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Source Coding with Side Information and a
Converse for Degraded Broadcast Channels

RUDOLF F. AHLSWEDE anxp JANOS KORNER

Abstract—Let {(X;,Y))}>, be a memoryless correlated source with
finite alphabets, and let us imagine that one person, encoder 1, observes
only X" = X,,---,X, and another person, encoder 2, observes only
Y* = Yi,---,Y, The encoders can produce encoding functions f,(X™)
and g,(¥™), respectively, which are made available to the decoder. We
determine the rate region in case the decoder is interested only in know-
ing Y* = Yy, --,Y, (with small error probability). In Section II of the
paper we give a characterization of the capacity region for degraded
broadcast channels (DBC’s), which was conjectured by Bergmans [11]
and is somewhat sharper than the one obtained by Gallager [12].

I. INTRODUCTION

HIS PAPER consists of two parts. The first part deals

with two problems concerning correlated information
sources, and the second part deals with the degraded
broadcast channel (DBC).

The first problem we shall consider is the following: two
correlated discrete memoryless information sources (DMS’s)
emit the random variables (RV’s) (X;,Y;) at a time instant i.
A decoder has the task to provide us with a A-code of the
first n outputs of the source {Y;}. This decoder is allowed to
observe a suitable code of X" = X, ,X,, -, X,, however,
the rate of this code is limited by some constant ¢ > 0. We
" ask for the minimum rate of that additional code of Y" =
Y;,Y,, -+, Y, he has to know in order to provide us with a
code of Y" having prescribed error probability 4. The en-
coders of X" and Y" can only observe the sources they
have to encode. By proving a coding theorem and a weak
converse result, we shall determine the region of achievable
rate pairs. Some related questions are also treated.

As far as we know, the first problem about encoding
correlated sources was that of finding the ‘“common
information’ contained in them. Common information was
first meant as some common part of the total amount of
information contained separately in each of two correlated
sources {X;} and {¥;} and which can, therefore, be encoded
by any of them independently from the knowledge of the
actual outconies of the other source. The problem of find-
ing such a code was stated independently by 1. Csiszdr and
D. Slepian. P. Gics and J. Kérner [2] showed that no
“common code” of two correlated sources exploiting the
correlation can be constructed, even if the probability of
coincidence of the two codes is an arbitrary & > O rather
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than one. In other words, common codes can only use
deterministic interdependence of the sources. This result
was later sharpened under somewhat stronger assumptions
by H. S. Witsenhausen [3]. The present authors came to the
problem stated above in discussions with G. Tusnady and
P. Gacs about source coding and, in particular, the results
in [2] during the 1972 European Meeting of Statisticians in
Budapest. Meanwhile, an important contribution to coding
of correlated sources had been made by D. Slepian and
J. K. Wolf [4]. In [4] the outputs of two correlated sources
are encoded independently, and a decoder that has to
reproduce the outputs of both sources with small error
probability has both coded messages available. Slepian and
Wolf determined the region of achievable rates. Our present
problem has been studied by A. D. Wyner and J. Ziv [9]
and by A. D. Wyner [10] who proved a (weak) converse
result in the special case of two symmetrically correlated
binary RV’s. No direct result establishing, for an arbitrary
¢ > 0, the region of achievable rates has been proved.

In the second part of the present paper we shall deal with
the DBC with two components. Broadcast channels were
first considered by T. M. Cover [8]. Cover’s first paper
created immediate interest, and P. Bergmans in [11]
described a coding scheme for the DBC, which he con-
jectured to be optimal. The corresponding (weak) converse
result was obtained for the special case of binary symmetric
broadcast channels by Wyner and Ziv [9] and by Wyner
[10]. Gallager [12] proved a coding theorem and weak
converse for arbitrary DBC’s. The characterization ob-
tained by him is somewhat weaker than the one proposed
by Bergmans [11], and we prove the latter to be true also.
This answers a question left open in [12] and, in the
terminology used there, amounts to proving the concavity
{n} of the function C, (C,) (see [12, formula (7), p. 5]).!

1I. SOURCE CODING PROBLEM WITH SIDE INFORMATION
A. Statement of Problem and Auxiliary Results

A discrete memoryless correlated source is a sequence
{(X;,Y)}2, of independent and identically distributed pairs
of discrete random variables (DRV’s). At time instant i,
the source emits (X;,Y).

Let us imagine that one person, encoder 1, observes only
X" and another person, encoder 2, observes only Y". The

1 Meanwhile, the strong converse has been proved. The result is
contained in the paper “Bounds on conditional probabilities with
applications in multi-user communication,” by R. Ahlswede, P. Gécs,
and J. Korner (submitted to Z. Wabhrscheinlichkeitstheorie u. verw.
Geb.). '
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encoders can produce encoding functions f(X™) and
g.(Y™, respectively. A third person, the decoder, has
£.(X™ and g,(Y") available, however, he is only interested
in knowing Y" = Y,,---,Y, with small error probability A.
Using his knowledge of £,(X™) and g,(Y ™), he shall construct
a decoding function V,(£,(X™),g,(Y™) such that

Pr {V.(f(X",0x(Y")) = Y} 2 1 — 4. (1.1)

A pair of nonnegative real numbers (R;,R,) is called an
achievable pair of rates if, for any 6 > 0,0 < 4 < 1, and
sufficiently large n, there exist encoding functions f, of X"
and g, of Y" and a decoding function V,, = V,(f,(X™,g,(Y"™)
such that

Pr (V(f(XDg(Y)) = YD) 21— 4 1.2
and
I AN < exp {(Ry + O)n}
g.(Y") < exp {(R, + S)n}. (1.3)

(Here we have used the notation [|Z]| for the cardinality of
the range of a function Z). We denote the region of all
achievable pairs of rates by #. Our main goal was to
characterize #, and the answer is given in Theorem 2 in
Section II-D.

In what follows we prove some convexity properties of
the functions we shall deal with in the sequel. All the RV’s
in this paper are supposed to take finitely many different
values. The terminology is that of [13]. H(Z) is the entropy
of the RV Z, H(X | Y) stands for the average conditional
entropy of X given Y, etc.

Lemma 1: a) Let XY be a pair of DRV’s with joint
distribution Pr (X = x, Y = ») = Q(x,y). If Uis any DRV
such that U,X,Y form a Markov chain, then the function

T(c) = inf H(Y|U)

HX|U)=c
is convex (V) in c.
b) Let U,X,Y be arbitrary DRV’s such that U,X,Y form
a Markov chain in this order and such that Pr (Y = y/|
X = x) = Q(y| x), for a given stochastic matrix {Q(y | x) |
x € X, y € ¥}, then the function

G(c) = inf H(Y|U)

HX|U)zc

is convex (V) in c.

Proof: The function G(c) as introduced here is equal
to the gerbator of a noisy channel with transmission matrix
Q (see [5]). Part b) is, therefore, equivalent to [ 5, theorem 1]
but is not needed in the present paper and is only stated for
comparison. In order to prove part a), we first observe that
“conditioning” means to take convex linear combinations.
Indeed let (U,X,;Y;), i = 1,2, be two triples of RV’s
satisfying our assumptions. For any o, 0 < < 1, we
introduce a new triple of RV’s (U,X,7) such that, with
probability «, (7,X,V) equals (U,,X,,Y;) and, with prob-
ability (1 — «), it equals (U,,X,,Y,). Furthermore, let  be
another RV ranging over the set {1,2} and yielding
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Pr {I = 1} = «. In this notation, we have the equations
HE|OD = aHX, | Uy + (1 ~ QH(X, | U) (14)
and
HY|O,D =aH(Y, | U) + (1 — )H(Y, | Uy). (1.5
Since {(,U),X,¥} is again a Markov chain, the result fol-
lows from (1.4), (1.5), and the definition of 7°(-).

Lemma 2: Let {(X,,Y;)}2, be a discrete memoryless
correlated source and let U be any DRV such that U, X", Y"
form a Markov chain. Then, for every ne N and every
c>0,

a) T() A  inf X H(Y"|U) = T(c)

(1/mHX"|U)2c R

b JA s LHEX"|U) = L.
A/mHEY"|U)<c 1

Furthermore, if X and Y are not independent, one has
J(©) = T™ ).

Proof: We first show part a) by arguments similar to
the ones used in [5] and then we deduce b) from a). We can
write (see [5])

n

H(Y"|U) _Z] HY; | UY, Y, %)

> Y HY;|UYy, Yo, Xy, . X o)
i=1

= 3 HOGI UX, o Xioy) (1.6)

By the definition of 7'(c), we have
HY, | U X, = %3, Xi-1 = X;-9)
> THWX; U, Xy = x5, 5 X-1 = X;-4)
and hence by the convexity of T(c) we get for the expected
values H(Y;|UXy, -, X;-1) = THX;|UXy," -, X;-4)).
This and (1.6) yield
HXY"|U) 2 'Z,l THX; | UX,, -~ Xi-). (1.7)

It follows from the convexity of 7 and from (1.7) that

H(Y"|U) > nT (1 Y H(X;| UXl,---,X,_,))
ni=1

nT (;11 H(X"| U)) .

Statement a) follows now, because T is monotonically in-
creasing. Statement b) is now easily derived from a). If X
and Y are not independent, 7 is not constant and as a
convex monotonically increasing function is certainly
strictly increasing. Since T,(c) = T(c), T,(c) is also strictly
increasing and in this case we have that J, is the inverse
function of T, for ne N. Hence J, = J; = T~'. Part b)
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is not needed in the present paper and is only included for
the sake of completeness.

Lemma 3: Let 2, be the set of all probability n-vectors
P = (p1,*",py) and let f(p), j = 1,---,k, be continuous
functions on £,. Then, to any probability measure p on
(the Borel subsets of) &, there exist (k + 1) elements p; of
&, and constants a; > 0,7 = 1,- -+, k + 1 with Y% 1 o, = 1
such that

k+1

f 10 di = %, s

i=

j=1k

Proof : F = {(fu(p),"**, /i(P)) | p € #,} is an image of
a compact set under a continuous function and, therefore,
a compact subset of E*. Since ([ £1(p) du," -, | £i(p) du)
belongs to the convex closure of F, by Carathéodory’s
theorem it can be represented as the convex combination
of at most k + 1 extremal points of that convex closure.
The latter clearly belong to F and the proof is complete.

Finally, we shall need the following important result of
D. Slepian and J. K. Wolf [4].

Theorem (Slepian-Wolf): Let {(X;,Y;)};2, be a discrete
memoryless correlated source, For every sufficiently large
nand any 4,0 < A < 1, 6 > 0, there exist encoding func-
tions £,(X™) and g,(Y") such that one can construct a decod-
ing function V,(f,(X™), g.(Y™) yielding

Pr {V,(f(X"), g(Y")) = (X" YN} 21 — 4 (L.B)
and

[ A&XD) < exp {(n(HX) + 8)}
|g.(YD] < exp {n(H(Y|X) + )}

In the next section we shall include the fairly simple
proof of this theorem which was presented in [6]. Know-
ledge of this proof is not necessary for an understanding
of the later sections.

B. Simple Proof of Coding Theorem of Slepian—Wolf

We shall make use of a well-known theorem originally
due to A. Feinstein [7]. We state it in the special form that
will serve us in the sequel.

Feinstein’s Fundamental Theorem: Let (X",Y ") be the first
n outcomes of a correlated DMS with joint distribution
{O(x,y)}. A sequence of pairs {#,y;}, ] < i< M, is an
e-code, if B, = 2", B, N B; = ¢, fori # j, y,€¥", and

PrX"e®,|Y"=ypp)=1—¢.
If we fix a set #," < %" and select all our codewords y;

from %," and, furthermore, if {#,,y;}, 1 <i< M, is a
maximal e-code one can select from %", then

M 2 exp {n[I(X A Y) — 8]} [¢- Q(¥") — Q(4,(5))]
- where Q(%,") = Q(%",%,"),
o(x", y")

1
A4,8) = (" y" | |- log XY
) {"‘ " ’n 8 00m - 00"

—I(X A Y)‘ > 5}
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and I(X A Y) is the average mutual information of the
RV’s X and Y.

Since, for any fixed 6 > 0, Q(4,(8)) = 0 as n - o0, we have
the following

M > exp {(n[I(X A Y) — 8]} 5 - Q@ M.

We shall prove that, for every ¢ > 0 and sufficiently large n,
one can keep constructing e-codes with disjoint sets of
codewords containing more than &2/4 - exp {n[I(X A Y) —
8]} elements each. The proof consists of an iterative applica-
tion of Feinstein’s theorem. Let us choose

¥ & {y" |y eam

Liog 00y + H(Y)’ < 5} .
n

By the weak law of large numbers, Q*(%,"(1)) - 1 and,
therefore, Q"(@;"(1)) > 1 — ¢, for sufficiently large n.
Hence, in a first step, we can construct an g-code with

M) = 5 (1 — &) exp (I(X A Y) — 3))

codewords. Since the set C"(1) consisting of all these code-
words has probability less than

S = @exp[nI(X A Y) = )] exp — [(H(Y) — 9]

(1 — e)exp — [nH(Y | X)]

[

and at least

'_;(1 —e)exp n[I(X A Y) — 8] exp — [n(H(Y) + 8)]

(1 —e)-exp — [n(H(Y | X) + 2)],

Nie

putting @,°(2) A #,(1) — C"(1) we get
(1 =9 (1 = 2exp [-nH(Y | 1))
< 0% (2)
< -e (1 - gexp [—n(H(Y | X) + 25)]). 2.1)

Now we apply Feinstein’s theorem to the set #,"(2), and
we get a code C"(2) with

MQ) =exp {n[I(X A Y) — 5]}
g €
-5(1 -8 [(1 — Eexp(—nH(YlX)))]

codewords.

After having constructed the disjoint sets of codewords
c'(),C"2), -+, CYL — 1), we obtain a set #,"(L) A
ML — 1) — C"(L — 1). For the probability of this set
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one easily obtains the bounds
(- e (1 - gexp(—nH(Y | X))) )
< Q'(%5M(L)
e L-1
<0 -¢¥ (1 - Eexp(—n[H(YlX) + 25])) . (2.2)

Using the elementary inequality (1 — ux)* < exp (—uLx),
for 0 < x < 1, one can write the right side of (2.2) as the
following

Q(¥ML)) < (1 — g)exp [_ %’ 2—n<H(Y|X)+za>]

and hence choosing L = [exp (n(H(Y | X) + 4,))] with
any 8, > 28 we get Q"(@, " HXIN+dy) _, (,

On the other hand, recognizing that, for 0 < x,
lim,,o (1 — ux)* = exp (—(1/u)), it becomes clear from
the left side of (2.2) that, for L = [2"#(¥1X)]  the probability
of ¥s"(exp (nH(Y | X)) is bounded away from zero in-
dependently of n. Summarizing what we have obtained so
far, we know that, for any ¢ > 0, § > 0, and every suffi-
ciently large n, one can construct [exp [n(H(Y | X) + 3,)]]
disjoint e-codes with 0 < 8, < 35. Each of these codes
contains at least

%-(1 — g exp (n(I(X A Y) — 8)
> %zexp A(I(X A Y) = 9)

codewords, and the union of all the codeword sets has
probability greater than 1 — &.
Now we are ready to prove the Slepian-Wolf theorem.
For the given A and 6 we choose
A—-29

e <t —

. (2.3)

and construct the [exp [n(H(Y | X) + §,)]] disjoint sets
of codewords described above. Let f, be a function defined
on Z" which is .invert’ible on

Zs(1) & {x" | x" e X", !
n

log Q"(x") + H(ﬂ")’ < 5}
and takes any constant value on 2" — %,"(1). Thus f,(X™)

is a code of error probability less than & of X™, for suffi-
ciently large n. We define a code g, of Y” as follows:

. J,
g(Y") & {0,

Since we have constructed [exp (nH(Y | X) + J,)] codes,
this means that

ifY*=y"and y"e C"(J), forl <J<L
if Y" = y" and y" does not belong to any of
the codes we have constructed.

1
;log lg.(Y)I < H(Y | X) + 36 = H(Y | X) + &,
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where we write , = 35. On the other hand, it is obvious
that

’1-1log N1AEM < HX) + 6 < HX) + 6.

The function V,, by means of which we shall obtain a DRV,
Y = v(f,(X™), g(Y™) withPr (Y" = Y") > 1 — 4, is now
the following: suppose that the random output of the
correlated source was (x",y"). The decoder has available the
corresponding values of the functions £, and g,, i.e., f,(x")
and g,(»"). With a probability greater than 1 — §, he can
decode x" correctly from f,(x"). With a probability at least
1 — &, y"is a codeword in one of the [exp n(H(Y | X) + 4,)]
codes we have constructed. Thus, with a probability greater
than 1 — ¢ — §, the decoder is in the position to do the
following: he looks for that particular decoding set of the
g"(y"th code which x" € ™ belongs to, and doing so, with
probability greater than 1 — ¢, he will decide on the right
»" since we have constructed e-codes. Thus, all together
with a probability greater than 1 — 2&¢ — §, our decoder
will know correctly which y* was the actual value of the
DRV Y". Proceeding as described, the decoder has con-
structed an RV Y" such that

Pr(P"=Y)>1-2-6>1-4

The last inequality follows from (2.3) and the theorem is
proved.

C. Characterization of Rate Region

Theorem 1: Let {(X,,Y)}2, be a discrete memoryless
correlated source. The rate region % of the source coding
problem with side information (as described in Section II-A)
equals

a = {(£ #onoe)
iH(Y" Lf(X™) | neN,f: 2" > N} .

Proof: The relation £ > #* is immediately obtained
by applying the Slepian-Wolf theorem of Section II-A to
the supersource {(U,,¥))},.x, where the (U,Y), te N, are
independent identically distributed RV’s with the same
distribution as the pair ((f,(X™),Y ™).

Suppose now that (f,(X™), g,(Y™) is a pair of encoding
functions and that V, = V,(f,(X™),g.(Y™) is a decoding
function such that

Pr (V(fulX"),g(Y) =Y =1~ 4 (3.1
and
I L&) < exp {Ryn}
(Y < exp {R,n}. (3.2)

We shall prove below, with the use of Fano’s lemma, that
then

Ry > S [H(Y"|f,X) = hG) = nilog IY1] ()
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and hence Z < %* follows by choosing A arbitrary small
and # sufficiently large. Let us denote f,(X") by U. Clearly,
for any value u of U, we have

1 . 1 n
R, 2 - log g (Y™l = - H(g (YD) | U = u)

zimnmauwww|v=m

> Y1y A v U = w
n

~la v =w - B U =wW)] (G4
n

Using Fano’s Lemma we conclude that
HY" | U=uV,) < (Aw) + Mw)-log |Y]:n (3.5)
where A(x) is the conditional probability
Pr{V, # Y,|U = u}.
The last two inequalities yield

Ry > L{H(Y" U = ) — hiw)

— Mu)-n-log | Y]

Taking the expected value on the right side of our in-
equality and observing that the concavity of the entropy
function implies E(A(A(U))) < h(4), we finally obtain in-
equality (3.3) which we wanted to prove.

(3.6)

D. Single Letter Characterization of Rate Region

Now we deduce from Theorem 1 a simple characterization
of the rate region %, which actually could be used for its
numerical determination.

Theorem 2 (Coding Theorem and Converse): The rate
region # for the correlated source coding problem as
described in Section II-A equals

A** = {(R,Ry) | Ry 2 I(X A U),R, 2 H(Y | U),
U DRV and U,X,Y Markov chain}.

Furthermore, the region is already obtained if we limit the
cardinality of the range of U by the constraint

1ol < x| + 2.

Proof: We use Theorem 1 and show first that #2* < Z**.
Suppose that R, = (1/n)H(Z) and that R, = (1/m)H(Y"| Z),
where Z = f(X™). We have to show that there exists a
Markov chain (U,X,Y) such that R, > I(X A U) and
R, > H(Y | U). Clearly,

n-R, = HZ) > I(Z A X"y = HX") — HX"|Z). (4.1)
Using the independence of the X;, one can write
-I-H(X" | Z) > H(X) — R,. 4.2)
n
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Since T is increasing, we also have

T (1 H(X"| Z)) > T(H(X) — Ry).  (43)
n

On the other hand, Lemma 2 yields R, = (1/m)H(Y"|Z) >

T[(1/m)H(X™ | Z)], and the two last inequalities give

R, > T(H(X) — R,) = inf H(Y|U) (4.4)

H(X|U)=H(X)—-Ry
where the equality holds by definition of 7. Rewriting the
constraint equality in the form I(X A U) > R, we finally
get
H(Y|U)

inf 4.5)

IXAU)ZR,

R, >

as was to be shown.

Now we prove that #* > %#**. We have to show that,
for every Markov chain U —» X — Y and for every & > 0,
there exists an » and a function f, on " such that

“Lagam < 1x A vy +e 4.6)
n
lH(Y" | fui(X™) < HY|U) + & @7
n
Clearly we can assume that, for some § > 0,
HU) - IXAU)>9d (4.8)

because otherwise /(X A U) = H(U) and thus, U being a
deterministic function of X, the choice f,(X") = U" would
do. Suppose further that ¢ < 4.

We now make use of the notions and simple properties of
typical sequences and of generated sequences, both defined
with const. - +/n deviation (see [4, ch. 3]). Denote by
T (U") the set of those typical sequences in %", by ¥(¥",u")
[or %(@"x"u")] the elements of 2" [or #"] generated by
u" e U" [or (x"u") € X" x U"]. Furthermore, define

G ") = VYT X" "), x" e 4(Z"u")

and choosé the constant before the square root such that
for u" e T (U™, X" € 4 X" u"),

lim Pr (Y"e 9*@"u") | X" = x") = 1

n— oo

4.9)
and

Liog |@*@"u") = H(YJUY| < L (4.10)
n \/n
for a suitable constant ¢;.

The maximal code construction (see [ 14, ch. 3]) leads, for
any 4,0 < A < 1, to a code {(v;,D;)}}- with the following

properties:

a') vjeg-(%")’j = 1’2"”9N;
b) D; =« 4(%"v), D; "Dy, = ¢,j #j,j=1,"""N;
OPr(XeD;|U"=v)21—-4j=1,",N;
d)Pr(X"eDy) < (1 — A)Pr(U"¢ {vy, 05}

+ A-Pr(U"e {vy, " ",oxn});

where Dy = 2" — {J}-, D; (maximality of the code).
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Wolfowitz’s strong converse of the coding theorem (see
[14, ch. 3]) implies, for large n, that

e) I/nlog(N+ 1) <I(X A U) +e
Define
(XN =j, forX*eD;j=0,1, N (411)
This function satisfies (4.6), because (1/m)H(f,(X™) <

(1/n) log (N + 1). Now we verify (4.7). For i = 1,2,--*,N,
we use the estimate

HY" | f(X") = i) < log |9*# "0 + ;" log (—;—

+n-8"log|¥| (4.12)

where
O = Pr (Y" ¢ 9*(@"v) | fuX") = i)

and lim,_,, 6" = 0 by (4.9). Using this and (4.10), we get
fori =1,2,-+-,N and n large

%H(Y" |f(X™) = i) < HY | U) + g (4.13)
and, therefore, also
%H(Y" | X)) < HY | U) + g

+ log |¥] - Pr (f(X") = 0).

It follows from a), e), the choice ¢ < J, and (4.8) that
Pr (U" e {v,, - -,ox}) = O when n - co. Part d) and the
fact that we can choose A arbitrarily close to one, imply that
Pr (X" € Dy) can be made arbitrary small for » sufficiently
large. This combined with c) and (4.14) gives the result.
Finally, we show that the cardinality of the range of U
can be bounded by | X]| + 2. We apply Lemma 3 to the
present situation by setting | || = n, Z = {1,2,--,n}, and
bychoosing 2, as the set of all probability distributionson &
Suppose that Pr (X = x| U = u) and Pr (U = u) are given
and that, for every xe %, Y, .o Pr(X =x|U = u)-
Pr (U = u) = Pr (X = Xx), the given marginal distribution.
We can interpret {Pr (X = x| U = u)}, .o as an element
of #, and {Pr (U = u)},.y as a Borel measure on Z,.
Consider the following continuous functions on £,:

a) For p = (p(1)," * -, p(n)) € Z,, set
fip) =p()i=12""",n;

B fuead) = = %, ( Y P(y| x)p(x))

xe&
-log Y, P(y|x)p(x);

xeX

©) fur2(p) = Y p(x)log p(x) + H(X).

xeX

(4.14)

Clearly, forj = 1,---, n — 1,
Y fPr(-|U =u)Pr (U =u) = p(j)

uelU

2SaraPr (- |U =) Pr(U =u) = HY|U)
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and

3 foaaPr (- 1U = ) Pr (U = w) = I(U A X).

Lemma 3 implies that there exists a U* with |U*| <
| X] + 2suchthat H(Y |U*) = H(Y|U)and I(Y A U) =
H(Y A U¥.

E. Remarks

A closer look at the proof of the converse part of our
coding theorem shows that we never used the condition
Z = f,(X™). What we used instead was the conditions that
Z, X", Y" form a Markov chain in this order. In other
words, this means that if we consider Z as a random code
of X™ where, for every fixed value of X", the randomization
in the encoding is independent of Y”" (this is what the
markovity means) we can state that randomization in the
encoding of X" does not help. There are no more rates
achievable by a randomized encoding of X" than the ones
achievable by deterministic codes. Since deterministic codes
are a special case of random codes, it is clear that the region
of achievable codes remains the same if the deterministic
codes of X" can be exchanged for random ones.

Finally, we would like to outline the answer to a related
source coding problem raised by G. Tusnddy generalizing
an earlier problem of J. Kérner [1]. This is again about
source coding with side information. The only difference
from our original problem is that, while constructing the
encoding function for Y”, the encoder of Y" has available
the codeword f,(X™).

The special case of this theorem, where there is no limita-
tion on the rate of £,(X™), was settled in [1]. The answer to
the general case follows from our Theorems 1 and 2.

It is clear that, for the same memoryless correlated source,
the rates achievable by the original coding scheme are
a fortiori achievable by the present one. Thus only a con-
verse result is needed. Without going into the details, we
mention that upon replacing g,(Y") by a new encoding
function §,(Y",f(X™) the converse proof of Theorem 1 in
Section II-C literally applies and gives the same result.

IIT. CONVERSE TO CODING THEOREM FOR DEGRADED
BROADCAST CHANNEL

A. A Few Lemmas

In this Section we shall provide the tools needed for the
proof of the Theorem. The stating of the problem is post-
poned until the next section. We shall need some properties
of the function #(x) defined by the following.

Definition 5.1: Given the finite sets Z, %, £ and the
transition probability matrices {P;(y|x)|x e &, ye ¥} and
{P,z|y)|ye¥,ze Z}, consider all the quadruplets
U,X,Y,Z of DRV’s such that U,X,Y,Z form a Markov
chain with the given transition probabilities

Pr(Y =y|X =x) = P(y|x
Pr(Z=2z|Y =y) = Pyz|y),
forallxe ¥, ye#,zeZ. (5.1)
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We define

t(x) A sup I(X A Y|U) (5.2)

I(UAZ)2x
where the supremum is taken over all the Markov chains
U,X,Y,Z satisfying (5.1).

Later on we shall see that the range of U can be bounded,
and the supremum can, therefore, be replaced by a
maximum.,

The main tool of our subsequent proof is given by the
following lemma.

Lemma 4: For every x > 0, t() is concave (N).

Proof: We can arbitrarily vary the joint distribution
of the pair U,X. Let us fix an & > 0. For i = 1,2 let
U,X,Y,Z; be a quadruple yielding at least #(x;) — & Let
us put x = ax; + (1 — «)x,, for some 0 < a < 1. We
introduce the new RV’s T and U,X,¥,Z by the following
definition:

Z =2z,
It is clear that (T,0),X,¥,Z again form a Markov chain in
this order. Furthermore,

Pr(T=1)=ua

Pr(r=2=1-a (5.3a)
U =U)
’i.f = ;‘,’} for T = i. (5.3b)

at(xy) + (1 — a)t(x;) — &
Sad(Xy A Y, |[UY)+ (1A = I(X; A Y,|U,)
=Pr(T=1)IX, A ;10U
+ Pr(T = DI(X, A Y, | Uy)

=JX A Y0, .49
by the definitions (5.3). On the other hand, we have
(U, A Z) = x;, fori =12
and hence
al(Uy A Z) + (1 — (U, A Zy) = axy + (1 — 0)x, = x.
(5.5)
However,

oal(U, A Z + (1 — )I(U, A Z)
=Pr(T = DI{U, A Z}) + Pr (T =2I(U, A Zy)
=E(I(U, A Z,|T=10) =10 A Z|T). (5.6)
Thus, combining (5.5) and (5.6), we obtain
IOANZ|T) > x. .7

We need the following well-known identity (see, e.g., [13,
formula (2.2.29), p. 22]):
KO AZy =IO AZ|T) + KT A Z).

Because the average mutual information, I(T A Z), is
nonnegative, this identity gives I(0,T) A Z) > I(TU A Z| T).
Comparing the last inequality with (5.6), we have I o, A
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7Z) > x. This inequality shows that the Markov chain
(T,0),%,7,Z satisfies our constraint of maximization for x,
therefore, we conclude that 7(x) > I(X A ¥ | T,U). Hence,
using (5.4), we get 1(x) > I(X A Y| T,0) = ar(x)) +
(1 — o)t(x,) — & Since 1(x) = at(xy) + (1 — )t(xz) — &
holds for every e > 0, the statement of the lemma is
established. Now we prove two short and technical lemmas.

Lemma 5: Let the RV’s U, X", Y" Z" form a Markov chain.
We suppose that Pr (Z" = z" | Y" = y") = [T}=, Pa(z; | y)
and Py(Y" = y" | X" = x") = [1}=; Py(y:] x,). Define U; &
U,Y,,Y,, -, Y;_, for i = 2,3,-,n. This yields

U AZY< ¥ IU; A Z).
i=1
Proof:
[(U A Z% = H(Z") — H(Z"| U)

n

z H(zi |UZ,Zy, "2 —y)

i=1

H(Z" | U)

v

'Zl H(Zl | Uzlazz" : ',Zi—l’YI’YZ" ' 'sYi—-l)'
(5-8)

By the memoryless character of the transmission channel
from Y" to Z", the rightmost sum equals

21 H(Zil UYls"‘,Yi—1) = Z H(Zil Ui)
i= i=1

where the last equality holds by the definition of the U,
Using this, one gets from (5.8)

I(UAZY < )_:1 H(Z) — H(Z"| U)

= '21 [H(Z) — HZ:| U)] = _;1 IU; A Z).
Lemma 6: With the notation of Lemma 5 we have
I(X" A Y| U) < 2 IX; A Y| U).
i=1
Proof:
I(X" A Y"|U) = H(Y"|U) — H(Y"| X"U). (5.9)

However,

HY"|U) = ¥ HOGIUY, oY)

i

Y, H(Y;| Uy - (5.10)
i=1
where the last equality follows by definition of U,.

Since the transmission channel from X" to Y" is memory-
less, we also have

H(Y" | X"U) = é‘,l H(Y,| X,U).

However, H(Y; | X;U) = H(Y;| X, Y,,"-,Y;_, U) because
Y, and Y,,- - ,Y;_, are statistically independent given X;U.
In our notation, this means that H(Y;| X;U) = H(Y;| X,U)).
Combining this with (5.10) and substituting in (5.9) the
statement of the lemma follows.
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We shall prove now that passing to product spaces does
not increase the maximum in (5.2).

Lemma 7: Using the notation of Lemma 5, suppose that
the DRV’s U, X", Y" Z" form a Markov chain and vary over
all the Markov chains with fixed transmission probabilities
from " to #" and from #" to Z™ where these probabilities
are defined in the statement of Lemma 5. Now introducing
the function

t(x) A éup {’12 I(X" A Y™ U)I;lzI(U ANZY = x},

we state that
t(x) < t(x).

Proof: Combining Lemmas 5 and 6 we get that

sup {EI(X" A YR U)|lI(U ANZY < x}
n n

< sup {1 Y I(X; A Y U,-)l1 Y I(U;AZ) 2 x}.
ni=1 ni=1

Let us choose an arbitrary ¢ > 0. Let U, X",Y",Z" yield

at least £,(x) — & for a fixed x. Then, taking the supremum

in each component, we get

t(x) = ’1“21 IX; A Y0y <

N | =

121

ssup {I(X A Y|U)|I(U A Z) > I(U; A Z)}.
(.11)

Now by the definition of the function #(-) for the right-
most expression in (5.11), we get

w1 3@ azy <3110 A 2) 612
ni=1 ni=1

where the last inequality follows from the concavity of #(-).
Again using the fact that #(-) is decreasing and considering

1ZI(Ui/\Z,-)Zx

ni=1
by our supposition (5.12) yields t,(x — &) < ?(x). Since
this holds for every ¢ > 0, we have established the lemma.

We conclude with a lemma which is a slightly modified
version of Lemma 1 in [12].
Lemma 8:

t(x) =max (X A Y| D) |I(U A Z) = x,
1U]l < min (JX[,1Y [,I1Z1)}.

The proofis based on [11, lemma 1]. The following is a short
outline of this proof.

Since #(x) is concave in x, it follows that it equals its upper
convex envelope. This is expressed by the equality

t(x) = inf [sup [AI(U A Z) + I(X A Y| U)] - Ax]
20 (U,X)
i.e., #(x) is the lower envelope of a family of straight lines
parametrized by (4,D(1) — Ax) where
D(A) = sup (U AZ)+IX A Y|U).
,x)
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Therefore, the statement of the lemma follows if we show
that, for every A > 0,

sup [AI(U A Z) + I(X A Y| U)]
,X)

=max [AI(U A Z) + I(X A Y|U)|(U,X);
U] < min (IX |1 Y I,1Z1)] (5-13)

where the maximization goes over all the Markov chains
U,X,Y,Z with prescribed transition probabilities from %
to ¥ and % to #. The statement of (5.13) holds by Gallager
[12, lemma 1].

It is worthwhile mentioning that since, for every fixed
DRV X, we have |X| + 1 constraint functions, an argu-
ment similar to the one used in the proof of Theorem 2
(using Lemma 3) shows rather easily that for the fixed X
one can add the constraint |U| < || X]| + 1 and still get
the same supremum. Therefore, the operation sup can be
replaced by taking the maximum.

B. Converse to Coding Theorem

We adopt the usual terminology for the DBC with two
components. The DBC is defined by the stochastic matrices -
describing the noisy channels {P,(y|x)|xe %, Y e ¥}
and {P,(z|y) |ye ¥, z e ¥} where X, %,% are finite sets.
We put

P, x Py(z|x) & Zg Py(z|y)-Py(y|x)
ye
for every xe &, ye®. Let P,"x P, denote the nth
memoryless extension of the DBC {P,,P,}, i.e., for every
X" = x,X%,," "X, and 2" = 2,,2,, " *,z,

Pz"*P1"(Z"|x")=il:[1P2*P1(zi|xi)-

An element of the set {(i,j) |1 <i < M,,1 <j< M,}
has to be sent over the DBC. The first index of the pair
(i,j) is a message for decoder 1 that observes the output
of the channel P,, and the second index is a message for
decoder 2 observing the output of P,. The two sets of
messages are encoded by a common encoder that assigns
a codeword x;; to every message pair (i,j). If the DBC is
used n times during the communication, the concept of a
code is the following.

Definition 7.1: Let M,,M,, and n be natural numbers.
A set of triples {x;;,4;,B;}, i <i < M,, 1 <j< M,,is
a code for the DBC, if x;; € ", 4; € 9", B; < Z". Both

.the 4, and B; are disjoint sets. At the output of channel,

P," i has to be decoded, thus a code serving only the com-
munications between the encoder and decoder 1 is a set
{x;pi}, 1 i< M, 1 <j< M, such that, in case of
no error, a sequence y" € &/; has to be received whatever
Xy, 1 < j < M, was sent. Otherwise, we shall say that a
decoding error occurred.

The error probability of our code is (see also Cover [7])

max max P"(;|x;), where o, = ¥ — A,

1<j<Mz 1<isM;

This is what can be called maximal error. Similarly, for the
communication between the common encoder and decoder
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2, we are given a code

{xij!'@j},

The probability of error for this communication is

wherel < i< M,,1 <j< M, B; =« 2"

n neaa
max max P, x P,"(%;] x;),
1<isM; 1<j<M;

where &; = 2" — 4%,

A pair (R,,R;) of nonnegative reals is called an achievable
rate for the DBC {P,,P,}if, forany0 < 4; < %,0< 1, < §,
6 > 0, and any sufficiently large n, there exists a code
{xi;9¢1,%;} such that

M, > exp[n(R, — 8] M, >exp[n(R, — 5)]. (6.1a)
max max P,"(;|x;) < A4 (6.1b)

1<j<M; 1<i<M;
max max P,"xP"(%;|x;) < A (6.10)

1<j<M; 1<isM;,
We shall prove the following.

Weak Converse Theorem: If (R,,R,) is an achievable pair
of rates for the DBC {P,,P,}, then R, < t(R,), where (x)
is the function introduced in Definition 5.1 and redefined
in a more explicit way in (5.13).

Our proof uses Fano’s lemma and follows easily from
Lemmas 4-7. Suppose that we are given a code achieving
R,,R,, for some (n,,4,,4,). Let us consider all the codewords
x;; with a fixed second coordinate j. We write

TG) &

Let us introduce a random variable U ranging over
1 < j £ M,. We suppose that U takes all its values with
equal probability. For every fixed value j of U, a codeword
x;; is chosen in 7'(j) at random with equal probability. The
codeword finally sent is, therefore, the actual value of a

{x;11 <i< M}

random variable X™ which, conditional on any fixed value -

j of U, has uniform distribution on 7°(j).

It is clear that
nR, = HU)=I(UA Z"» + HU| Z". (6.2)

Using Fano’s inequality, the right side of (6.2) can be
upperbounded by

IU A Z™ + 2, log (M, — 1) + h(Ay).
Hence
IU A Z" > nR, — Ay log (M — 1) — h(4,)
Z nRz(l - lz) - h(lz). (6.3)

The last inequality follows by (6.1a). On the other hand,
one has

IX" A Y"|U) = HX"| U) -
= nR, — H(X"| U,Y"

HX"| U,Y™
(6.4)

where the rightmost inequality follows from the fact that
conditional on every value of U, X" is equally distributed.
Using Fano’s inequality for upper bounding the conditional

/
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entropy on the right side of (6.4), we get
I(X" A Y"|U) = nR, — Ay log (M, — 1) — h(i,)
2 nRy(1 — iy) — h(4y)

where the last inequality follows from condition (6.1a).
Thus, for R,, we obtain the upper bound

1 n n
R, < P [h(A) + I(X" A Y"| U)]
1 1
= n(l — i) hka) + 1— A

where the last inequality follows from Lemma 7.

Since #(-) is monotonically decreasing, substituting (6.3)
in (6.5) for (1/m)I(U A Z"), we get
.
n(l — ;)

+ L.
1 -2

If n gets arbitrarily large while A, and A, remain fixed, (6.6)
yields

t(’lt I(U A z")) (6.5)

1 <

t(Rz(l — ) + % h(,lz)) . (6.6)

1
1~ 4

Since the last inequality holds for every 4, > 0 and
A, > 0, we finally obtain that R, < #(R,).
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