
1

An interpretation of identification entropy
Rudolf Ahlswede and Ning Cai

Abstract— After Ahlswede introduced identification for source
coding he discovered identification entropy and demonstrated
that it plays a role analogously to classical entropy in Shannon’s
Noiseless Source Coding.

We give now even more insight into this functional interpreting
its two factors.

Index Terms— Source coding for identification, identification
entropy, operational justification

I. I NTRODUCTION

A. Terminology
Identification in Source Coding started in [3]. Then identifi-

cation entropy was discovered and its operational significance
in noiseless source coding was demonstrated in [4].

Familiarity with that paper is helpful, but not necessary here.
As far as possible we use its notation.

Differences come from the fact that we use now aq-ary
coding alphabetX = {0, 1, . . . , q−1}, whereas earlier only the
caseq = 2 was considered and it was remarked only that all
results generalize to arbitraryq. In particular the identification
entropy, abbreviated as ID-entropy, for the source(U , P, U)
has the form

HI,q(P ) =
q

q − 1

(

1 −
∑

u∈U

P 2
u

)

. (1.1)

Shannon (1948) has shown that a source(U , P, U) with
outputU satisfying Prob(U = u) = Pu, can be encoded in a
prefix codeC = {cu : u ∈ U} ⊂ {0, 1, . . . , q − 1}∗ such that
for the q-ary entropy

Hq(P ) =
∑

u∈U

−Pu logq Pu ≤
∑

u∈U

Pu||cu|| ≤ Hq(P ) + 1,

where||cu|| is the length ofcu.
We use a prefix codeC for another purpose, namely

noiseless identification, that is every user who wants to
know whether av (v ∈ U) of his interest is the actual
source output or not can consider the RVC with C =
cu = (cu1 , . . . , cu||cu||) if U = u and check whetherC =
(C1, C2, . . . ) coincides withcv in the first, second etc. letter
and stop when the first different letter occurs or whenC = cu.
Let LC(P, u) be the expected number of checkings, if codeC
is used.

Related quantities are

LC(P ) = max
v∈U

LC(P, v), (1.2)

that is, the expected number of checkings for a person in the
worst case, if codeC is used,

L(P ) = min
C
LC(P ), (1.3)

Both authors are with the University of Bielefeld.

the expected number of checkings in the worst case for a best
code, and finally, ifv’s are chosen by a RVV independent
of U and defined by Prob(V = v) = Qv for v ∈ V = U , we
consider

LC(P,Q) =
∑

v∈U

QvLC(P, v), (1.4)

the average number of expected checkings, if codeC is used,
and also

L(P,Q) = min
C
LC(P,Q) (1.5)

the average number of expected checkings for a best code.
A natural special case is the mean number of expected

checkings

L̄C(P ) =
N
∑

u=1

1

N
LC(P, u), if U = [N ], (1.6)

which equalsLC(P,Q) for Q =
(

1
N , . . . ,

1
N

)

, and

L̄(P ) = min
C
L̄C(P ). (1.7)

Another special case of some “intuitive appeal” is the case
Q = P . Here we write

L(P, P ) = min
C
LC(P, P ). (1.8)

It is known that Huffman codes minimize the expected code
length for PC.

This is not always the case forL(P ) and the other quantities
in identification.

In this paper an important incentive comes from Theorem
4 of [4]:

For PN = (2−ℓ1 , . . . , 2−ℓN ), that is with 2-powers as
probabilitiesL(PN , PN ) = HI(P

N ). Here the assumption
means that there is acompleteprefix code (i.e. equality holds
in Kraft’s equality).

B. A terminology involving proper common prefices
The quantityLC(P,Q) is defined below also for the case

of not necessarily independentU and V . It is conveniently
described in a terminology involving proper common prefices.

For an encodingc : U → X ∗ we define for two words
w,w′ ∈ X ∗ cp(w,w′) as the number of proper common
prefices including the empty word, which equals the length of
the maximal proper common prefix plus 1.

For examplecp(11, 000) = 1, cp(0110, 0100) = 3 and
cp(1001, 1000) = 4 (since the proper common prefices are
∅, 01, 100).

Now with encoding c for PC C and RV’s U and V
cp(cU , cV ) measures the time steps it takes to decide whether
U andV are equal, that is, the checking time or waiting time,
which we denote by
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WC(U, V ) = cp(cU , cV ). (1.9)

Clearly, we can write the expected waiting time as

EWC(U, V ) = Ecp(cU , cV ). (1.10)

It is readily verified that for independentU , V , that is,
Pr(U = u, V = v) = PuQv

EWC(U, V ) = LC(P,Q) = Ecp(cU , cV ). (1.11)

We give now another description forEWC(U, V ). For a
word w ∈ X ∗ and a codeC define as subset ofU

U(C, w) = {u ∈ U : cu has proper prefix w} (1.12)

and its indicator function1U(C,w). Now

E cp(cU , cV ) =
∑

u,v∈U

Pr(U = u, V = v)cp(cu, cv)

=
∑

u,v∈U

Pr(U = u, V = v)×

∑

w

1U(C,w)(u)1U(C,w)(v)

=
∑

w

Pr
(

U ∈ U(C, w), V ∈ U(C, w)
)

and by (1.11).

E WC(U, V ) =
∑

w

Pr
(

U ∈ U(C, w), V ∈ U(C, w)
)

. (1.13)

C. A matrix notation
Next we look at the double infinite matrix

Λ =
(

cp(w,w′)
)

w∈X ∗,w′∈X ∗
(1.14)

and its minorΛ(L) labelled by sequences inX≤L.
Henceforth we assume thatU andV are independent and

have distributionsP andQ. We can then use (1.11)
For a prefix codeC P induces the distributionPC andQ

induces the distributionQC , when foru, v ∈ U

PC(cu) = Pu, QC(cv) = Qv (1.15)

and

PC(x) = QC(x) = 0 for x ∈ X ∗
r C. (1.16)

Viewing both,PC andQC as row vectors, then for the corre-
sponding column vectorQT

C equation (1.11) can be written in
the form

LC(P,Q) = PCΛQT
C . (1.17)

It is clear from (1.10) that a non-complete prefix code, that is
one for which the Kraft sum is smaller than 1, can be improved
for identification by shortening a suitable codeword. Hencean
optimal ID source code is necessarily complete. In such a
code

max
u∈U

‖cu‖ ≤ |U| − 1 (1.19)

and one can replaceΛ by its submatrixΛ(L) for L = |U|− 1.
This implies

LC(P,Q) = P
(L)
C Λ(L)(Q

(L)
C )T , (1.20)

whereP (L)
C , andQ(L)

C are row vectors obtained by deleting
the componentsy /∈ X≤L.

Sometimes the expressions (1.17) or (1.19) are more conve-
nient for the investigation ofLC(P,Q). For example it is easy
to see thatΛ and therefore alsoΛ(L) are positive semidefinite.
Indeed, let ∆ (resp. ∆(L)) be a matrix whose rows are
labelled by sequences inX ∗ (resp.X≤L) and whose columns
are labelled by sequences inX ∗ (resp. X≤L−1 ∪ {empty
sequence}) such that its(x, y)-entry is

δ∗y(x) =

{

1 if y is a proper prefix ofx

0 otherwise.

Then

∆ ∆T = Λ and ∆(L)(∆(L))T = Λ(L) (1.21)

and henceΛ andΛ(L) are positive semidefinite.
Therefore by (1.19)LC(P, P ) is (∪)-convex in P .
Furthermore for sources(U , P ) with |U| = 2k and the

block codeC = {0, 1}k the uniform distribution onU achieves
min

P
LC(P, P ).1

Another interesting observation on (1.20) is that as thew-
th component ofP (L)

C ∆(L) (resp.Q(L)
C ∆(L)) is P

(

U(C, w)
)

(resp.Q
(

U(C, w)
)

), application of the Cauchy-Schwarz in-
equality to (1.20) yields
[

P
(L)
C Λ(L)(Q

(L)
C )T

]2

≤
[

P
(L)
C Λ(L)(P

(L)
C )T

]

·
[

Q
(L)
C Λ(L)(Q

(L)
C )T

]

(1.22)

and equality holds iff for allw

P
(

U(C, w)
)

= Q
(

U(C, w)
)

.

We state this in equivalent form as
Lemma 1:

LC(P,Q)2 ≤ LC(P, P )LC(Q,Q) (1.23)

and equality holds iff for allw

P
(

U(C, w)
)

= Q
(

U(C, w)
)

,

which impliesLC(P,Q) = LC(P, P ) = LC(Q,Q).
This suggests to introduce

µC(P,Q) =
LC(P,Q)2

LC(P, P )LC(Q,Q)
≤ 1

as a measure of similarity of sourcesP andQ with respect to
the codeC.

Intuitively we feel that for a good code for sourceP and
Q as user distributionP and Q should be very dissimilar,
because then the user waits less time until he knows that the
output ofU is not what he wants.

This idea will be used later for code construction. Actually
it is clear even in the general case whereU and V are not
necessarily independent.

To simplify the discussion we assume here that the alphabet
X is binary, i.e.q = 2.

1A proof is given in the forthcoming Ph.D. thesis “L-identification for
sources” written by C. Heup at the Department of Mathematicsof the
University of Bielefeld.
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Then the first bit of a codeword partitions the sourceU into
two partsŪ(i1); i1 = 0, 1; whereŪ(i1) = {u ∈ U : cu1 = i1}.

By (1.13) to minimizeE WC(U, V ) one has to choose a
partition such thatPr

(

U ∈ Ū(i1), V ∈ Ū(i1)
)

’s are small
simultaneously fori1 = 0, 1. To construct a good code one
can continue this line: partition̄U(i1) to Ū(i1, i2)’s such that
Pr
(

U ∈ Ū(i1, i2), V ∈ Ū(i1, i2) | U ∈ Ū(i1), V ∈ Ū(i1)
)

’s
are as small as possible fori1, i2 = 0, 1 and so on.

When U and V are independent the requirement for a
good code is that the difference betweenP

(

Ū(i1, . . . , ik)
)

and
Q
(

Ū(i1, . . . , ik)
)

is large.
We call this the LOCAL UNBALANCE PRINCIPLE in

contrast to the GLOBAL BALANCE PRINCIPLE below.
Another extremal case is thatU and V are equal with

probability one and in this case one may never use the
unbalance principle. However in this case the identification
for the source makes no sense: The user knows that his
output definitely comes! But still we can investigate the
problem by assuming that with high probabilityU = V .
More specifically, we consider the limit ofE WC(Uk, Vk)
for a sequence of random variables(Uk, Vk)∞k=1 such that
Uk converges toVk in probability. Then it follows from
Proposition 1 thatE WC(Uk, Vk) converges to the average
length of codewords, theclassical object in source coding!
In this sense identification for sources is a generalizationof
source coding (data compression).

One of the discoveries of [4] is that ID-entropy is a lower
bound toLC(P, P ). In Section 2 we repeat the original proof
and we give in Section 3 another proof of this fact via two
basic tools, Lemma 3 and Lemma 4 forLC(Pn, Pn), where
Pn is the distribution of a memoryless source. It provides a
clear information theoretical meaning of the two factorsqq−1

and

(

1 −
∑

u∈U

P 2
u

)

of ID-entropy.

Next we consider in Section 4 sufficient and necessary
conditions for a prefix codeC to achieve the ID-entropy
lower bound forLC(P, P ). Quite surprisingly it turns out
that the ID-entropy bound for ID-time is achieved by a
variable length code iff the Shannon entropy bound for
the average length of codewords is achieved by the same
code (Theorem 2).

Finally we end the paper in Section 5 with a global balance
principle to find good codes (Theorem 3).

II. A N OPERATIONAL JUSTIFICATION OFID-ENTROPY AS

LOWER BOUND FORLC(P, P )

Recall from the Introduction that forq = 2

HI(P ) = 2

(

1 −
N
∑

u=1

P 2
u

)

for P = (P1 . . . PN ).

We repeat the first main result forL(P, P ) from [4].
Central in our derivation is a proof by induction based on

a decomposition formula for trees.
Starting from the root a binary treeT goes via 0 to the

subtreeT0 and via 1 to the subtreeT1 with sets of leavesU0

andU1, respectively. A codeC for (U , P ) can be viewed as

a treeT, whereUi corresponds to the set of codewordsCi,
U0 ∪ U1 = U .

The leaves are labelled so thatU0 = {1, 2, . . . , N0} and
U1 = {N0 + 1, . . . , N0 + N1}, N0 + N1 = N . Using
probabilities

Qi =
∑

u∈Ui

Pu, i = 0, 1

we can give the decomposition in
Lemma 2: [4] For a codeC for (U , PN )

LC((P1, . . . , PN ), (P1, . . . , PN )) =

1 + LC0

((

P1

Q0
, . . . ,

PN0

Q0

)

,

(

P1

Q0
, . . . ,

PN0

Q0

))

Q2
0+

LC1

((

PN0+1

Q1
, . . . ,

PN0+N1

Q1

)

,

(

PN0+1

Q1
, . . . ,

PN0+N1

Q1

))

Q2
1.

This readily yields
Theorem 1: [4] For every source(U , PN )

L(PN) ≥ L(PN , PN ) ≥ HI(P
N ).

Proof: We proceed by induction onN . The base case
N = 2 can be established as folows. ForN = 2 and any
C LC(P 2, P 2) ≥ P1 + P2 = 1, but

HI(P
2) = 2(1 − P 2

1 − (1 − P1)
2)

= 2(2P1 − 2P 2
1 ) = 4P1(1 − P1) ≤ 1.

For the induction step use for any codeC the decomposition
formula in Lemma 2 above and of course the desired inequality
for N0 andN1 as induction hypothesis.

LC((P1, . . . , PN ), (P1, . . . , PN ))

≥ 1 + 2

(

1 −
∑

u∈U0

(

Pu

Q0

)2
)

Q2
0

+ 2

(

1 −
∑

u∈U1

(

Pu

Q1

)2
)

Q2
1

≥ HI(Q) +Q2
0HI(P

(0)) +Q2
1HI(P

(1)) = HI(P
N ),

whereQ = (Q0, Q1), 1 ≥ HI(Q), P (i) =
(

Pu

Qi

)

u∈Ui

, and the

grouping identity is used for the equality. This holds for every
C and therefore also formin

C
LC(PN ). �

The approach readily extends also to theq-ary case.

III. A N ALTERNATIVE PROOF OF THEID-ENTROPY LOWER

BOUND FORLC(P, P )

First we establish Lemma 3 below, which holds for the more
general caseE WC(U, V ). Let

(

(Un, V n)
)∞

n=1
be a discrete

memoryless correlated source with generic pair of variables
(U, V ). AgainUn serves as (random) source andV n serves as
random user. For a given codeC for (U, V ) let Cn be the code
obtained by encoding the components of sequenceun ∈ Un

iteratively. That is, for allun ∈ Un

cnun = (cu1 , cu2 , . . . , cun
). (3.1)
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Lemma 3:

E WCn(Un, V n) = E WC(U, V )

(

1 +

n−1
∑

t=1

Pr(U t = V t)

)

(3.2)
and therefore

lim
n→∞

E WCn(Un, V n) =
E WC(U, V )

1 − Pr(U = V )
. (3.3)

Proof: SincePr(Un = V n) =
n
∏

t=1
Pr(Ut = Vt) =

Prn(U = V ) (3.3) follows from (3.2) immediately by the
summation formula for geometric series.

To show (3.2) we define first for allt ≥ 2 random variables

Zt =

{

0 if U t−1 6= V t−1

1 otherwise.
(3.4)

and for t = 1 we let Z1 be a constant for convenience of
notation. Further we letWt be the waiting time for the random
userV n in the t-th block.

Conditional onZt = 1 it is defined likeWC(U, V ) in (1.9)
and conditional onZt = 0 obviouslyPr(Wt = 0 | Zt = 0) =
1, because the random user has made his decision before the
t’s step. Moreover by the definition ofCn

E[Wt | Zt = 1] = E WC(U, V ) (3.5)

and consequently

E[E(Wt | Zt)]

=

{

Pr(U t−1 = V t−1)E WC(U, V ) for t = 2, 3, . . . , n

E WC(U, V ) for t = 1

(3.6)

where (3.6) holds in caset = 1, because the random user has
to wait for the first outcome. Therefore it follows that

EWCn(Un, V n) = EWn =
n
∑

t=1

EWt =
n
∑

t=1

E[E(Wt | Zt)]

= EWC(U, V ) +

n−1
∑

t=1

Pr(U t, V t)EWC(U, V )

as we wanted to show.
Next we consider the case whereU andV are independent

and identically distributed with distributionP so that

Pr(Un = un, V n = vn) =

n
∏

t=1

Put
· Pvt

. (3.7)

More specifically we are looking for a lower bound on
LC(Pn, Pn) for all prefix codesC overUn.

Lemma 4: For all ε > 0 there exists anη > 0 such that for
sufficiently largen and all positive integers

Ln = ⌊n
(

H(P ) − ε
)

(log q)−1⌋ (3.8)

for all prefix codesC overUn

LC(Pn, Pn) > (1 − 2−nη)

Ln−1
∑

t=0

q−t. (3.9)

Proof: For givenε > 0 we chooseδ > 0 such that for a
τ > 0 and sufficiently largen for familiar setsT n

P,δ of typical
sequences

Pn(T n
P,δ) > 1 − 2−nτ

and for allun ∈ T n
P,δ

P (un) < 2−n(H(P )− ε
2 ).

Since for a prefix codeC

|{un ∈ Un : ‖cUn‖ ≤ Ln}| ≤ qLn (3.10)

Pr(‖cUn‖ ≤ Ln) = Pr(‖cV n‖ ≤ Ln)

≤ Pr(V n /∈ T n
P,δ) + Pr(V n ∈ T n

P,δ, ‖cV n‖ ≤ Ln)

< 2−nτ + |{un : ‖cun‖ < Ln}| · 2
−n(H(P )− ε

2 )

≤ 2−nτ + qLn2−n(H(P )− ε
2 ). (3.11)

However, (3.8) implies that

qLn ≤ 2n(H(P )−ε).

This together with (3.11) yields

Pr(‖cUn‖ ≤ Ln) < 2−nτ + 2−n ε
2 < 2−nδ (3.12)

for δ , min
(

τ
2 ,

ε
4

)

.
Next, for the distributionP and the codeC over Un we

construct a related source(Ũ , P̃ ) and a codeC̃ over Ũ as
follows.

The new setŨ contains{un ∈ Un : ‖cun‖ ≤ Ln} and
for its elementsP̃ (un) = Pn(un) and the new∼-coding is
c̃un = cun .

Now we define the additional elements iñU with its P̃ and
c̃.

We partition{un ∈ Un : ‖cun‖ > Ln} into subsetsSj(1 ≤
j ≤ J) according to theLn-th prefix and use lettergj to

representSj and put the set
≈

U = {gj : 1 ≤ j ≤ J} into Ũ so
that

Ũ = {un ∈ Un : ‖cun‖ ≤ Ln} ∪
≈

U .

Then we defineP̃ (gj) =
∑

un∈Sj

P (un) and let c̃gj
be the

commonLn-th prefix of thecun ’s for the un’s in Sj . That
is, we consider allun sharing the sameLn-th prefix in cun as
a single element. Obviously,

LC(Pn, Pn) ≥ LC̃(P̃ , P̃ ). (3.13)

Finally let Ũn andṼn be random variables for the new source
and new random user with distributioñP and let Z be a
random variable such that

Z =

{

0 if both ‖cUn‖ and‖cVn
‖ are larger thanLn

1 otherwise.

Then

LC̃(P̃ , P̃ ) = EW = E(W | Z) ≥ Pr(Z = 0)E(W | Z = 0)

= Pr(‖cUn‖ ≥ Ln)Pr(‖cV n‖ ≥ Ln) · L≈

C
(
≈

P ,
≈

P )

(3.14)
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where W is the random waiting time,
≈

P is the common

conditional distribution ofŨn given Ũn ∈
≈

U , and Ṽn given

Ṽn ∈
≈

U , i.e.
≈

P (gj) = P̃ (g)

P̃ (
≈

U)
for gj ∈

≈

U and
≈

C is the restriction

of C̃ to
≈

U .
Notice that

≈

C is a block code of lengthLn. In order to bound

L≈

C
(
≈

P ,
≈

P ) we extend
≈

U to a set of cardinalityqLn in the case
of necessity and assign zero probabilities and a codeword of

lengthLn not in
≈

C. This little modification obviously does not

change the value ofL≈

C
(
≈

P ,
≈

P ). Thus, if we denote the uniform

distribution over the extended set
≈

Ū by P̄ , we have

L≈

C
(
≈

P ,
≈

P ) ≥ L≈

C̄
(P̄ , P̄ ) (3.15)

where
≈

C̄ is a bijective block code
≈

Ū → XLn .
It is clear thatU(C̃, ω) 6= ∅ iff the length ofω is smaller

thanLn − 1 and

U(C̃, ω) = XL∗−1, if ‖ω‖ = ℓ ≤ Ln − 1.

Then it follows from (1.13) that

L≈

C̄
(P̄ , P̄ ) =

Ln−1
∑

t=0

qt[qLn−t · q−Ln ]2 =

Ln
∑

t=0

q−t. (3.16)

Finally we combine (3.12), (3.13), (3.14), (3.15) and (3.16)
and Lemma 4 follows.

An immediate consequence is
Corollary 1:

lim
n→∞

L(Pn, Pn) ≥
∞
∑

t=0

q−t =
q

q − 1
. (3.17)

Furthermore for independent, identically distributed random
variablesU, V with distributionP we have

Pr(U = V ) =
∑

u∈U

P 2
u

and from (3.3) and (3.17) follows the ID-entropy bound.
Corollary 2: (See Theorem 2 of [4])

LC(P, P ) ≥
q

q − 1

(

1 −
∑

u∈U

P 2
u

)

. (3.18)

This derivation provides a clear information theoretical mean-
ing to the two factors in ID-entropy:q

q−1 is a universal lower
bound on the ID-waiting time for a discrete memoryless source
with an independent user having the same distributionP .

1
1−

P

u∈U

P 2
u

is the cost paid for coding the source componen-

twise and leaving time for the random user in the following
sense.

Let us imagine the following procedure:
At a unit of time the random sourceUn outputs a symbol
Ut and the random userV n, who wants to know whether
Un = V n, checks whetherUt coincides with his own symbol
Vt. He will end if not. Then the waiting time for him isℓ with
probability

Pr(U ℓ−1 = V ℓ−1)Pr(Uℓ 6= Vℓ)

= Pr(U = V )ℓ−1
(

1 − Pr(U = V )
)

for ℓ ≤ n.

Letting n→ ∞ we obtain a geometric distribution.
The expected waiting time is

EW =

∞
∑

ℓ=0

ℓPr(U = V )ℓ−1
(

1 − Pr(U = V )
)

=

∞
∑

ℓ=0

(ℓ+ 1)Pr(U = V )ℓ −
∞
∑

ℓ=0

Pr(U = V )ℓ

=

∞
∑

ℓ=0

Pr(U = V )ℓ =
1

1 − Pr(U = V )
(3.19)

which equals 1
1−

P

u

P 2
u

in the case of independent, identically

distributed random variables.
(Actually (3.2) holds for all stationary sources and we

choose a memoryless source for simplicity.) In general (3.3)
has the form

lim
n→∞

EWCn(Un, V n)

= EWC(U, V ) · lim
n→∞

(

1 +

n−1
∑

t=1

Pr(U t = V t)

)

. (3.20)

By monotonicity the limit at the right hand side and therefore
also at the left hand side exists and equals a positive finite or
infinite value.

When it is finite one may replacePr(U = V )t−1, Pr(U =
V ) andPr(U = V )t in the first lines of (3.19) byPr(U t−1 =
V t−1), Pr(Ut = Vt | U t−1 = V t−1) and Pr(U t = V t),
respectively, and obtain

lim
n→∞

(

1 +
n−1
∑

t=1

Pr(U t = V t)

)

=

∞
∑

t=0

tPr(U t−1 = V t−1) · Pr(Ut 6= Vt | U
t−1 = V t−1)

= EL, (3.21)

the expectation of random leaving timeL for a stationary
source.
Thus (3.20) is rewritten as

lim
n→∞

E WCn(Un, V n) = E WC(U, V )EL. (3.22)

Now the information theoretical meaning of (3.22) is quite
clear. One encodes a source(Un, V n)∞n=1 with alphabetU
component by component by a variable length codeC. The first
term at the right hand side of (3.22) is the expected waiting
time in a block and the second term is the expected waiting
time for differentUt andVt.

IV. SUFFICIENT AND NECESSARY CONDITIONS FOR A

PREFIX CODEC TO ACHIEVE THE ID-ENTROPY LOWER

BOUND OFLC(P, P )

Quite surprisingly the ID-entropy bound to ID-waiting time
is achieved by a variable length code iff the Shannon entropy
bound to the average lengths of codewords is achieved by the
same code.
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For the proof we use a simple consequence of the Cauchy-
Schwarz inequality, which states for two sequences of real
numbers(a1, a2, . . . , ak) and (b1, b2, . . . , bk) that

(

k
∑

i=1

aibi

)2

≤

(

k
∑

i=1

a2
i

)(

k
∑

i=1

b2i

)

(4.1)

with equality iff for some constant, sayγ, ai = γ bi for all i
or bi = c ai for all i.
Choosingbi = 1 for all i one has

(

k
∑

i=1

ai

)2

≤ k

k
∑

i=1

a2
i (4.2)

with equality iff a1 = a2 = · · · = ak.
Theorem 2: Let C be a prefix code. Then the following

statements are equivalent

(i)
∑

u∈U

Pu‖cu‖ = H(P )

(ii) For all ω ∈ X ∗ with U(C, ω) 6= ∅

P
(

U(C, ω)
)

= q−‖ω‖ (4.3)

and for allu, u′ ∈ U such that ‖cu‖ = ‖cu′‖ and such
that cu andcu′ share the same prefix of length‖cu‖−1
implies

Pu = Pu′ . (4.4)

(iii)

LC(P, P ) =
q

q − 1

(

1 −
∑

u∈U

P 2
u

)

. (4.5)

Proof: It is well-known that (i) is equivalent to
(i’) For all u ∈ U

‖cu‖ = −[log q]−1 logPu or Pu = q−‖cu‖. (4.6)

Notice that for (i) the codeC is necessarily complete. We shall
show that

(i′) ⇒ (ii) ⇒ (iii) ⇒ (i′).

Ad (i’) ⇒ (ii): For all ω with U(C, ω) 6= ∅ the code
Cω obtained by deleting the common prefixω from all the
codewordscu, u ∈ U(C, ω), is a complete code onU(C, ω),
becauseC is a complete code. That is,

∑

u∈U(C,ω)

q−[‖cu‖−‖ω‖] = 1

and consequently by (4.6)

P
(

U(C, ω)
)

=
∑

u∈U(C,ω)

Pu =
∑

u∈U(C,ω)

q−‖cu‖

= q−‖ω‖
∑

u∈U(C,ω)

q(‖cu‖−‖ω‖) = q−‖ω‖.

Ad (ii) ⇒ (iii): Suppose (4.3) holds for allω and we prove
(iii) by induction onℓmax(C) = max

u∈U
‖cu‖.

In caseℓmax(C) = 1 both sides of (4.5) are one. Assume
(iii) holds for all codesC′ with ℓmax(C′) ≤ L − 1 and let
ℓmax(C) = L. Let U1(C) andU(α)(C), be as in the proof of
(1.11) and letC(α) be the prefix code for the source with

alphabetU(α)(C) and distributionP(α) such that for allu ∈
U(α)(C) andX ′ = {cu : u ∈ U1(C)}

P(α)(u) = P−1
(

U(α)(C)
)

Pu.

Then (4.3) and (4.4) imply that (ii) holds for allC(α), α ∈
U1(C) and for allβ ∈ U1(C)

Pβ = |U1(C)|−1P
(

U1(C)
)

. (4.7)

Next we apply (4.3) to allω with U(C, ω) and‖ω‖ = 1 and
obtain

Pr
(

U /∈ U1(C)
)

=
(

q − |U1(C)|
)

q−1, (4.8)

which with (4.7) yields for allβ ∈ U1(C)

Pβ = q−1. (4.9)

Moreover, by the induction hypothesis for allC(α) andP(α),
α ∈ U1(C)

LC(α)
(P(α), P(α)) =

q

q − 1



1 − q2
∑

u∈U(α)(C)

P 2
u



 (4.10)

as by (4.3)
P
(

U(α)(C)
)

= q−1 (4.11)

for all α ∈ X∆ = X r {cu : u ∈ U1(C)} (say).
Finally, like in the proof of (1.11) we have

LC(P, P ) = 1 +
∑

α∈X∆

P 2
(

U(α)(C)
)

LC(α)
(P(α), P(α))

= 1 +
∑

α∈X∆

1

q(q − 1)



1 − q2
∑

u∈U(α)(C)

P 2
u





= 1 +
|X∆|

q(q − 1)
−

q

q − 1

∑

u/∈U1(C)

P 2
u

= 1 +
q − |U1(C)|

q(q − 1)
−

q

q − 1

∑

u∈U

P 2
u +

q

q − 1
|U1(C)|q−2

=
q

q − 1

(

1 −
∑

u∈U

P 2
u

)

, that is (4.5),

where the second equality holds by (4.10), the third equality
holds, because{U1(C),U(α)(C), α ∈ X ′} is a partition ofU ,
and the fourth equality follows from (4.9) and the definition
of X∆.

Ad (iii) ⇒ (i’): Again we proceed by induction on the
maximum length of codewords.

Suppose first that for a codeC ℓmax(C) = 1. Then
LC(P, P ) = 1 and |U| ≤ q. Applying (4.2) to the ID-entropy
we get

q

q − 1

(

1 −
∑

u∈U

P 2
u

)

≤
q

q − 1
(1 − |U|−1)

with equality iff P is the uniform distribution. On the other
hand, since|U| ≤ q, q

q−1 (1 − |U|−1) ≤ q
q−1

(

1 − 1
q

)

= 1

and the equality holds iff|U| = q. Then (4.5) holds iffP is
uniform and|U| = q, i.e. (4.6).
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Assume now that the implication (iii)⇒ (i’) holds for all
codes with maximum lengths≤ L − 1 and thatC is a prefix
code of maximum lengthℓmax(C) = L.

Without loss of generality we can assume thatC is complete,
because otherwise we can add “dummy” symbols with 0
probability to U and assign to them suitable codewords so
that the Kraft sum equals 1, but this does not change equality
(4.5).

Having completeness we can assume that for(ak) ≤ qL−1

there arekq symbolsu(i, j) (1 ≤ i ≤ k, 0 ≤ j ≤ q − 1) in U
with ‖cu(i,j)‖ = L and such thatcu(i,0), cu(i,1), . . . , cu(i,q−1)

share a prefixωi of lengthL− 1 for i = 1, 2, . . . , k.
Let u(1), . . . , u(k) be k “new symbols” not in the original

U and consider

U ′ =
[

U{u(i, j) : 1 ≤ i ≤ k, 0 ≤ j ≤ q − 1}
]

∪ {u(i) : 1 ≤ i ≤ k}

and the probability distributionP ′ defined by

P ′
u′ =











Pu′ if u′ ∈ U ∩ U ′

q−1
∑

j=0

Pu(i,j) if u′ = u(i) for somei.
(4.12)

Next we define a prefix codeC′ for the source(U ′, P ′) by
usingC as follows:

c′u′ =

{

cu′ if u′ ∈ U ∩ U ′

ωi if u′ = u(i) for somei.
(4.13)

Then foru′ ∈ U ∩U ′ ‖c′u′‖ = ‖cu′‖ and‖c′u(1)‖ = ‖c′u(2)‖ =

· · · = ‖c′u(k)‖ = L− 1.
Therefore by induction hypothesis

LC′(P ′, P ′) ≥
q

q − 1

(

1 −
∑

u′∈U ′

P ′2
u′

)

(4.14)

and equality holds iffPu = q−‖cu‖ for u ∈ U ∩ U ′ and
q−1
∑

j=0

Pu(i,j) = P ′
u(i) = q−(L−1) for i = 1, 2, . . . , k. Further-

more, it follows from (4.2) and the definition ofLC(P, P )
andLC′(P ′, P ′) that

LC(P, P ) = LC′(P ′, P ′) +

k
∑

i=1





q−1
∑

j=0

Pu(i,j)





2

= LC′(P ′, P ′) +

k
∑

i=1

P ′2
u(i)

≥
q

q − 1

(

1 −
∑

u′∈U ′

P ′2
u′

)

+

k
∑

i=1

P ′2
u(i)

=
q

q − 1

(

1 −
∑

u∈U∩U ′

P 2
u

)

+

k
∑

i=1

(

1 −
q

q − 1

)

P ′2
u(i)

=
q

q − 1






1 −

∑

u∈U∩U ′

P 2
u −

k
∑

i=1

q−1





q−1
∑

j=0

Pu(i,j)





2






≥
q

q − 1

[

1 −
∑

u∈U

P 2
u

]

. (4.15)

By (4.13) the first inequality holds iffPu = q−‖cu‖ for

u ∈ U ∩ U ′ and
q−1
∑

j=0

Pu(i,j) = q−(L−1) for i = 1, 2, . . . , k;

it follows from (4.2) that the last inequality holds and with
equality iff

Pu(i,0) = Pu(i,1) = · · · = Pu(i,q−1) for i = 1, 2, . . . , k.

In order to have

LC(P, P ) =
q

q − 1

[

1 −
∑

u∈U

P 2
u

]

the two inequalities in (4.15) must be equalities. However,this
is equivalent with (4.6), i.e. (i’).

V. A GLOBAL BALANCE PRINCIPLE TO FIND GOOD CODES

In caseU andV are independent and identically distributed
there is no gain in using the local unbalance principle (LUP).
But in this case Corollary 1 and (4.2) provide a way to find a
good code. We first rewrite Corollary 1 as

EWC(U, V ) =
∑

n

∑

ω∈Xn

Pr
(

U ∈ U(C, ω), V ∈ U(C, ω)
)

.

By the assumptions onU andV with their distributionP

LC(P, P ) =
∑

n

∑

ω∈Xn

P 2
(

U(C, ω)
)

. (5.1)

Notice that in casePn,C ,
∑

ω∈Xn

P
(

U(C, ω)
)

is a con-

stant
∑

ω∈Xn

P 2
(

U(C, ω)
)

is minimized by choosing the

P
(

U(C, ω)
)

’s uniformly. This gives us a global balance prin-
ciple (GBT) for finding good codes.

We shall see the roles of both, the LUP and the GBP in the
proof of the following coding theorem for DMS’s.

Theorem 3: For a DMS (Un, V n)∞n=1 with generic distri-
bution PUV = PQ, i.e. the generic random variablesU and
V are independent andPU = P , PV = Q

lim
n→∞

L(Pn, Qn) =

{

1 if P 6= Q
q

q−1 if P = Q.
(5.2)

Proof: Trivially LC(P,Q) ≥ 1 and by Corollary 2 q
q−1

is a lower bound tolim
n→∞

L(Pn, Pn). Hence we only have to
construct codes to achieve asymptotically the bounds in (5.2).

CaseP 6= Q: We choose aδ > 0 so that for sufficiently
largen

T n
P,δ ∩ T n

Q,δ = ∅ (5.3)

and for aθ > 0

P (T n
P,δ) > 1 − 2nθ andQ(T n

Q,δ) > 1 − 2nθ. (5.4)

PartitionUn into two partsU0 and U1 such thatU0 ⊃ T n
P,δ

andU1 ⊃ T n
Q,δ.

To simplify matters we assumeq = 2. This does not loose
generality since enlarging the alphabet cannot make things
worse.

Let ℓi = ⌈log |Ui|⌉ andψi : Ui → 2[ℓi] for i = 1, 2. Then
we define a codeC by cun =

(

i, ψi(u
n)
)

if un ∈ Ui and show



8

thatLC(Pn, Qn) is arbitrarily close to one ifn is sufficiently
large. Actually it immediately follows from Proposition 1

LC(Pn, Qn) =
∑

un,u′n∈Un

Pn(cun)Qn(cu′n)cp(cun , cu′n)

=
∑

un∈U0

∑

u′n∈U0

Pn(cun)Qn(cu′n)cp(cun , cu′n)

+
∑

un∈U0

∑

u′n∈U1

Pn(cun)Qn(cu′n)cp(cun , cu′n)

+
∑

un∈U1

∑

u′n∈U0

Pn(cun)Qn(cu′n)cp(cun , cu′n)

+
∑

un∈U1

∑

u′n∈U1

Pn(cun)Qn(cu′n)cp(cun , cu′n)

< ℓ0
∑

un∈U0

Pn(cun)
∑

u′n∈U0

Qn(cu′n) +
∑

un∈U0

Pn(cun)×

∑

u′n∈U1

Qn(cu′
n
) +

∑

un∈U1

Pn(cun)
∑

u′n∈U0

Qn(cu′n)

+ ℓ1
∑

un∈U1

Pn(cun)
∑

u′n∈U1

Qn(cu′n)

≤

[

∑

un∈U0

Pn(cun)
∑

u′n∈U1

Qn(cu′n) +
∑

un∈U1

Pn(cun)×

∑

u′n∈U0

Qn(cu′n)

]

+ ⌈n log |U|⌉

[

∑

un∈U0

(cun)×

∑

u′n∈U0

Qn(cu′n) +
∑

un∈U1

Pn(cun)
∑

u′n∈U0

Qn(cu′n)

]

≤ 1 + ⌈n log |U|⌉

[

∑

u′n∈U0

Qn(cu′n) +
∑

un∈U1

Pn(cun)

]

and therefore

LC(Pn, Qn) < 1+⌈n log |U|⌉2−nθ+1 → 1 asn→ ∞, (5.5)

where the second inequality holds because

ℓi = ⌈log |Ui|⌉ ≤ ⌈log |Un|⌉ for i = 0, 1

and the last inequality follows from (5.4).
CaseP = Q: Now we letP = Q. For 0 < α < H(P ) let

Pn(> α) be the set ofn-types (n-empirical distributions)P̃
on U with |T n

P̃
| > 2nα. Then there is a positiveθ such that

the empirical distribution of the outputUn (resp.V n) is in
Pn(> α) with probability larger than1 − 2nθ.

Next we choose an integerℓn such that for

β ,
1

4
min(θ, α) 2

n
2 β < qℓn ≤ 2nβ. (5.6)

Label sequences inT n
P̃

for P̃ ∈ Pn(> α) by 0, 1, . . . , |T n
P̃
| −

1 and let Ψ1 be a mapping fromUn to X ℓn , whereX =
{0, 1, . . . , q − 1} as follows.

If un has typeP̃ in Pn(> α) and got an indexind(un) with
q-ary representation(xk, xk−1, . . . , x2, x1) i.e. ind(un) =
k
∑

i=0

xiq
i−1 for 0 ≤ xi ≤ q − 1, k = ⌈log |T n

P̃
|⌉, then let

Ψ1(u
n) = (x1, x2, . . . , xℓn

). (5.7)

If the type ofun is not in Pn(> α), we arbitrarily choose a
sequence inX ℓn asψ1(u

n).
For any fixedt ≤ ℓn, P̃ ∈ Pn(> α), and xt ∈ X t let

U(P̃ , xt) be the set of sequences inT n
P̃

such thatxt is a
prefix of ψ1(u

n). Then it is not hard to see that for allxt, x′t

with t ≤ ℓn
∣

∣|U(P̃ , xt)| − |U(P̃ , x′t)|
∣

∣ ≤ 1.

More specifically for allt ≤ ℓn andxt ∈ X t

|U(P̃ , xt)| =

k
∑

j=t+1

ajq
j−1−t or

k
∑

j=t+1

ajq
j−1−t + 1,

if |T n
P̃
| =

k
∑

j=1

ajq
j−1 with ak 6= 0, 0 ≤ aj ≤ q − 1 for

j = 1, 2, . . . , k − 1.
Let U(xt) =

⋃

all P̃

U(P̃ , xt) (here it does not matter whether

P̃ ∈ Pn(> α) or not).
Thus we partitionUn into qt parts as{U(xt) : xt ∈ X t}

for t ≤ ℓn.
By the AEP (the asymptotic equipartition property) the

difference of the conditional probability of the event thatthe
output of Un is in U(xt) given that the type ofUn is in
Pn(> α) andq−1 is not larger than

min
P̃∈Pn(>α)

|TP̃ |
−1 < 2−nα.

Recalling that with probability1−2−nθ Un has type inPn(>
α) and the assumption thatV n has the same distribution as
Un, we obtain that

Pr
(

Un ∈ U(xt)
)

= Pr
(

V n ∈ U(xt)
)

= Pn
(

U(xt)
)

and for allxt ∈ X t

(1−2−nθ)(q−t − 2−nα)

≤ Pn
(

U(xt)
)

≤ (1 − 2−nθ)(q−t + 2−nα) + 2−nθ,

which implies that for allxt ∈ X t

|Pn
(

U(xt)
)

− q−t| ≤ 2−nθ + 2−nα < 2−2nβ, (5.8)

whenβ , 1
4 min(θ, α).

Recall thatΨ1 is a function fromUn to X ℓn and that the
definition of U(xt), U(xℓn) is actually the inverse image of
X ℓn underΨ1, i.e. U(X ℓn) = Ψ−1

1 (X ℓn).

Let furthermoreℓ∗(xℓn) ,

⌈

log |U(xn)|
log q

⌉

and let Ψ2 be

a function onUn such that its restriction onU(xℓn) is an
injection intoX ℓ∗(xℓn) for all xℓn . Then our decoding function
is defined as

c = (Ψ1,Ψ2). (5.9)

To estimateLC(Pn, Pn) we introduce an auxiliary source with
alphabetX ℓn and probability distributionP ∗ such that for all
xℓn ∈ X ℓn

P ∗(xℓn) = Pn
(

U(xℓn)
)

.

We divide the waiting time for identification with codeC into
two parts according to the two componentsΨ1 and Ψ2 in
(5.9), and we letW1 andW2 be the random waiting times
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of the two parts, respectively. Now letZ be a binary random
variable such that

Z =

{

0 if Ψ1(U
n) 6= Ψ1(V

n)

1 otherwise.

Then

LC(Pn, Pn) = E(W1 +W2) = E W1 + E
(

E(W2 | Z)
)

= E W1 + Pr(Z = 1)E(W2 | Z = 1)

= E W1 +

[

∑

xℓn

Pn
(

Ψ1(U
n) = xℓ1

)

Pn
(

Ψ1(V
n) = xℓn

)

]

× E(W2 | Z = 1)

= E W1 +

{

∑

xℓn

[

Pn
(

U(xℓn)
)]2

}

E(W2 | Z = 1).

(5.10)

Let C∗ be the code for the auxiliary source with encoding
function c∗ = Ψ1. Then we have that

E W1 = LC∗(P ∗, P ∗) (5.11)

and with the notation in Corollary 1U(C∗, xt) = U(xt) and
P ∗
(

U(C∗, xt)
)

= Pn
(

U(xt)
)

for xt ∈ X t with t ≤ ℓn. For
all xt ∈ X t, t ≤ ℓn, we denote

δ(xt) = q−t − pn
(

U(xt)
)

.

Then we have for allt ≤ ℓn
∑

xt∈X t

δ(xt) = 0 and by (5.8)

δ(xt) < 2−2nβ.
Now we apply Corollary 1 to estimate

LC∗(P ∗, P ∗) =

ℓn
∑

t=0

∑

xt∈X t

[

P ∗
(

U(C∗, xt)
)]2

=

ℓn
∑

t=0

∑

xt∈X t

[

Pn
(

U(xt)
)]2

=

ℓn
∑

t=0

∑

xt∈X t

(

q−t − δ(xt)
)2

=

ℓn
∑

t=0

[

qt · q−2t − 2q−t
∑

xt∈X t

δ(xt) +
∑

xt∈X t

δ(xt)2

]

≤
ℓn
∑

t=0

q−t +

ℓn
∑

t=0

qt · 2−4nβ <

∞
∑

t=0

q−t +
qℓn+1 − 1

q − 1
2−4nβ

<
q

q − 1
+

1

q − 1
qℓn+12−4nβ. (5.12)

Moreover by definition ofΨ2 andW2

E
(

W2 | Z = 1)
)

≤

⌈

n log |U|

log q

⌉

and in (5.12) we have shown that
∑

xℓn

[

Pn
(

U(xℓn)
)]2

≤ q−ℓn + qℓn · 2−4nβ.

Consequently
{

∑

xℓn∈X ℓn

[

Pn
(

U(xt)
)]2
}

E(W2 | Z = 1)

≤ [q−ℓn + qℓn2−4nβ]

⌈

n log |U|

log q

⌉

. (5.13)

Finally by combining (5.10), (5.11), (5.12), and (5.13) with
the choice ofβ in (5.6) we have that

lim
n→∞

LC(Pn, Pn) ≤
q

q − 1
,

the desired inequality.
It is interesting that the limits of the waiting time of ID-

codes in the left hand side of (5.2) are independent of the
generic distributionsP andQ and only depend on whether
they are equal.

In the case that they are not equal it is even independent
of the alphabet size. In particular in caseP 6= Q, we have
seen in the proof that the key step is how to distribute the first
symbol and the local unbalance principle (LUP) is applied in
the second step. Moreover for a good code the random user
with exponentially vanishing probability needs to wait forthe
second symbol. So the remaining parts of codewords are not
so important.

Similarly in the caseP = Q, where we use instead of the
LUP the GBP, the key parts of codewords is a relatively small
prefix (in the proof it is theℓn-th prefix) and after that the
user with exponentially small probability has to wait. Thus
again the remaining part of codewords is less important.

APPENDIX I
COMMENTS ON GENERALIZED ENTROPIES

After the discovery of ID-entropies in [4] work of Tsallis
[13] and also [14] was brought to our attention. The equalities
(1) and (2) in [14] are here (A.1) and (A.2). The letterq used
there corresponds to our letterα, because for usq gives the
alphabet size. The generalization of Boltzmann’s entropy

H(P ) = −k
∑

PulnPu

is

Sα(P ) = k
1

α− 1

(

1 −
N
∑

u=1

Pα
u

)

(A.1)

for any realα 6= 1. Notice that lim
α→1

Sα(P ) = H(P ), which

can be namedS1(P ).
One readily verifies that for product-distributionsP ×Q for

independent random variables

Sα(P×Q) = Sα(P )+Sα(Q)−
(α− 1)

k
Sα(P )Sα(Q) (A.2)

Since in all casesSα ≥ 0, α < 1, α = 1 and α >
1 respectively correspond to superadditivity, additivity and
subadditivity (also called for the purposes in statisticalphysics
superextensitivity, extensitivity, and subextensitivity).

We recall the grouping identity of [4].
For a partition (U1,U2) of U = {1, 2, . . . , N}, Qi =

∑

u∈Ui
Pu andP (i)

u = Pu

Qi
for u ∈ Ui(i = 1, 2)

HI,q(P ) = HI,q(Q) +
∑

i

Q2
iHI,q(

P (i)

Qi
) (A.3)
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whereQ = (Q1, Q2). This implies

HI,q(P ×Q) = HI,q(Q) +
∑

j

Q2
jHI,q(P )

and since

(1 −
∑

j

Q2
j) =

q − 1

q

q

q − 1
(1 −

∑

j

Q2
j) =

q − 1

q
HI,q(Q)

or
∑

j

Q2
j = 1 −

q − 1

q
HI,q(Q)

we get

HI,q(P ×Q) = HI,q(Q)+HI,q(P )−
q − 1

q
HI,q(Q)HI,q(P ),

(A.4)
which is (A.2) forα = 2 andk = q

q−1 .
We have been told by several experts in physics that the

operational significance of the quantitiesSα (for α 6= 1) in
statistical physics seems not to be undisputed.

In contrast it was demonstrated in [4] (see Section 2) the
significance of identification entropy, which is formally close
to, but essentially different fromSα for two reasons: always
α = 2 andk = q

q−1 is uniquely determined and depends on
the alphabet sizeq!

We also have discussed the coding theoretical meanings of

the factors q
q−1 and

(

1 −
N
∑

u=1
P 2

u

)

.

More recently we learned from referees that already in 1967
Havrda and Charvát [7] introduced the entropies{Hα

N} of type
α:

Hα
N (P1, P2, . . . , PN ) = (21−α − 1)−1(

N
∑

i=1

Pα
i − 1) (A.5)

[(P1, P2, . . . , PN ) ∈ P([N ]), N = 2, 3, . . . , 0α = 0]

lim
α→1

Hα
N (P1, P2, . . . , PN ) = HN (P1, P2, . . . , PN ),

the Boltzmann/Gibbs/Shannon entropy. So, it is reasonableto
define

H1
N (P1, P2, . . . , PN ) = HN (P1, P2, . . . , PN ).

This is a generalization of the BGS-entropy different from
the Rényi entropies oforder α 6= 1 (which according to [2]
were introduced by Schützenberger [9]) given by

αHN (P1, P2, . . . , PN ) =
1

1 − α
log2

N
∑

i=1

Pα
i ,

[(P1, P2, . . . , PN ) ∈ P([N ]), N = 2, 3, . . . ].
Comparison shows that

αHN (P1, P2, . . . , PN )

=
1

1 − α
log2[(2

1−α − 1)Hα
N (P1, P2, . . . , PN ) + 1]

and

Hα
N (P1, P2, . . . , PN )

= (21−α − 1)−1[2(1−α)αHN (P1,P2,...,PN ) − 1]

[(P1, P2, . . . , PN ) ∈ P([N ]), N = 2, 3, . . . ].
So, while the entropies of orderα and the entropies of type

α are different forα 6= 1, we see that the bijection

t→
1

1 − α
log2[(2

1−α − 1)t+ 1]

connects them. Therefore, we may ask what the advantage
is in dealing with entropies of typeα. We meanwhile also
learned that the book [2] gives a comprehensive discussion.
Also Daróczy’s contribution [6], where “typeα” is named
“degreeα”, gives an enlightening analysis.

Note that Rényi entropies(α 6= 1) are additive, but not
subadditive (except forα = 0) and notrecursive, and they
have not thebranching property nor thesum property, that
is, there exists a measurable functiong on (0, 1) such that

Hα
N (P1, P2, . . . , PN ) =

N
∑

i=1

g(Pi).

Entropies of typeα, on the other hand, arenot additive but
do have the subadditivity property and thesum property and
furthermore areadditive of degreeα:

Hα
MN (P1Q1, P1Q2, . . . , P1QN , P2Q1, P2Q2, . . . , P2QN ,

. . . , PMQ1, PMQ2, . . . , PMQN )

= Hα
M (P1, P2, . . . , PM ) +Hα

N (Q1, Q2, . . . , QN)

+ (21−α − 1)Hα
M (P1, P2, . . . , PM )Hα

N (Q1, Q2, . . . , QN )

[(P1, P2, . . . , PM ) ∈ P([M ]), (Q1, Q2, . . . , QN) ∈ P([N ]);
M = 2, 3, . . . ;N = 2, 3, . . . ].

strong additive of degreeα:

Hα
MN (P1Q11, P1Q12, . . . , P1Q1N , P2Q21, P2Q22,

. . . , P2Q2N , . . . , PMQM1, PMQM2, . . . , PMQMN )

= Hα
M (P1, P2, . . . , PM ) +

M
∑

j=1

Pα
j H

α
N (Qj1, Qj2, . . . , QjN )

[(P1, P2, . . . , PM ) ∈ P([M ]), (Qj1, Qj2, . . . , QjN ) ∈
P([N ]); j = 1, 2, . . . ,M ; M = 2, 3, . . . ;N = 2, 3, . . . ].

recursive of degreeα:

Hα
N (P1, P2, . . . ,PN ) = Hα

N−1(P1 + P2, P3, . . . , PN )

+ (P1 + P2)
αHα

2 (
P1

P1 + P2
,

P2

P1 + P2
)

[(P1, P2, . . . , PN ) ∈ P([N ]), N = 3, 4, . . . with P1+P2 > 0].
(In consequence entropies of typeα also have the branching

property.)
It is clear now that for binary alphabet the ID-entropy is

exactly the entropy of typeα = 2.
However, prior to [13] there are hardly any applications or

operational justifications of the entropy of typeα.
Moreover theq-ary case did not exist at all and therefore

the name ID-entropy is well justified.
We feel that it must be said that in many papers (with

several coauthors) Tsallis at least developed ideas to promote
non standard equilibrium theory in Statistical Physics using
generalized entropiesSα and generalized concepts of inner
energy.
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Our attention has been drawn also to the papers [5], [11],
[12] with possibilities of connections to our work.

Recently a clear cut progress was made by C. Heup in
his forthcoming thesis with a generalization of ID-entropy
motivated by L-identification.
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