zq (Z Pu('iaj)) To simplify matters we assumg= 2. This does not loose
| ueuntt =0 generality since enlarging the alphabet cannot make things
q worse.
z—|1- > P: (4.15)  Let¢; = [log|t;|] andvy; : U; — 2[4] for i = 1,2. Then
1 L weu we define a cod€ by c,» = (i,;(u™)) if u™ € U; and show



that Le (P™, Q™) is arbitrarily close to one ifi is sufficiently
large. Actually it immediately follows from Proposition 1

Le(P™,Q") = Y P(cun)Q™(curm)ep(cun, cum)

un umeEU™

= > > Pew)Q

un U u'™ Uy

+ Z Z P (cyn)@Q

un €Uy u'™ €Uy

+ Z Z P (cyn)@Q

um el u'™ Uy

+ Z Z P (cyn)Q

umr el u'™ eUs

<lo Y Pew) Y Q(cum)+

Y(ewn )ep(cyn , Cym )
Cu”’ )Cp( Cym, Cu’")
Y(ewm )ep(cyn y Cym)

Y(ewm )ep(cyn y Cym)

Z Pn(cun)x

un €Uy u'n €Uy un €Uy
Z Qn(c'u;L) + Z Pn(cu”) Z Qn(cu’")
w'n el un €Uy w'm €Uy
+ 61 Z Pn(cun) Z Qn(cu/n)
u™ el u'™eUy
<Y Pew) D Qcum) + D P (cun)x
um™ €Uy u'meUy un €Uy
D QU cwn) | + [nlogU] | Y (cun)x
u'm €Uy u™ €Up
Z Qn(cu/n) + Z Pn Cuw Z Qn Cy/m ]
uw'"EeUy un el u'™ eUp
<1+ [nlog|U|] Z Q" (cum) Z PTL(C,un)]
u'™ €Uy um €U

and therefore
Le(P™, QM) < 14 [nlog|u|]127 " — 1 asn — oo, (5.5)
where the second inequality holds because

¢; = Tlog|U;|] < [log|U™|] fori=0,1

and the last inequality follows from (5.4).

CaseP = Q: Now we letP = Q. For0 < a < H(P) let
Pn(> «) be the set ofa-types (-empirical distributions)P
on Y with [72] > 2"*. Then there is a positivé such that
the empirical distribution of the output™ (resp.V™) is in
P, (> a) with probability larger tharl — 277,

Next we choose an integéy, such that for

1 n
= 1 min(h, o) 227 < ¢fn < 2P, (5.6)
Label sequences 2 for PcP,(>a)byo,1,..., 72| -

1 and let¥, be a mapping froni/™ to X, where X =
{0,1,...,q— 1} as follows.
If u™ has typeP in P, (> a) and got an indexnd(u
g-ary representatior(zy,zi_1,...,o2,z1) i.€. ind(u
k

") with

n) —
i—1 - "

Eomq for 0 <z; <gq—1, k= [log|T}|], then let

Uy (u") = (21,22, ., 22,). (5.7)

If the type ofu™ is not in P, (> «), we arbitrarily choose a
sequence il asyy (u™).

For any fixedt < ¢,, P € P,(> a), andz' € X let
U(P,z') be the set of sequences i? such thatz! is a
prefix of 41 (u™). Then it is not hard to see that for alf, z*
with ¢ < ¢,

(P, a")| — [uU(P,z")|| < 1.

More specifically for allt < ¢,, andz? ¢ X

k k
UP, )| = Z aj¢’ 17t or Z L

j=t+1 j=t+1
k
if |75 = 3 a;¢"" with ap # 0, 0 < a; < ¢ — 1 for
j:1,2,...j,_k;1—1. i
LetU(zt) = |J U(P,z") (here it does not matter whether
all P

P € P,(> «) or not).

Thus we partition/™ into ¢* parts as{U/(z
fort < ¢,.

By the AEP (the asymptotic equipartition property) the
difference of the conditional probability of the event tlilag¢
output of U™ is in U(x') given that the type ofU" is in
P.(> a) andg~' is not larger than

1Tt < 27m,

b at e Xt}

_ min
PeP,(>a)

Recalling that with probability —2—"¢ U™ has type inP,, (>
«) and the assumption thaf™ has the same distribution as
U™, we obtain that

Pr(U™ e U(z"))

and for allzt € At

= Pr(V" e U(a")) = P"(U(a"))

(1-27"") (g =27
<P U@Y)) < (1-27") (g P27 ) + 277,
which implies that for alkt € x*
[P (U(") —q 7 <27 427 <27 (5.8)

when 3 £ L min(6, a).
Recall that?; is a function fromi{™ to X~ and that the
definition of ¢(z?), U(z*~) is actually the inverse image of

Xt ounder¥y, ie. U(X) = Tt (ahn).
Let furthermoref*(zf) = F%g(;‘ﬂ and let ¥, be

a function on™ such that its restriction od/(x‘+) is an
injection intoX*" =) for all z¢~. Then our decoding function
is defined as

Cc = (‘111,\1/2). (59)

To estimatel¢ (P™, P™) we introduce an auxiliary source with
alphabetY‘~ and probability distribution®* such that for all
xtn € X

Z,L))'

We divide the waiting time for identification with codkinto
two parts according to the two componentts and ¥, in
(5.9), and we letiW; and W, be the random waiting times

P*(z') = P"(U(=z



of the two parts, respectively. Now let be a binary random Finally by combining (5.10), (5.11), (5.12), and (5.13) hwit

variable such that the choice ofg in (5.6) we have that
7 — {0 if \IJI(U") 7é \Ill(V”) HLC(PTL,PTL) S L,
1 otherwise n—eo q—1
Then the desired inequality.
It is interesting that the limits of the waiting time of ID-
Le(P™, P") = E(W1 + Wa) =E W1 + E(E(W2 | 2)) codes in the left hand side of (5.2) are independent of the
=EW),+Pr(Z=1)EW,|Z=1) generic distributionsP and @ and only depend on whether
they are equal.
=E W, + ZP” (U™ =2 P (T (V™) = 2f) In the case that they are not equal it is even independent
zin of the alphabet size. In particular in cage# @, we have
xEWy | Z=1) seen in the proof that the key step is how to distribute thé firs
symbol and the local unbalance principle (LUP) is applied in
=EW; + {Z[P”(U(xfn))f} E(Wy | Z =1). the second step. Moreover for a good code the random user
b with exponentially vanishing probability needs to wait the

(5.10) second symbol. So the remaining parts of codewords are not
ao important.
Similarly in the caseP = @, where we use instead of the
LUP the GBP, the key parts of codewords is a relatively small
E W1 = Le«(P*, P¥) (5.11) prefix (in the proof it is thel,,-th prefix) and after that the
and with the notation in Corollary #(C*,z") = U(z") and user with expopgntially small probabilit.y has 'Fo wait. Thus
p* (U(C*,:ct)) _ pn (Z/l(:rt)) for 2t € Xt with ¢ < ¢,. For 2dain the remaining part of codewords is less important.

all 2t € Xt t < ¢,,, we denote
5ty = g~ — " (U(")).

Let C* be the code for the auxiliary source with encodin
function¢* = ;. Then we have that

Then we have for alt < ¢, > d(z*) = 0 and by (5.8) APPENDIX |
zteXt COMMENTS ON GENERALIZED ENTROPIES
S(zt) < 2728,
Now we apply Corollary 1 to estimate After the discovery of ID-entropies in [4] work of Tsallis
[13] and also [14] was brought to our attention. The equesliti
Le-(P*, P¥) Z Z P* )] (1) and (2) in [14] are here (A.1) and (A.2). The letteused

there corresponds to our letter because for ug gives the
alphabet size. The generalization of Boltzmann’s entropy

Ln
=3 Y [P = Y (- 86h)’ H(P) = kY PuinP,

t=0 gte Xt

t=0 xte X't t=0 zte X't
f: t 2 t Z 5( t) Z 5( t)Q] is
= q -q =29 ')+ x 1 N
t=0 TteX! TteX? Sa(P) = ka . <1 - Z Pf) (A1)
n 2 0,41 u=1
—t 4npB —t q — —4np
<) gty ¢ 27 < Zq o 2 for any reala # 1. Notice thatlim S, (P) = H(P), which
t=0 t=0 t=0 a—
q 1 1o ans can be named (P).
<1t 277 (5.12)  One readily verifies that for product-distributiofs< Q for
independent random variable
Moreover by definition oft', and W5 ! P van S
a—1
E(Wy | Z=1)) < Pifﬂ Sa(PQ) = Sa(P)+5.(Q) ~ s, (P)5.(@) (A2)

Since in all casesS, > 0, a < 1, «a = 1 anda >

and in (5.12) we have shown that
in ( )W Ve show 1 respectively correspond to superadditivity, additivityda

> [pr (U N]* < g 4 g'n - 274 subadditivity (also called for the purposes in statistjufaysics
aln superextensitivity, extensitivity, and subextensiyiyit
Consequently We recall the grouping identity of [4].
[ P )em | z-1 S a2 ot ey
ztn €XEn uelhi Qi ‘ ’
< [q7" + 2] M%ggﬂ . (513) Hyg(P) = Hi (@) + Y Q?HLQ(]Z;) ) (A.3)
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where@ = (Q1,Q2). This implies [(P, Ps,...,Py) € P([N]),N =2,3,...]
So, while the entropies of orderand the entropies of type

— 2
Hrg(Px Q) = Hiq(Q) + Z QjHiq(P) « are different fora # 1, we see that the bijection
J
1
and since t— 1= log,[(2'7* — 1)t + 1]
-1
(1— Z Q?) 4 —— (- > Q)= = "1, ,(Q) connects them. Therefore, we may ask what the advantage
qa- J q is in dealing with entropies of type.. We meanwhile also
or learned that the book [2] gives a comprehensive discussion.
2_1_ -1 H Also Darbczy’'s contribution [6], where “type” is named
Q] IJ](Q)

“degreecq”, gives an enlightening analysis.
Note that Rényi entropie§e # 1) are additive, but not
subadditive (except forx = 0) and notrecursive, and they

g—1 have not thebranching property nor thesum property, that
H P x =H + H P)——H H P), . . . ’
ra(P>Q) 1a(@)+ Hiqg(P) q 1a(@Hr4(P) is, there exists a measurable functigion (0,1) such that

we get

(A.4)
which is (A.2) fora = 2 andk = -L-
We have been told by severaﬁ experts in physics that the Hy(P1, Py, ... Py) = ZQ(P
operational significance of the quantiti®g (for o # 1) in '
statistical physics seems not to be undisputed. Entropies of typex, on the other hand, amot additive but

In contrast it was demonstrated in [4] (see Section 2) titl® have the subadditivity property and them property and
significance of identification entropy, which is formallyose furthermore areadditive of degreec:
to, but essentially different frons,, for two reasons: always __,
a =2andk = - is uniquely determined and depends o M (P1Q1, PiQ2, -, PAQN, PoQ1, P2, -, PO,

1
the alphabet sizqq! ooy PrrQu, PuQa, - PrQN)
We also have discussed the coding theoretical meanings of= H{; (P, Ps,..., Py) + Hy(Q1,Q2, ..., QN)
the factors_4; and (1 — Z P2 + Q27 - DHY (P, Py, Pu)HRN(Q1, Q2+, Q)

More recently we learned from referees that already in 196", P», ..., Py) € P([M]), (Q1,Q2,...,Qn) € P(IN]);
Havrda and Charvat [7] introduced the entropiésy } oftype M =2,3,...; N =2,3,...].

o strong addmve of degreea
HY (P, Py,...,Py) = (217 — 1 Zpafl (A.5) HY v (PiQ11, Pi1Q12, ..., PLQ1N, P2Q21, P2Q22,
S PaQan, .o, PrQart, PuQur2s - -, PuQunN)
Pi,P,...,Py) € P(IN]),N=2,3,...,04 =0 M
(P, P ) € PAND. N ] = Hy (P, Py, Pa) + > PPHR(Qj1, Qs - -, Qi)
hm H%(Pl,Pg,... PN):1{1\[(131,]32,...,PN)7 j=1

the Boltzmann/Gibbs/Shannon entropy. So, it is reasortablel (L1, P2 - Par) € P(M]), (Qj1,Qj2,---,Qjn) €
define P([N]); 3712 JM; M=23,...;N=2,3,...].
recursive of degreea:
HN(Py, Py, ...,Py)=HN(P1, Ps,...,Py). . .
o o _ HY(P,P,,...,Py)=HY (P, + P, Ps,...,Py)
This is a generalization of the BGS-entropy different from P, P,
the Rényi entropies ofrder « # 1 (which according to [2] + (P + P2)“Hj (P1 myeRloen Pg)

were introduced by Schutzenberger [9]) given by .
[(Pl,PQ,. ..,PN) S ,P([N]),N =3,4,... with Pi+P > 0]

N . .
_ o (In consequence entropies of typealso have the branching
oHN(PL, Py, ..., Py) = logy Y P, oroperty.)
It is clear now that for binary alphabet the ID-entropy is
[(Pr, P, ..., Pn) € P(IN]), N =2,3,...]. exactly the entropy of type: = 2.
Comparison shows that However, prior to [13] there are hardly any applications or
WHy(P1, Po, Py) operational justifications of the entropy of type

1 Moreover theg-ary case did not exist at all and therefore

= log,[(2' ™% = 1)HY(Py, Py, ..., Py) + 1] the name ID-entropy is well justified.

I—a We feel that it must be said that in many papers (with

and several coauthors) Tsallis at least developed ideas to @eom
HE(Py, Ps, Py) non sta_ndard equillibrium theory in Statistical Physicsngsi
generalized entropieS, and generalized concepts of inner

energy.

_ (21704 . 1)71[2(1*04)&HN(P17P2 »»»»» Pn) _ 1]



Our attention has been drawn also to the papers [5], [11],
[12] with possibilities of connections to our work.

Recently a clear cut progress was made by C. Heup in
his forthcoming thesis with a generalization of ID-entropy
motivated by L-identification.
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