About the number of step functions with restrictions

Rudolf Ahlswede and Vladimir Blinovsky

We obtain the asymptotic formula for the number of scaled step functions with the restrictions
on the length and height of steps (shapes of Young diagrams) of given area in the neighborhood
of a given curve. This allows us to find the asymptotics of the whole number of such functions
and find the limit shape-the curve of concentration of the step functios. !

1 Introduction

Consider the z > 0, y > 0 quarter of the plain and step functions with integer nodes which
start from some point on the Y axis and end in some point on the X axis. In this work
we deal with the number of such step functions, for which the area under these functions is
asymptotically equal to n and n — oc.

The main problem we solved in this work is to obtain the asymptotics of the number of
scaled step functions in the neighborhood of a given curve when the length and height of
steps are taking values from given sets A and B correspondingly. The case when there
are no such restrictions, i.e. A =B = {1,2,...} was, considered in [3] and independently
in [5] by using an essentially different method. In [4] the case was considered, where there
are restrictions only on the height of steps i.e. A = {1,2,...} and B is an arbitrary set of
positive integers. Here we complete these investigations by the case where A and B are given
sets of positive integers. This case also differs from the previous ones by some new difficulties
in the proof. In particular we don’t know another method of obtaining the asymptotics of
the whole number of step functions with the restrictions on the height and length of steps.
At the same time the asymptotics in the case without restrictions is known due to a result
of Hardy- Ramanujan [2] because the number of step functions without restrictions is the

number of partitions of n which in turn has the logarithmic asymptotics ~ 74 /n%. The case
when A = {1,2,...} can be done explicitly also.

The problem considered here can be viewed as the large deviations problem. The difference
2C — L(f) (see next section for notations) is the rough logarithmic asymptotics (asymp-
totics under several parameters) of the probability that the step function belong to the

!This work is partially supported by RFFI grant No 03-01-00592 and 03-01-00098 and INTAS grant No
00-738.



neighborhood of the curve f. At the same time the obtaining of the explicit expression for
the functional L(-) uses the tools from the large deviation theory in functional spaces. In
particular in the proof of the Theorem 1 we use the following scheme (which we describe
roughly) : we consider instead of given curve the spline with the nodes on the curve and for
consecutive nodes (¢;, ¢;11) we find the asymptotics of the number of the step functions which
start in the neighborhood of ¢; and end in the neighborhood of ¢;, . The it is shown that the
whole number of step functions in the neighborhood of f is the product of these numbers
when 7 runs over all nodes. Each this number has the rough logarithmic asymptotics given
by Lemma 2 and depends only on differences between corresponding coordinates of ¢; and
ci+1- When finding the logarithmic asymptotics of the whole number of step functions in
the neighborhood of f, the logarithm of the product of evaluations of pairs of consecutive
nodes gives the integral sum whose limit gives the integral appeared in the expression for
L(f). Besides this procedure we have to take into account some technical and routine details
concerning the singular properties of the function f.

In the Theorem 2 using variational method we find the maximum of the functional L(-)
over sufficiently smooth functions and prove that the same maximum achieved on the set
of * ‘all’ functions from C. Here we also have to take into account some technical details to
make the calculus of variations to be correct. Also we find limit shape, on which achieved
the maximum of the functional L(-). Taking into account Lemma 2 we see that this shape
attract the most of the step functions. The range of the problems of finding the limit shapes
of random step functions with given area which can be viewed as random Young diagram
was considered in the paper [1]. There was offered the number of limit shapes under different
distributions.

At last in the Lemma 2 we find the logarithmic asymptotics of the whole number of step
functions with restrictions.

Note the one of the differences between the usual large deviations scheme: we first consider
the restrictions of the functions on the interval [1/r,r] and last limit which we take is the
limit when r — oc. This is done, because the considered ensemble of step functions is not
exponentially compact (see [5] for definitions) under L' — —metrics.

Let’s start with precise formulations. Here we consider only the case when sets A, B C
{1,2,...} are infinite: |A|, |B| = oc. The case of finite sets we shall consider somewhere else.
By step function we mean a piecewise constant non increasing function with nodes in integer
points (later we consider the scaling of the points with integer coordinates and consider the
scaled step functions). We consider the case when the lengths of the step function are taken
from the set A and the difference between consecutive different values of these step functions
(height of the steps) are taken from the set B.

First we formulate the lemmas we need and next formulate the main results in two theorems.
Everywhere in the text we assume that expressions like ¢/n are integers. We will omit the
label ‘restricted’ and speak simply about step functions.



2 Formulation of results

Let £A, = min{¢ € A}, (/8, = min{¢ € B}) and #%(a) (#5(a)) is the number of sequences

min

(z:)%, x; € A, (z; € B) such that %Zle z; € U(a,€), where U(a,e) = {x € R: |r—al < €}.

Lemma 1 The following relation is valid

R ln#if by
llj)raklirgo . = Ju(a igf(; <ln£EZAe —Xa], a>0. (1)

Now we formulate the result about the asymptotics of the number #7%“(a,b) of step
functions starting from some point (¢y\/n,d/n) and ending in the rectangle r = (¢ + a +
e1)vn, y = (d— b=+ e)y/n. Note that #74%“(a,b) depends only on a,b but not on ¢, d.

Lemma 2 The following equalities are valid:

In #"%(a,b In #7542 (a, b b
lim lim sup # a8 ( ): lim liminf # a8 ( ):N<—>,

en,e2—0 5 o \/ﬁ €1,62—0 n—x \/ﬁ a

where
N =  max &(Ja(1/k)+ Js(§/K)).

K€[0,min{1,¢}]

Now we define the set of functions C. It contains the functions such that for each f € C there
exists an f, f = f a.s. and f is non-negative, non-increasing, continuous from the right on

[0, 00) and N
/0 f(z)dx < 1.

For given n, ¢ let S, 5 be the set of step functions ¢, 5 for which was applied the scaling: all
linear sizes of step functions are divided by /n i.e. we consider the step functions with the
nodes from the lattice fZ X fZ which are non increasing functions in the positive quarter
x,y > 0 such that

/ ns(r)dr =1=+0.
0

Let S, 5, be the set of restrictions of S,, 5 on the interval [1/r, r]. Let also

Bi.en = {venn: | / (o) ~ ) <}

be the L'— ball of radius € > 0 on the interval [1/r, r].

Next we formulate our main result.



Theorem 1 Let
#O(f) = #{Snsr [ B(f. e,m)}

then the following equalities are valid

o : . In#"%7 (f)
lim lim sup lim sup lim sup ——=
r—=00 550 e—0 n—00 \/ﬁ

1 n,€,0,r
= lim liminflim inflim infn#—(f)
r—oc  §—0 e—0 n—so00 \/ﬁ

= L(f),
where

| [ N(=f'(x))dz, feC,
Luw—{_m, feg

Denote by C; the class of functions from C which have continuous first derivative and by C,
the class of functions from C with continuous second derivative.

Theorem 2 The following relations are valid

max L(f) = max L(f) = 2C, (2)
and if
argran%Z(L(f) = fmaxs (3)

then fmax 1S determined by the equation

Z o—Cat Z e~ Clmax(z)t _ (4)

leA leB

and C' 1s determined by the equation

| stz =1 (5)

0

Note, that from (4) and (5) follows that if ¢)(x) is the solution of the equation

Ze—xf Ze—w(a:)f =1,

leA LeB

then C =/ [7 ¥ (z)dz. The integrability of ¢(z) we will prove at the end of the paper.

Let #Z”% = #{Sns} be the whole number of step functions in S, 5.

Theorem 3 The following equalities are valid

n:‘S 3

n
lim lim sup A5 — lim lim inf A

=0 nooo \/ﬁ d—0 n—oo \/ﬁ

)
B _ 90,




3 Proofs

The proof the Lemma 1 is similar to the one for Cramer’s theorem for large deviations of
the sum of i.i.d. random variables. On the set A we define the counting measure p: pu(f) =
1, £ € A and pu(z) = 0 otherwise. Analogically to the probabilistic case we define the
sequence (X;)¥ of ‘pseudo’ random variables (‘pseudo’ means that we consider not normed
measures) taking values in A such that p(X; € A) = p(A). Also define the product measure

<®A> = p'(Xie A i=1, k) = [T u(4).
Since U(a, €) is an open convex set, by the standard subadditivity argument (see for ex. [6])

it follows that the limit
it (1325, Xi € Ula, )
lim

k—00 k

(6)

exists. Note, that p* (% S X e Ula, e)) — #%¢ We omit the details of the proof of the

Lemma which are literally the same as the proof of the Cramer’s theorem [5].

Note also that .J 4 is a [ —convex, differentiable, monotone increasing function and J4(¢4,,) =
0, Jya(a) = —oc, a < 4

min*

Proof of Lemma 2. By simple use of the Chebyshev’s inequality it is easy to obtain the
inequality

a n#{(e)h 1 S @ € VU (a, )} k
Vn,ke(@) = NG <(a+e)H (m) ; (7)

where H(z) = —zInz — (1 — 2)In(1 — 2). Since H(z) = 0 and H is monotone increasing

on [0,1/2] we conclude that if k& < y/ndy, then v, x.(a) "’ 0. The same is valid for the set
B instead of A. Let a > 0, b > 0 be some reals. If a step function starts in (c\/n, dy/n) and
reaches rectangle x = (c+a =+ €)y/n, y = (d — b+ €)4/n in some point (x,,y,) and on this
interval it has k horizontal segments, it is possible for it to have k — 1,k or k£ + 1 vertical
segments. Denote

min{(a+e1)y/n,(b+e2)v/n+j}
n,€1,€2 €1 a\/ﬁ —J,€2 b\/_
AT (a,) = > 3’(—> 5 ( ) )

k1,j
= k k—j

€1,€2 > 0, then
#n 61,62( a, ) (A?:SI’Q(CL, b) + A?;fl;@(a’ b) + A’f”ill@(a, b)) 2\/5051,62(1)‘ (9)

Here term 2V7™%1.2(1) arises from the fact that we count the step functions according to
their end points in the rectangle and one step function can have several nodes in the same
rectangle.



We underline that we write the same symbol o(1) for different values which have the property
that they tend to zero as parameters tend to infinity or zero according to their meaning and
the first limit is taken for the left parameter in their order. In particular o, ., (1) in the left
hand side and right hand side of (9) are different and first ¢, — 0 and then e; — 0.

Next we omit index j in Ap**(a, b) because the value j does not change the asymptotics
of the expressions. Next using Lemma 1 and (8) we have

maer ay/n bv/n ))}
In AT (a, b) = max k{J +J +0ke; e, (1
v (@:0) k:61\/ﬁ,...,max{(a+el)\/ﬁ,(b-l—eg)\/ﬁ}|: ( A( k ) B( k(1)
(10)

S

Denote
Ak, &) = K(Ja(1/w) + Ts(§/K)), £, € 2 0.
Then the expression in the square brackets in the right hand side of (8) can be written as
ay/nA(k/(ay/n), b/a). Function A(k, &) for given £ € [0, 00) is continuous and non increasing
when
0< K<k =min{1/6A €/05,}

and = —oo when k > k1. Note also, that for sufficiently small x > 0, A(k,b/a) > —oc for
the arbitrary a,b > 0 and hence making §; > 0 sufficiently small we achieve the situation
where

max A(k,b/a) > —o0
k€[01/a,min{1,b/a}]

1 An 61 62 b
and the interval [0;/a, min{1,b/a}] is nonempty. Thus we have %(a) > —00.

Combining this inequality, relations (9) (10) we have (a,b > 0)
In#% % (a, )

(11)

a max A(k,b/a) + 05,6, (1) + 05, ¢,(1) < lim inf

k€[61/a,min{1,b/a}] n—00 Vn
< i In #.45" (0.B) < Ak, b 1 1
- lﬁsip \/ﬁ B an6[51/ar,l;ln§i11§1,b/a}] (K/, /a) " 051161( ) i 051162( )

Because the estimated value in (11) does not depends on d; we can choose ; — 0 and obtain
the relations

a sup A(k,b/a) + 0, (1) 4 0, (1) (12)
k€(0,min{1,b/a}]

ln n,€1,€2 a,b ln n,€1,€2 ,
< liminf # A ( )<limsup s (. b)

n—00 \/ﬁ T nsoo \/ﬁ
< a sup A(k,b/a) + 0¢, (1) + 0, (1).
K€(0,min{1,b/a}]

Note, that A(k,b/a) is continuous at k = 0, A(0,b/a) = 0 and thus we can change the range
of £ in the sup in (12) to [0, min{1,b/a}] and change sup to max.
Now if b = 0,a > 0, then for sufficiently small €;, €5

In #n J€1,€2

T = 00 (1) 04 (1) (13)



This is because the value k cannot exceed O(ex/n/fE,.), otherwise #5(b) = 0 and the

" min
JE1,€9
In# 5

n

estimation (7) shows that is as in (13). Also maX.e(o.min{1,4/a}] A(%,0) = 0 and
hence the formula from Lemma 2 is also valid in the case b = 0. Lemma 2 is proved.

Proof of the Theorem 1. First of all we investigate the properties of the function

N(€) = max k5 (Ja(l/k) + Js(£/K)) - (14)

K€[0,min{1,£}]

Function N(&) is ] —convex. Indeed A;()y), at which the inf in the definition of J4(Jz)
from (14) is achieved should satisfy the equalities

D penle 1 > el
A 2000 — K=
> rea M T et

Here k is the value at which the max in the definition of N (&) is achieved. Then A;, Ay

should also satisfy the equality
ey et =1 (16)

leA leB

= ¢. (15)

K

(here we assume 0-o0o0 = 1). Equations (15) are obtained by setting the derivatives in A;(Ay)
under the inf in the expressions for J4(1/k)(J5(£/k)) to zero and expression (16) is obtained
by setting the derivative of A(k,&) by k to zero and using equations (15). It can be easily
seen that, when & > 0 and x vary in the interval [0, min{1/¢2,  £/¢5. ] and equations (15) are
valid, A'(k, &) varies in the range from —oo to oc. Because Al (k, ) is continuous when (15)
are valid, we obtain that there exists a x such that (15) are valid and A/ (x, &) = 0.

When £ = 0 we have k = 0, \; = 0. In this case we set Ay = —o0. Then (15), (16) are also
valid in the case £ = 0.

Since for &€ > 0 A(k, &) is finite iff & € [0, min{1/¢2, /68, 3], A” (k,€) < 0 and A(k, &) =
—oco otherwise, we obtain that A(k,&) is [| —convex. If & = 0, A4(0,0) = 0 and A(k,0) =
—o0, k> 0, hence A(k,0) is [ —convex also.

Now we have the system of equations (15), (16) which determines A;(&), A2(§), £(§) in all
cases where N(§) > —oo. From the previous considerations follows that N(£) > —oco when
£>0.

Function N (&) is () —convex. Indeed, from the relations (15), (16) follows that

N(f) = —)\1(5) - @\2(5) (17)

and
N =~ X(6) <0, (18)

Also we need the following estimate

N(z+&) = N(2) < N(£), 2,£> 0. (19)



Indeed
N'(2) = =ha(2)

and
N'(z+&) — N'(2) = Xa(2) = Ma(2+ &) <0.

Now to prove Theorem 1 we prove two statements from which the theorem follows.

Statement 1 The following bound is valid

1 n,€,0,r
lim lim sup lim sup lim sup In#"*7(f) =Ky (f) < L(f). (20)
r—=00 550 e—0 n—oo \/ﬁ
Statement 2 The following bound is valid
e IO ()
el L U >
rlggo llgrilglfllglglfllgglf 7 Ky(f) > L(f) (21)

Proof of Statement 1. First note that if f ¢ C, then K,(f) = —oco. Indeed if [ fdz > 1

or v(f < 0) > 0orv(f >0)>0 (vis Lebesgue measure), then for sufficiently large r and
n and small €,6 >0  B(f,e,7)() Snsr = 0.

We fix some r > 1 and f € C and consider the decomposition
f=Ff+7

where fl is absolutely continuous and f2 singular monotone components of f Note that fQ
is continuous from the right, because f is.

Now we consider three cases. First case: f(z) >0, z € [0, 00), second case: f(z) =0
for some = € (0,00) and last case: f(z)=0.

Let’s make a note. Step functions ¢, s have no horizontal and (certainly) no vertical segments
after it achieves the X-axis (when ¢, s(z) = 0 for the first time). Otherwise we would have
an infinite number of step functions, because we can continue the step function after z,
where ¢, 5(x¢) = 0 for the first time by an infinite number of horizontal segments from A.

Now we partition the interval [1/r,r] into consecutive intervals [z;, z;11] and to make our
considerations proper we must assume that every step function ¢, s has a node in each

~

rectangle R; = (z; £ o.(1), f(z;) £ 0.(1)). We will prove that every ¢, s has the property

|n,6(2i) — f(l“z)\ < oc(1).

Thus to have a ¢, 5, which has a node in R;, we should consider only ¢, s which have a node
with coordinate = € (z; £ 0.(1)).

At the same time it is possible to have the situation where ¢, s has very long horizontal
segments, so long, that they pass throw the intervals z; + o.(1) without nodes. The smaller

8



~

f(z;) is, the longer segments can occur. It will become clear soon that the logarithmic
asymptotics of the number #{S,, 5. [ B(f,¢€,7)} and the number of ¢,, 5 € B(f, ¢, r) without
long segments (length exceeds o.(1)) is the same, if we consider the functions f such that
F(f) > Co > 0. If f(r) = 0 and r, is the smallest number with this property, our next
reduction in that form does not work and we will consider some rq such that f(Tg) >Cy >0
for some Cj and make the considerations similar to the first case of positive f not on the
whole interval [1/7,r], but on the interval [1/r, 7] (surely we should have 1/r < ry) and on
the interval [rg, r]) estimate the number of restrictions of ¢, 5 such that

A}me—Aymw

and [ f(z)dz — 0 as ro — 1. It means that

< 0(1)

[ nitadds = o 1), 22
o
The whole number of restrictions on the interval [rg,r| of the step functions ¢, 5, which
satisfy (22), is small, less than the whole number (without restrictions) of step functions
with area o.(1). By the Hardy-Ramanujan formula this number is less than o ,,(1)y/n.

Let’s proceed first with the case f > 0, # > 0. Let zo € [1/r, 7] be such that |f'(zo)| < Cy
for some Cy. If v, 5 € B(f,€,r), then

|©n.5(T0) — f(flfo)‘ < oc(1). (23)

Indeed it is easy to check, considering the graphs of the functions ¢y, g, f, that otherwise,
because functions are monotone, the area of the gap between the graphs of these functions
in the neighborhood of zy would be positive and non vanished as ¢ — 0 which is the contra-
diction with the condition ¢, 5 € B(f,€,r).

Now consider the whole set By = S, 5\ B(f,€,7). Let By C By be the set of step functions
which contains exactly one horizontal segment of length exceeding o.(1) when x € [0, r]. This
segment can start at any point 0,1/y/n,...,r on X and can have the length p such that
P < Pmax, Where

(f(r) = 0c(1)) pmax = 1 + 0. (24)

This follows from the fact that the area under this segment should be less than 1 4 ¢ and
the length can be maximal, when the Y coordinate of the segment is minimal (this is why
we take care about positivity of f).

Let Bj; be the subset of By consisting of the step functions with the property that By is
the maximal subset of B; over the choice of long horizontal segment o. Then

rn(l +9)
B1 S TN Pmax Bll YN
#B) < it B} =TT

The coefficient before #{ By} is the number of possible choices of segment o.

#{Bi1}. (25)

9



Now we make the following procedure with the elements from By;. We take the segment ¢ and
consider the partition of it into LMJ parts for some ¢ € A. If £ { p\/n then we simply omit
the rest after the division and have LMJ parts of length ¢. Then between each consecutive
parts we insert the vertical segment of length /5. . It will be L%_J insertions. Then we lift
up our construction simultaneously with the whole left to o piece step function in such a way
that a proper connection with the right to o part of ¢, 5 (the new step function should be
also monotone) can be made. We receive new step function ¢}, such that ¢} (z) > @ns(z),

max(¢}(7) = na(@)) < Sek, (26)
and o
[0 = ustanis < L, (27)

Here (26) is obvious and (27) follows from the fact that the area under ¢, s after lifting

increases on the area of the triangle with edges p, Eéﬁm

From (26) and (27) follows that choosing small € > 0 and sufficiently large ¢ € A we can
make the expression in the right hand side of (26) arbitrary small and if

Pn,o,r € B(fa €, ’I")

then
<,0,1M € B(f,2¢,1).
Also from (27) we have

/ opp(x)de <1+ 26
0

and hence ! + = ¥n,2sr- Note, that we can do this procedure for each ¢, s € Biy and obtain
the new set By;. Also this procedure establishes the one-to-one correspondence between By
and By;. Since, as it is shown, By, is the subset of B(f,2¢,1), elements of By, have nodes
in the arbitrary interval zy 4 05(1), zo € [0,7], and By, consists of step functions ©n2s. We
denote this set by S; ,5(f,2¢,7). We have

#{Bi} < #{Sn04(f, 26,7)} (28)
and from (25) follows
r(1+0)
B} < ———-n n,20\J» 46, T
BB < Sl 207} (20)

Now the reader easily reconstruct the similar considerations for the subsets B; when i long
segments appear. We omit these details and only demonstrate the final relation

[r/0e(1)]
#{Sns[\B(fen)y <#4 | (B () Sns(frer ) < Conl /o<W s) 5(f,26,7)}.

1=0

(30)

10



Hence, if we estimate the value #{5], ,5(f, 2¢,7)}, then we find the estimate for #{S, s B(f,€,7)}
and the coefficient in the right hand side of (30) does not influence the logarithmic asymp-
totics of the estimates.

Now we will show how to construct the upper estimate for the number #{S; ,;(f,2¢,7)}.
In order to do it we preliminary make the choice of the intervals, on which we count the
number of restrictions of ¢, o5 with prescribed properties. Then we will use the multiplicative
property: the number of restrictions of step functions on the whole interval [1/r,r| is equal
to the product of the number of restrictions of step functions on the subintervals which are
the partition of [1/r,r]. Now we come to the precise formulations.

We define the measure 5((a,b]) = f2(a)— f2(b). From the regularity of the Lebesgue measure
follows that there exists an open set B € [1/r,r], B(B) = B([1/r,r]) such that for the
arbitrary given 6; > 0, v(B) < ;. The set B is the union of not more than a countable
number of intervals B; and for some m we have [ (Uz>m Bi) < 61. Next we add to every
interval B;, ©+ < m its boundary points and obtain the closed intervals B; and the union
UZI B; is the union of a finite number m; of nonintersecting closed intervals [a;, b;], ¢ <

U fas,b) = UL, By, Then
1% <U[al,bl]> < (51

=1

and the set [1/r,7]\ U~ (a;, b)) = U;_,[ci,d;] is the union of a finite number s of nonin-

tersecting closed intervals and {¢;,d;} C {1/r,r,a;,b;}. For every i = 1,..., s consider the

decomposition
[Cia U [Cza df

of the interval [¢;, d;] into s; consecutive subintervals of ‘almost’ equal length dj — cf ~

(di — ¢i)/si. ‘Almost’ means the following: we assume that 1f(z)] < Cy, z € {c,d} for
some constant C, otherwise, we slightly move points ¢/, d! in order to satisfy this condition

and previous conditions, connected with choices of these intervals.

The set S, 55(f,2¢,7) has the property that each step function @25 € Sj »5(f; 2€, r) has

a node in each rectangle B! = {z = ¢/ + o,(1),y = f() £ o)}, R} = {z =
(1) — f(d})+0.(1)}. The total number ®; ;,, of the restrictions of the step functions from
n0s(f,2€,7) starting in the rectangle A = (z = ¢ 4+ 0.(1), f(¢]) £ 0,(1)) can be estimated

as follows
q)ijn j fg
2 < AN + 0,.(1
N < Aﬂ) (),

where Az? = &/ — ¢!, Af7 = f(d)) — f(c}). This follows from the Lemma 2 and the fact that
the number of nodes in A is O(n).

Next we will use the multiplicative property for ®;;,, which tells that the number ®, =
#1{S,,25(f,2¢,7)} is upper bounded by the product of the restrictions of these functions

11



on subintervals, which form the partition of the large interval (with intersections of the
subintervals only on boundaries). Since {[¢/, d], [as, bs]} is the partition of the interval [1/r, 7]
we have

In®, In (Hi,j D jn X Hz %n)
Vvn

IN

|
2]
=)
2
?
M
_|_
o_
;9

IN

me( Af ) +Y AnN (—i—fi) + 5'0p.(1). (31)

Here @, is the number of restrictions of the step functions from S, ,5(f, 2¢,7) on the interval
lag,be], 8" =7 si +my, Axy = by — ay, fo = f(bg) — f(ag). Here we once more use the
Lemma 2.

Then the whole number #™%¢"(f) is estimated by the product of ®, and the numbers a, ,
and f3,, of restrictions of the step functions on the interval [0, 1/r] or [r, oo) correspondingly.
Each of these numbers can be estimated by the number of step functions ¢,, without restric-
tions on steps such that max,ci,00) @n(x) < (1 4+ 26)/r. Indeed on the left interval [0,1/r],
if we exchange axis X and Y we obtain from ¢, (x), = € [0,1/r] step function ¢,. Also, for
T > 1, pos(t) < (1+28)/r, because [° @pas(z)dz <1+ 26.

Later we will prove that
Ina,, Inpg,,

vnooon
Next we show that the contribution of >, to the estimate (31) can be made arbitrary small.
Indeed N (&) is [) —convex and from Jensen inequality follows that

Afy S Af
;AQTZN <_A—;E£> < N( ZEA;Q) ;Axg

= Oner(1). (32)

Then we have

N(z) = max  k(J4(1/k) + Js(2/K))
k€[0,min{1,z}]
< Ml el _ _ “
< KE[O%%}{cl 0 (}2% (kIn ZEGA )+ )\12n<fo (kIn ;es 2\9) ) (1+2)H <1 s

We have, if g((1/r,r]) = f2(1/r) = f2(r) > 0, that for some Cy,C5 > 0, oo > C5 >
f/r)y = f(r) > |3, Afi| > Cy. This follows from the choice of intervals [a, b], where
measure [ concentrates. Also we have ), Az, < v(B) < ¢; and hence if we define z =

- Ze Aﬂ/ Zf Axy, then
@ (—;Aﬁ) < C5Niz) —0asd; — 0.
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If f2(1/r) — f2(r) = 0, then we do not consider intervals [ay, by] at all.
Thus the sum on ¢ in the right hand side of (31) can be made arbitrary small as 6; — 0.

Next we deal with the term ;. in (31). From (19) we have (Af] = AfT + AfH)

v(5) (5 (50)
Azl Azl Azl

Using Jensen inequality we obtain

A i A >
ZA’N( Af )g =(ZA:5) (—EZ:‘J‘AJ;). (33)

Since ), ; AfY =3 (Ujsm Bi) < 61 and > i Azl >r —1/r — 6, we have
v — 0 as d — 0. (34)

Now we estimate the term oy, (B, will have the same estimation). As we mentioned
before a,, has as upper bound the logarithm of the number of partitions of n(1 £ 2§) with
maximal element of each partition less than \/n/r. We must estimate from above the number
of solutions of the equation

Vafr
D im < n(1+26), 7, =0,1,2,.. ..

i=1
This can be done by simple using of Chebyshev’s inequality, we omit the details and it follows
that
tn# { ()Y S0V i < (1 +26) }
lim sup lim su
r—0 P n—)oop \/ﬁ

Taking together all established facts (31), (32) (33), (34), (35) we can write the following
chain of inequalities

= 0. (35)

In #"%¢7(f) < In @,
i S Um

< ZA JN( AA‘]; >+son65(1)+051(1)+0r(1)

T $0uc(1) + 05, (1) + 0,(1)

or
In n5er

lim sup ————"~ < ZA:HN( Afl]) + 5'0c,5(1) + 05, (1) + 0,(1). (36)

n— 00 ALEZ

We can rewrite the Z in the right hand side of (36) as follows

, 1 dl
ZAQ:{N __,/ fY(z)dx :/ N(—fe(z))dz,
— Azl Je Ui leindi]

)

13



where f, is a piecewise constant function such that for a given partition {[¢/, d/]} of the set
Uilei, di]
1
fe(r) = —— f”( Yo, x € [2],d)).
A:c
Taking € — 0,0 — 0 we obtain from (36)

0—0 e—0 n—o00

n5er A j
F = limsuplimsuplimsup ————= # <ZA 3N< f )4—05”(1)

:/ N(—fol@))da + 05, ,(1).
U;lei di]

Next we take w; = d/ — ¢/ such that w = max;w; — 0 and we have f.(z) — f"(z) a.s. on
U, lci. di] and

F < limsup N(—fe(z))dx + 05, +(1) (37)
w—0 [ci,di]
< / lim sup N(—f.(x))dx = / N(lim sup(—fe(x))dx
U [C,,d } w—0 U [c“d} w—0

= [ NEfpde= [ Nf s
U, [ci.ds] U, [ei,ds]

< N(=f'(x))da.
1/r
Here for simplicity we omit o4, (1) +0,(1) in the last relations. The first equality follows from
the continuity of N(&). In the second inequality we use Fatou Lemma which is possible to
use, because N(—f'(z)) is integrable on [0, c0) as follows from Theorem 2 (we will prove it
later). The second equality in (37) follows from the fact that, if y € L'([a,b], dz), then
1

lim — dr = .S,
qggo‘Dq‘ b, y(z)dz = y(xo) a.s.,

where (D,){° is an arbitrary sequence of closed intervals with nonempty interior such that
Ny Dy = {20} The third inequality in (37) follows from the fact that f! = f" a.s.

Now we take § — 0,9; — 0,7 — oc at both sides of (37) and obtain the inequality

Fg/ N(-f
0

Thus (20) is proved for strictly positive functions.

Now we describe how to deal with functions f € C such that f(z,) = 0 for some 0 < x4 < 0o
and z( is minimal with this property. We will not show the whole proof in this case, because
in many steps it is similar to the first case, but we will underline the differences in the proof.
Consider once more the interval [1/r,7], r > xy and another interval [1/r, o], ro < zg. On

14



the interval [1/r,ry] we make the same considerations and estimates as in the first case on
the interval [1/r,7]. Thus we estimate the number of restrictions S} ,5(f, 2¢, {r,70}), it has
the same meaning as 57’1’25(]", 2¢,r) but the restrictions of step functions are on the interval
[1/7,70]. Then the number of restrictions of the step functions on intervals [0, 1/7], [r, o) are
estimated in the same way as in the first case and their asymptotics is 0, »(1). The number of
restrictions of step functions on the interval [ro, 7] is 0c (1) as € = 0 and ry — ry. This is due
to the same argument as in estimating «,, or 3,, : the number of these restrictions is less
than the number of step functions ¢, s with max, ¢, 5 < 05(1)+f(r0) —0ase— 0, 7y — 7p.
Actually we can construct the upper bound in this case only on interval [1/r, rq] instead of
[1/r,r] and then ry — r, but we choose the last interval to make the formulations of the
Theorem 1 uniform in all cases. As before we obtain the estimate
T0

F < N(=f"(z))dz + 0y (1)

1/r

Taking ry — xg, 7 — 00 we obtain

o . o< .
Fe [ NEF@ =[NP @)
0 0
and Statement 1 is proved in the second case.

The last case, when f = 0 can be done in a simple way. On the intervals [0,1/r], [r, 00)
we have as before the number of restrictions of ¢, is 0,,(1) and flr/r ¢ns(z)dx < e. Thus
the number of restrictions of S, 5 on [1/r,r] is less than the whole number of step functions
with the area < en, which due to Hardy-Ramanujan result is y/no.(1). The product of these
numbers of restrictions on the different parts of [0, 00) as before gives the upper bound on

#n,é,e,r (f) and
Fgoz/ N(=f'(z))da.
0

Statement 1 is completely proved.

Proof of Statement 2. This proof is simpler than the proof of the upper bound (20),
because now we do not care about the long horizontal segments. Choose the partition of the
interval [1/r,r] into s consecutive intervals [a;, b;] of equal length A = b; —a; = (r — 1/r)/s.
Note, that in the proof of (20) we consider also the contributions to #%%¢"(f) of step
functions whose restrictions does not belong to B(f,€,r). To prove (21) we should restrict
our attention only to the step functions whose restrictions belong to B(f,¢,r). As before we
consider the subset of step functions ¢, 5 such that they have the node in each rectangle (z =

~ ~

a;to.(1),y = f(a;) £oc(1)), i=1,...,s and in rectangle (z = by £ 0.(1),y = f(bs) £ o(1)).
We choose ¢, 5, € [0,1/r] or z € [r, 00) in an arbitrary way such that ¢, 5 € S, 5. Because
we have restrictions on steps, sometimes it can happen that it is not possible to continue
the step function with given restriction on [1/r, 7] to the intervals [0.1/7) or [r,c0) without
violation of the restrictions on steps. In such cases we shift the step function in vertical
direction by not more than (2. /\/n units of the scaled integer lattice and in horizontal
direction by not more than £A. /\/n units to obtain the step function which starts at (0, p)

15



and ends in (g, 0) for some p, g. Because the number of shifts is finite it does not change the
logarithmic asymptotics of the number of step functions.

Now we estimate the L'([1/r, 7], dz)—distance between the restrictions S, ;, and f. It can
be easily seen that if the pair of monotone non-increasing functions y, ¢, s is such that

y(2) — pns(z)] <€ (38)

when x = a,b, a < b, then

/ 1(2) = ya()|de < (b= a)(yi(a) — yi (b) + 261). (39)

This is because the area restricted by the curves y, ¢, s and lines = a,z = b is covered by
the rectangle with edges vy = y1(a) + €1, y = y1(b) — €1, © = a,x = b. Let (38) be true for
y(z) = f(z) and all £ = a; and 2 = b;. Then by (39) we have for every given r, sufficiently
small A = max;(b; — a;) and ¢;

/ ' ons(@) — F@)ldr < (40)

1/r
Next as in the proof of the upper bound (20) the logarithm of the number of restrictions
Sn.s on interval [a;, b;] is estimated from below by the value

vn [(bi —a;)N (W) + on,e,gu)] . (41)

Actually the step function can have a node in any point from the scaled lattice in the rectangle
(z =a;+0.(1),y = f(a;) £0.(1)) and end in rectangle (z = b; +0.(1),y = f(b;) £ 0.(1)), but
the number of points in these rectangles is O(n) and this does not influence the logarithmic
asymptotics in (41).

As before the contribution of all intervals [a;, b;] in the lower estimation of #{S,, 5. B(f,€,7)}
is bounded by the sum of values (41):

ZA N( %) +son,€,5(1)]

and taking into account the choice of ¢, s on the intervals [0,1/r),[r,00) we obtain the
logarithmic asymptotics of the lower bound of the number #™¢%" :

n,e,0,r S 3 £2
i > 3 A ( ae- iﬁi)”ofﬁ(”
> ZA N( Af>+so€5(1)
1
> ZA N( f() )+so€,5(1)
> Z/ N(=f"(z))dz + s0.5(1) = TN(—fl'(x))dx—l-soe,(;(l).
i=1 7 ai

1/r
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Here the second inequality follows from the fact that N(£) is a monotone function.

Taking limits from both sides of the last chain of inequalities we obtain the inequality

1n7#nﬁﬁf
liminf lim inf lim inf lim inf ———
r—00 0—0 e—0 n—00 \/ﬁ

> L(f).

This proves (21) and the Statement 2.

Now we turn to the proof of Theorem 2. First we prove, that

sup L(f) = sup L(f). (42)
fec fec

We will prove more, namely that the sup in the right hand side of (42) is achieved on the
functions y € C; such that

/Oooy(:r)da: < 1. (43)

To prove this it is enough to show that for € > 0 and each f € C such that

/ " f@yd <1

there exists a y € Cy such that

| Ny @) - N F@ldn < o (44
0
and [ y(z)dz < 1. Choose zo > 0 such that
I/Io
))dz, / N(=f'(z))dx < €. (45)
0

This is always possible, because

/ N(- ))dz < oc.

Now denote a = essinfyga, f'(z), where Ag = {z : f'(z) = 0} and denote for > a >~ > 0
the restricted function

f,(x): o j a S —f’(l‘) S Ba VS [1/IU,JZ‘0],
a—-, —f'(z)<a—a,z€l/xg,x0),

_57 —f’(fE) > 57 US [1/‘%0'1‘0]’
0, x & [1/x0, 7]

fl(x,a,B,7) =

and f(x,a,ﬁ,y) — 0 as ¢ — oo. Next we choose  — oo and a@ — 0. Then we can choose
B > a >~ > 0 such that

/ZO IN(=f'(,0,8,7)) = N(=f'(z))|dz < &, (46)

1/x0
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and

/1 @ B,7) — @)l < 6, (47)

/®o

/UOO flaz, o, B,7)dz < /Ooof(x)dx — 4. (48)

Inequalities (46), (47) follow from standard arguments about the restricted functions. When
necessity of the restriction of the function f'(z,«, 3,7) from below dictates by the validity

of the inequality (48), and the fact that N¢(2) "2 50 (see estimations (55)).

~

Now we approximate uniformly the function — f'(z, o, 5,7) on [1/xg, 2¢] by the simple func-
tion y(z) with a finite number of values, such that

v—a<x(@) < —f(z,qB7) (49)

and on [0,1/z¢) and (zg,c0) function x(x) = 0. At last approximate x(z) by a continuous
function x(z) :

/U " (@) — x(2)|dx < 6. (50)

This approximation can be done by using the standard arguments (see for ex.[8], p.86). It is
important and follows from the proof of possibility of such approximation, that the Lebesgue
measure

! =v({z: [x(z) - x(2)| # 0}) (51)

can be made arbitrary small and
smax x(x) > ¥(x) > min x(z), (52)

where § is the number of different values of y(z). For the arbitrary d3 > 0 we can choose Y
such that it satisfies the additional condition

X(z) =0, z >z + 3. (53)
We set ¢/ (z) = —x(x) and require y(xz) — 0 as z — oo.

Next we have the final chain of relations

/Oooy(:c)d:c = /Ooc (/:c X(z)dz) dr < /Ofvo (/Oxo X(z)dz) dz + 0a(xo + 03)  (54)

< /ch(:r:)d:r:—6+62(xo+63).
0

Here in the first inequality we use (50) and in the last inequality (48) and (49).
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Next estimation is for L(+) :

. 1/z0 .
|L(x(z)) = L(—f'(x))|dx = /U IN(x(2)) = N(=f'(z))|dw (55)
+ /Ux0 IN(X(2)) = N(=f'(z))|dz + /xo IN(%(z)) = N(—f'())|dz

zo

< 261+2v0N(§ﬁ)+/ N(=f'(x,0,8,7)) = N(=f'(x))|dz

1/z0
b INER @05 = N+ [ INGd) - NG

< 36 4 20°N(58) + Ni(v — a) (81 + 6).

We should explain some of the estimates above. In the second inequality we use the fact
that v({z : x(z) > 0} 4p) < ¢ and max N(x(z)) < N(86). In the last inequality we use
the fact that N'(z) is monotonically decreasing. Now we choose €; < €/3, then a, f > 0 such
that (46), (48) and (47) are valid. Then we choose 10, 8y, 9, 83 such that dy(xg + d3) < §/2
and

Ni(y — a) (6 + 02) + 20°N(5f8) < € — 3ey.

Then the right hand side of (54) and (55) is less than [;° f(z)dz — /2 and e correspond-
ingly. Then we choose corresponding to the previous choice of the parameters functions

~

f'(z, e, B,7), x(x), x(x). This proves (42) with the assertion connected with (43).

Now we are ready to prove that

sup L(f) = sup (). (56)
fecy et

Taking into account previous considerations we should prove that for arbitrary e > 0, f € C;
such that

/Ooof(m)dm<1—6

there exists y € Cy such that
IL(y) — L(f)] <e.

The proof of this fact is quite similar to the proof of (42) and we describe the simple
idea omitting routine details. It is necessary to repeat considerations of the previous proof
of (42) with one exception: now we consider not an arbitrary simple function x(x) but a
step function- a function which is constant on intervals. This is possible to do when function
f' is continuous, if instead of function f’(:v, a, ,7) we consider the function

f’(x)i o S —f’(l‘) S Bax € [1/‘%‘073}0}:
filz,a,8) =X «, —f'(z) < a, x € [1/x0, 0], Oor & & [1/20, 70],
-8B,  —f'(x) > B, v € [1/x0,70]

and

/Oofl(xaaaﬂ)<1_6'
0
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Then all previous considerations are valid with 1 instead of [~ f(x)dz.

When constructing the function y(z) € Cy we connect the consecutive steps of function x(z)
by a smooth curve and obtain the smooth curve x(z). It is easy to see that all conditions
and inequalities can be satisfied. This proves (56).

To prove the still remaining statement of Theorem 2 we first prove Theorem 3. From
Theorem 1 and the inequality (f € C)

HO (frnax) < #0s

follows that

In n,0 1 n,d,e,r 00
lim lim inf # s > lim lim inflim inf lim inf n it () :/ N(= finax))dz = 2C,
50 n—oo \/ﬁ r—00 60 e—»0 n—oo \/ﬁ

(57)
where C' is determined by the relations (4), (5). The last equality follows from the following
relations:

N(_fr,nax) = _Al(_fr’nax) + fr’nax( ))‘2( fmax(l‘))' (58)
Comparing (15), (16) and (4) we see that

Al(_fr’nax(‘r)) = _Cfmax( ) )\2( fmax(l‘)) = —(Cux.

substituting these values into (58) we have

/N £ (2))dx = 2.

Here we use integration by parts.

After (57) all what we need to prove is the inequality

[
lim lim sup —== < N(—f1ax(2))dz.
\/ﬁ /0 max

-0 nooo

Once more we consider the interval [1/r,r] and the set of restrictions S, s on this interval
and on intervals [0,1/r), (r,00). As before for sufficiently large r the number of restrictions
of S, 5 on [0,1/r) and (r,00) is small:

Inoy,, Inpg,,
v on

Now we must estimate the number of restrictions S, 5,, the whole number #Z’fg is upper
bounded by the product of the numbers of restrictions on these three intervals.

= 0nr(1). (59)

Note that, if ¢, 5, is the restriction of the step function ¢, 5, then

" 1
/ Pngr(@)de T +0 = —gns(1/7). (60)
1/r
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Thus
Ons(r) < @ns(1/r) <r(1+96), z€[l/rr]. (61)

Now by using standard arguments it is easy to see that the set of monotone non-increasing
functions ¢(x) on [1/r, r] with the restrictions

! 1
/ p(x)de <146 — ~p(1/r) (62)
1/r r

and (61) is compact in L'([1/r, 7], dz) topology. We denote this compact by K,.

From the proof of the Theorem 1 follows that for each f € C we can write

K(f,e,r) =limsup In #{Snor A BU €7} _ [ N(=f"(z))dz + o.(1).

i Ng e

Next for every f € C we choose €; such that

K(fer)— [ N(-f(a))da

1/r

< €3 =0¢,(1).

Then for every function f € K, we consider the ball B(f, ey, ) and from this set of balls we
can choose a finite number of balls B(f;, €, ) such that K, C |J, B(fi, €p,,7).

Next we have

In #{Sns,} < max In#{Sns, B(fi, €fis r)}

lim su 63
n—)ocp \/ﬁ i \/ﬁ ( )
= lim sup max N(—f!(x))dz + €, < sup N(—f"(z))dz + e,
n— o0 ¢ 1/r fecr Ji/r

where C" is the set of restrictions of functions from C on [1/r,r]. As in Theorem 2 we can
take in (63) the set CJ instead of C, where C5 C C" is the set of functions on [1/r,r] with
continuous second derivative. The proof of this fact is the same as in the proof of Theorem 2
and even simpler, because we consider here the finite interval [1/r, r].

Because the functional

r
A~

L'(f)= | N(=f(z))dz

1/r
is convex, to find the extremal of this functional it is enough to find the local extremal of
this functional. We have the following problem: find

max — argmax L . 4
f rg fecs (f) (6 )
We will tI‘y to find the local extremal among the functions

[ € C5 such that |f'(x)| > yo (65)
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for some yo > 0. If we find such local unconditional extremal for sufficiently small yq, it will
be the solution of the problem (64).

If (65) is valid, then
Y'(z) = f'(z) +th'(z) < —yo, € [1/r,7] (66)
for sufficiently small ¢ and we restrict our attention on such h(z) € C] that
/ h(z)dz = 0, h(1/r) = h(r) = 0, (67)
1/r
then y € CJ. Since y'(x) < —yo, y € C5 and N(§), A\o(€) are increasing functions. we have

0 < Ne(—y'(2)) = =Aa(=y/(z)) < —Alo)-

Hence we can move the derivative before the integral and obtain

r

%Lr(f i) = [ NU—f @) (@)de 2 M.
1/r

If f is extremal, then M = 0 and integrating by parts we obtain

d

N1 )b~ [ / hN(— ()i = 0. (68)

Since h € C} is arbitrary such that (65), (67) are valid, standard arguments from calculus of
variations (see for ex.[7]) show, that for the integral in (68) to vanish it is necessary that

%Né(_f’(x)) = C = const. (69)

The first term in the left hand side of (68) vanishes, because of the condition (67).

Equation (69) has the solution

Ni(=f'(z)) = C(z + @), C,a = const

and hence
Xao(=f'(x)) = =C(z + ). (70)
At the same time from (15), (16) follows that
A,
s = f'(z)
ie
Ai(z) = —C’/f’(a:)dx + const = —C(f(x) + B), B = const. (71)

Using (16), (70), (71) we obtain the equality

Ze—C(ac-l-a)Z Ze—C(y-I-,B)E -1

leA LeB
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This equation determines (up to constants C,«, 8) y as a function of x. Also we have the
condition .
/ y(z)de < 1— 1y(l/r) (72)
1/r r
Values a and 3 are simply the shifts along X and Y axis of the graph of function y(z), when
a = [ = 0. Shifts along the Y axis do not influence explicitly the functional

r
()2 | N-f()de
1/r
and the best choice of 8 which gives the max of the functional L"(f) is such that condi-
tion (72) is the least restrictive, i.e. when y(r) = 0. Since y'(x) is a continuous function of
a, 3, C, functional L"(y) is also a continuous function of these variables. Also it is easy to
see for some v, |y'(x)| > yo, x € [1/r,r] for every given a, C,r. But we must consider the
possibility that sup of L"(f) is achieved when oz — oc. In such case

y'(x) = Cy = const, x € [1/r,7]. (73)
If this is the case when L"(-) achieves its sup, then
1
upL(f) = (v = 1) N=C).
fec r

We will show that it is not true (this is not the sup of L"(f)). Indeed, if 3'(z) = C; and
y(r) = 0, then —C; = U7 and from (72) follows that

r—1/r
2
1 <
y(1/r) < r+1/r
or 5
- < —.
=2
Since

T

—C
N(—y'(z))dx < (1 —Cy)rH <1 é ) — 0asr — oo,

- O
for large r functional L"(—y'(x)) vanishes and for large r, y(z) cannot be sup of L"(f),
because it is easy to introduce a function f which satisfies condition (72) and for which
L7 (f) increases with r (for example when f(z) = ¢(z), where 1)(x) is defined in (75)).

1/r

Hence the extremum of L"(f) is achieved for some finite «. For given C, |¢'(x)| increases,
when « decreases and o > —1/r. We give a rough upper estimate of max L"(y) and assume
that & = —1/r and instead of the condition (72) we consider the more rough condition

/ y(2)dz < 1. (74)
1/r
Then, if ¢)(x) is the solution of the equation

Z e Z e V@t =1, (75)

leA LeB
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we have

1=) e ™) eVl < i e i e V@) e 1)(2«&(:1:) =

le A leB (=1

¢
and thus ¢ (z) is an integrable function on [0, o0c) :

P(r) < —In(1—e™"),
> * v [T @ o
/0 P(r)de < —/0 In(l—e )dgc_/0 el—ldx_g'
We have . ,
v =go (¢ (a-1)) -5 (70
and

v =go(c(r-1))-s=0 (7

From the condition (74) follows that

r 1 C(r—1/r)

M(C,r, ) 2 [/ry(x)dx:@ 0 w<x>da:—/3(r—§) <1 (®m)

Also we have 1 [Clr=1/7)
Ui =g / N(—4(x))da
and 1(z), —¢'(x) (0 as z — 0.

Next (L") (y) < 0 and using the differentiation of (75), (77) and (78) it is easy to see that
M{(C,r, 5) < 0.

Hence we should choose C' as small as possible such that condition (78) is still valid i.e we

should have
1 C(r—1/r) 1
2 Y(z)dz = B(C) <r - —) +1. (79)
0

T

Equations (77), (79) together with (75) define C as a function of r: it is always possible
to find a unique C' which satisfies these relations, because for given r M (C,r, 5(C)) is a
continuous, monotone function of C' and tends to 0 as C' — oo and

M(C,r,B(C)) = o0 as C — 0. (80)

Clr) - ,//Ooo W(z)dz as T — oo, (81)

Assume for the moment that (81) is true. Then since

N(=¢'(z)) = ¥(x) — 29/ (z)

It is left to show that
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with the validity of (81) we have

lim L7 (y) = %/OOO o(x)dz = 2C.

r7—00

Taking into account (59) we obtain the inequality

n,0

In 45
lim sup lim sup = < lim L"(y) = 2C.
6—0 n—00 \/ﬁ =00 (y)

From this inequality and (57) follows Theorem 3.

Now inequality

<
g TA) = 26

follows from Theorems 1 and 3. Also

max L(f) > L(fmax) = 2C

and this completes the proof of (2). Theorem 2 is also proved. Hence lim, ., C(r) exists.

Next, taking into account that ¢(z) is monotone decreasing and [;° ¢ (z)dz converges, it is
easy to see that 3(C(r))r — 0 as r — oo. Taking lim,_,, from both sides of (79) we obtain

1 o
E/o W(r)de = 1.

This proves (81). All proves are complete.
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