
About the number of step funtions with restritionsRudolf Ahlswede and Vladimir BlinovskyWe obtain the asymptoti formula for the number of saled step funtions with the restritionson the length and height of steps (shapes of Young diagrams) of given area in the neighborhoodof a given urve. This allows us to �nd the asymptotis of the whole number of suh funtionsand �nd the limit shape-the urve of onentration of the step funtios. 11 IntrodutionConsider the x � 0; y � 0 quarter of the plain and step funtions with integer nodes whihstart from some point on the Y axis and end in some point on the X axis. In this workwe deal with the number of suh step funtions, for whih the area under these funtions isasymptotially equal to n and n!1:The main problem we solved in this work is to obtain the asymptotis of the number ofsaled step funtions in the neighborhood of a given urve when the length and height ofsteps are taking values from given sets A and B orrespondingly. The ase when thereare no suh restritions, i.e. A = B = f1; 2; : : :g was, onsidered in [3℄ and independentlyin [5℄ by using an essentially di�erent method. In [4℄ the ase was onsidered, where thereare restritions only on the height of steps i.e. A = f1; 2; : : :g and B is an arbitrary set ofpositive integers. Here we omplete these investigations by the ase where A and B are givensets of positive integers. This ase also di�ers from the previous ones by some new diÆultiesin the proof. In partiular we don't know another method of obtaining the asymptotis ofthe whole number of step funtions with the restritions on the height and length of steps.At the same time the asymptotis in the ase without restritions is known due to a resultof Hardy- Ramanujan [2℄ beause the number of step funtions without restritions is thenumber of partitions of n whih in turn has the logarithmi asymptotis � �qn23 : The asewhen A = f1; 2; : : :g an be done expliitly also.The problem onsidered here an be viewed as the large deviations problem. The di�erene2C � L(f) (see next setion for notations) is the rough logarithmi asymptotis (asymp-totis under several parameters) of the probability that the step funtion belong to the1This work is partially supported by RFFI grant No 03-01-00592 and 03-01-00098 and INTAS grant No00-738. 1



neighborhood of the urve f: At the same time the obtaining of the expliit expression forthe funtional L(�) uses the tools from the large deviation theory in funtional spaes. Inpartiular in the proof of the Theorem 1 we use the following sheme (whih we desriberoughly) : we onsider instead of given urve the spline with the nodes on the urve and foronseutive nodes (i; i+1) we �nd the asymptotis of the number of the step funtions whihstart in the neighborhood of i and end in the neighborhood of i+1: The it is shown that thewhole number of step funtions in the neighborhood of f is the produt of these numberswhen i runs over all nodes. Eah this number has the rough logarithmi asymptotis givenby Lemma 2 and depends only on di�erenes between orresponding oordinates of i andi+1: When �nding the logarithmi asymptotis of the whole number of step funtions inthe neighborhood of f; the logarithm of the produt of evaluations of pairs of onseutivenodes gives the integral sum whose limit gives the integral appeared in the expression forL(f): Besides this proedure we have to take into aount some tehnial and routine detailsonerning the singular properties of the funtion f:In the Theorem 2 using variational method we �nd the maximum of the funtional L(�)over suÆiently smooth funtions and prove that the same maximum ahieved on the setof ` `all' funtions from C: Here we also have to take into aount some tehnial details tomake the alulus of variations to be orret. Also we �nd limit shape, on whih ahievedthe maximum of the funtional L(�): Taking into aount Lemma 2 we see that this shapeattrat the most of the step funtions. The range of the problems of �nding the limit shapesof random step funtions with given area whih an be viewed as random Young diagramwas onsidered in the paper [1℄. There was o�ered the number of limit shapes under di�erentdistributions.At last in the Lemma 2 we �nd the logarithmi asymptotis of the whole number of stepfuntions with restritions.Note the one of the di�erenes between the usual large deviations sheme: we �rst onsiderthe restritions of the funtions on the interval [1=r; r℄ and last limit whih we take is thelimit when r ! 1: This is done, beause the onsidered ensemble of step funtions is notexponentially ompat (see [5℄ for de�nitions) under L1 ��metris.Let's start with preise formulations. Here we onsider only the ase when sets A; B �f1; 2; : : :g are in�nite: jAj; jBj =1: The ase of �nite sets we shall onsider somewhere else.By step funtion we mean a pieewise onstant non inreasing funtion with nodes in integerpoints (later we onsider the saling of the points with integer oordinates and onsider thesaled step funtions). We onsider the ase when the lengths of the step funtion are takenfrom the set A and the di�erene between onseutive di�erent values of these step funtions(height of the steps) are taken from the set B:First we formulate the lemmas we need and next formulate the main results in two theorems.Everywhere in the text we assume that expressions like pn are integers. We will omit thelabel `restrited' and speak simply about step funtions.
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2 Formulation of resultsLet `Amin = minf` 2 Ag, (`Bmin = minf` 2 Bg) and #k;�A (a) (#k;�B (a)) is the number of sequenes(xi)k1; xi 2 A; (xi 2 B) suh that 1kPki=1 xi 2 U(a; �); where U(a; �) = fx 2 R : jx�aj < �g:Lemma 1 The following relation is validlim�!0 limk!1 ln#k;�Ak = JA(a) �= inf��0 lnX̀2A e�` � �a! ; a � 0: (1)Now we formulate the result about the asymptotis of the number #n;�1;�2A;B (a; b) of stepfuntions starting from some point (pn; dpn) and ending in the retangle x = ( + a ��1)pn; y = (d� b� �2)pn: Note that #n;�1;�2A;B (a; b) depends only on a; b but not on ; d:Lemma 2 The following equalities are valid:lim�1;�2!0 lim supn!1 ln#n;�1;�2A;B (a; b)pn = lim�1;�2!0 lim infn!1 ln#n;�1;�2A;B (a; b)pn = N � ba� ;where N(�) = max�2[0;minf1;�g℄ � (JA(1=�) + JB(�=�)) :Now we de�ne the set of funtions C: It ontains the funtions suh that for eah f 2 C thereexists an f̂ ; f = f̂ a:s: and f̂ is non-negative, non-inreasing, ontinuous from the right on[0;1) and Z 10 f(x)dx � 1:For given n; Æ let Sn;Æ be the set of step funtions 'n;Æ for whih was applied the saling: alllinear sizes of step funtions are divided by pn i.e. we onsider the step funtions with thenodes from the lattie 1pnZ� 1pnZ whih are non inreasing funtions in the positive quarterx; y � 0 suh that Z 10 'n;Æ(x)dx = 1� Æ:Let Sn;Æ;r be the set of restritions of Sn;Æ on the interval [1=r; r℄: Let alsoB(f; �; r) = �y 2 L1[1=r; r℄ : Z r1=r jy(x)� f(x)jdx < ��be the L1� ball of radius � > 0 on the interval [1=r; r℄:Next we formulate our main result. 3



Theorem 1 Let #n;�;Æ;r(f) = #fSn;Æ;r[B(f; �; r)g;then the following equalities are validlimr!1 lim supÆ!0 lim sup�!0 lim supn!1 ln#n;�;Æ;r(f)pn= limr!1 lim infÆ!0 lim inf�!0 lim infn!1 ln#n;�;Æ;r(f)pn = L(f);where L(f) = � R10 N(�f̂ 0(x))dx; f 2 C;�1; f 62 C:Denote by C1 the lass of funtions from C whih have ontinuous �rst derivative and by C2the lass of funtions from C with ontinuous seond derivative.Theorem 2 The following relations are validmaxf2C L(f) = maxf2C2 L(f) = 2C; (2)and if argmaxf2C2 L(f) = fmax; (3)then fmax is determined by the equationX̀2A e�Cx`X̀2B e�Cfmax(x)` = 1 (4)and C is determined by the equationZ 10 fmax(x)dx = 1: (5)Note, that from (4) and (5) follows that if  (x) is the solution of the equationX̀2A e�x`X̀2B e� (x)` = 1;then C =qR10  (x)dx: The integrability of  (x) we will prove at the end of the paper.Let #n;ÆA;B = #fSn;Æg be the whole number of step funtions in Sn;Æ:Theorem 3 The following equalities are validlimÆ!0 lim supn!1 ln#n;ÆA;Bpn = limÆ!0 lim infn!1 ln#n;ÆA;Bpn = 2C:4



3 ProofsThe proof the Lemma 1 is similar to the one for Cramer's theorem for large deviations ofthe sum of i.i.d. random variables. On the set A we de�ne the ounting measure � : �(`) =1; ` 2 A and �(z) = 0 otherwise. Analogially to the probabilisti ase we de�ne thesequene (Xi)k1 of `pseudo' random variables (`pseudo' means that we onsider not normedmeasures) taking values in A suh that �(Xi 2 A) = �(A): Also de�ne the produt measure�k kOi=1 Ai! = �k(Xi 2 Ai; i = 1; : : : ; k) = kYi=1 �(Ai):Sine U(a; �) is an open onvex set, by the standard subadditivity argument (see for ex. [6℄)it follows that the limit limk!1 ln�k � 1kPki=1Xi 2 U(a; �)�k (6)exists. Note, that �k � 1kPki=1Xi 2 U(a; �)� = #k;�A : We omit the details of the proof of theLemma whih are literally the same as the proof of the Cramer's theorem [5℄.Note also that JA is aT�onvex, di�erentiable, monotone inreasing funtion and JA(`Amin) =0; JA(a) = �1; a < `Amin:Proof of Lemma 2. By simple use of the Chebyshev's inequality it is easy to obtain theinequalityn;k;�(a) �= ln#f(xi)k1 : Pki=1 xi 2 pnU(a; �)gpn � (a+ �)H � kpn(a + �)� ; (7)where H(z) = �z ln z � (1 � z) ln(1 � z): Sine H(z) z!0! 0 and H is monotone inreasingon [0; 1=2℄ we onlude that if k < pnÆ1; then n;k;�(a) Æ!0! 0: The same is valid for the setB instead of A: Let a > 0; b � 0 be some reals. If a step funtion starts in (pn; dpn) andreahes retangle x = (+ a� �1)pn; y = (d� b� �2)pn in some point (xp; yp) and on thisinterval it has k horizontal segments, it is possible for it to have k � 1; k or k + 1 vertialsegments. DenoteAn;�1;�2k1;j (a; b) = minf(a+�1)pn;(b+�2)pn+jgXk=k1 #k;�1A �apnk �#k�j;�2B � bpnk � j� ; (8)�1; �2 > 0; then#n;�1;�2A;B (a; b) = �An;�1;�21;0 (a; b) + An;�1;�21;1 (a; b) + An;�1;�21;�1 (a; b)� 2pno�1;�2 (1): (9)Here term 2pno�1;�2 (1) arises from the fat that we ount the step funtions aording totheir end points in the retangle and one step funtion an have several nodes in the sameretangle. 5



We underline that we write the same symbol o(1) for di�erent values whih have the propertythat they tend to zero as parameters tend to in�nity or zero aording to their meaning andthe �rst limit is taken for the left parameter in their order. In partiular o�1;�2(1) in the lefthand side and right hand side of (9) are di�erent and �rst �1 ! 0 and then �2 ! 0:Next we omit index j in An;�1;�2k1;j (a; b) beause the value j does not hange the asymptotisof the expressions. Next using Lemma 1 and (8) we havelnAn;�1;�2Æ1pn (a; b) = maxk=Æ1pn;:::;maxf(a+�1)pn;(b+�2)png �k�JA�apnk �+ JB �bpnk ���+ok;�1;�2(1)pn:(10)Denote A(�; �) = �(JA(1=�) + JB(�=�)); �; � � 0:Then the expression in the square brakets in the right hand side of (8) an be written asapnA(k=(apn), b=a). Funtion A(�; �) for given � 2 [0;1) is ontinuous and non inreasingwhen 0 � � � �1 �= minf1=`Amin; �=`Bmingand = �1 when � > �1: Note also, that for suÆiently small � > 0; A(�; b=a) > �1 forthe arbitrary a; b > 0 and hene making Æ1 > 0 suÆiently small we ahieve the situationwhere max�2[Æ1=a;minf1;b=ag℄A(�; b=a) > �1and the interval [Æ1=a;minf1; b=ag℄ is nonempty. Thus we have lnAn;�1;�2Æ1pn (a;b)pn > �1:Combining this inequality, relations (9) (10) we have (a; b > 0)a max�2[Æ1=a;minf1;b=ag℄A(�; b=a) + oÆ1;�1(1) + oÆ1;�2(1) � lim infn!1 ln#n;�1;�2A;B (a; b)pn (11)� lim supn!1 ln#n;�1;�2A;B (a; b)pn � a max�2[Æ1=a;minf1;b=ag℄A(�; b=a) + oÆ1;�1(1) + oÆ1;�2(1):Beause the estimated value in (11) does not depends on Æ1 we an hoose Æ1 ! 0 and obtainthe relations a sup�2(0;minf1;b=ag℄A(�; b=a) + o�1(1) + o�2(1) (12)� lim infn!1 ln#n;�1;�2A;B (a; b)pn � lim supn!1 ln#n;�1;�2A;B (a; b)pn� a sup�2(0;minf1;b=ag℄A(�; b=a) + o�1(1) + o�2(1):Note, that A(�; b=a) is ontinuous at � = 0, A(0; b=a) = 0 and thus we an hange the rangeof � in the sup in (12) to [0;minf1; b=ag℄ and hange sup to max :Now if b = 0; a > 0; then for suÆiently small �1; �2ln#n;�1;�2A;Bpn = o�1(1) + o�2(1): (13)6



This is beause the value k annot exeed O(�2pn=`Bmin); otherwise #k;�2B (b) = 0 and theestimation (7) shows that ln#n;�1;�2A;Bpn is as in (13). Also max�2[0;minf1;b=ag℄ A(�; 0) = 0 andhene the formula from Lemma 2 is also valid in the ase b = 0: Lemma 2 is proved.Proof of the Theorem 1. First of all we investigate the properties of the funtionN(�) = max�2[0;minf1;�g℄ � (JA(1=�) + JB(�=�)) : (14)Funtion N(�) is T�onvex. Indeed �1(�2), at whih the inf in the de�nition of JA(JB)from (14) is ahieved should satisfy the equalities�P`2A `e�1`P`2A e�1` = 1; �P`2B `e�1`P`2B e�1` = �: (15)Here � is the value at whih the max in the de�nition of N(�) is ahieved. Then �1; �2should also satisfy the equality X̀2A e�1`X̀2B e�2` = 1 (16)(here we assume 0 �1 = 1). Equations (15) are obtained by setting the derivatives in �1(�2)under the inf in the expressions for JA(1=�)(JB(�=�)) to zero and expression (16) is obtainedby setting the derivative of A(�; �) by � to zero and using equations (15). It an be easilyseen that, when � > 0 and � vary in the interval [0;minf1=`Amin; �=`Bmin℄ and equations (15) arevalid, A0(�; �) varies in the range from �1 to 1: Beause A0�(�; �) is ontinuous when (15)are valid, we obtain that there exists a � suh that (15) are valid and A0�(�; �) = 0:When � = 0 we have � = 0; �1 = 0: In this ase we set �2 = �1: Then (15), (16) are alsovalid in the ase � = 0:Sine for � > 0 A(�; �) is �nite i� � 2 [0;minf1=`Amin; �=`Bming℄, A00��(�; �) < 0 and A(�; �) =�1 otherwise, we obtain that A(�; �) is T�onvex. If � = 0; A(0; 0) = 0 and A(�; 0) =�1; � > 0; hene A(�; 0) is T�onvex also.Now we have the system of equations (15), (16) whih determines �1(�); �2(�); �(�) in allases where N(�) > �1: From the previous onsiderations follows that N(�) > �1 when� � 0:Funtion N(�) is T�onvex. Indeed, from the relations (15), (16) follows thatN(�) = ��1(�)� ��2(�) (17)and N 00�� = ��02(�) � 0: (18)Also we need the following estimateN(z + �)�N(z) � N(�); z; � � 0: (19)7



Indeed N 0(z) = ��2(z)and N 0(z + �)�N 0(z) = �2(z)� �2(z + �) � 0:Now to prove Theorem 1 we prove two statements from whih the theorem follows.Statement 1 The following bound is validlimr!1 lim supÆ!0 lim sup�!0 lim supn!1 ln#n;�;Æ;r(f)pn = K1(f) � L(f): (20)Statement 2 The following bound is validlimr!1 lim infÆ!0 lim inf�!0 lim infn!1 ln#n;�;Æ;r(f)pn = K2(f) � L(f) (21)Proof of Statement 1. First note that if f 62 C; then K1(f) = �1: Indeed if R10 fdx > 1or �(f < 0) > 0 or �(f̂ 0 > 0) > 0 (� is Lebesgue measure), then for suÆiently large r andn and small �; Æ > 0 B(f; �; r)TSn;Æ;r = ;:We �x some r > 1 and f 2 C and onsider the deompositionf̂ = f̂ 1 + f̂ 2;where f̂ 1 is absolutely ontinuous and f̂ 2 singular monotone omponents of f̂ : Note that f̂ 2is ontinuous from the right, beause f̂ is.Now we onsider three ases. First ase: f̂(x) > 0; x 2 [0;1); seond ase: f̂(x) = 0for some x 2 (0;1) and last ase: f̂(x) � 0:Let's make a note. Step funtions 'n;Æ have no horizontal and (ertainly) no vertial segmentsafter it ahieves the X-axis (when 'n;Æ(x) = 0 for the �rst time). Otherwise we would havean in�nite number of step funtions, beause we an ontinue the step funtion after x0;where 'n;Æ(x0) = 0 for the �rst time by an in�nite number of horizontal segments from A:Now we partition the interval [1=r; r℄ into onseutive intervals [xi; xi+1℄ and to make ouronsiderations proper we must assume that every step funtion 'n;Æ has a node in eahretangle Ri = (xi � o�(1); f̂(xi)� o�(1)): We will prove that every 'n;Æ has the propertyj'n;Æ(xi)� f̂(xi)j < o�(1):Thus to have a 'n;Æ, whih has a node in Ri, we should onsider only 'n;Æ whih have a nodewith oordinate x 2 (xi � o�(1)):At the same time it is possible to have the situation where 'n;Æ has very long horizontalsegments, so long, that they pass throw the intervals xi � o�(1) without nodes. The smaller8



f̂(xi) is, the longer segments an our. It will beome lear soon that the logarithmiasymptotis of the number #fSn;Æ;rTB(f; �; r)g and the number of 'n;Æ 2 B(f; �; r) withoutlong segments (length exeeds o�(1)) is the same, if we onsider the funtions f suh thatf̂(f) > C0 > 0: If f̂(r) = 0 and r1 is the smallest number with this property, our nextredution in that form does not work and we will onsider some r0 suh that f̂(r0) > C0 > 0for some C0 and make the onsiderations similar to the �rst ase of positive f̂ not on thewhole interval [1=r; r℄, but on the interval [1=r; r0℄ (surely we should have 1=r < r0) and onthe interval [r0; r℄) estimate the number of restritions of 'n;Æ suh that����Z rr0 'n;Æ(x)dx� Z rr0 f(x)dx���� < o�(1)and R rr0 f(x)dx! 0 as r0 ! r1: It means thatZ rr0 'n;Æ(x)dx = o�;r0(1): (22)The whole number of restritions on the interval [r0; r℄ of the step funtions 'n;Æ, whihsatisfy (22), is small, less than the whole number (without restritions) of step funtionswith area o�(1): By the Hardy-Ramanujan formula this number is less than o�;r0(1)pn:Let's proeed �rst with the ase f̂ > 0; x � 0: Let x0 2 [1=r; r℄ be suh that jf̂ 0(x0)j < C1for some C1: If 'n;Æ 2 B(f; �; r); thenj'n;Æ(x0)� f̂(x0)j < o�(1): (23)Indeed it is easy to hek, onsidering the graphs of the funtions 'n;Æ; f̂ ; that otherwise,beause funtions are monotone, the area of the gap between the graphs of these funtionsin the neighborhood of x0 would be positive and non vanished as �! 0 whih is the ontra-dition with the ondition 'n;Æ 2 B(f; �; r):Now onsider the whole set B0 = Sn;Æ;rTB(f; �; r): Let B1 � B0 be the set of step funtionswhih ontains exatly one horizontal segment of length exeeding o�(1) when x 2 [0; r℄: Thissegment an start at any point 0; 1=pn; : : : ; r on X and an have the length � suh that� � �max; where (f̂(r)� o�(1))�max = 1 + Æ: (24)This follows from the fat that the area under this segment should be less than 1 + Æ andthe length an be maximal, when the Y oordinate of the segment is minimal (this is whywe take are about positivity of f̂):Let B11 be the subset of B1 onsisting of the step funtions with the property that B11 isthe maximal subset of B1 over the hoie of long horizontal segment �: Then#fB1g � rn�max#fB11g � rn(1 + Æ)f̂(r)� o�(1)#fB11g: (25)The oeÆient before #fB11g is the number of possible hoies of segment �:9



Now we make the following proedure with the elements fromB11:We take the segment � andonsider the partition of it into b�pn`  parts for some ` 2 A: If ` - �pn then we simply omitthe rest after the division and have b�pn`  parts of length `: Then between eah onseutiveparts we insert the vertial segment of length `Bmin: It will be b�pn`  insertions. Then we liftup our onstrution simultaneously with the whole left to � piee step funtion in suh a waythat a proper onnetion with the right to � part of 'n;Æ (the new step funtion should bealso monotone) an be made. We reeive new step funtion '1n, suh that '1n(x) � 'n;Æ(x);maxx ('1n(x)� 'n;Æ(x)) < �̀`Bmin (26)and Z 10 ('1n(x)� 'n;Æ(x))dx < �22``Bmin: (27)Here (26) is obvious and (27) follows from the fat that the area under 'n;Æ after liftinginreases on the area of the triangle with edges �; �̀`Bmin:From (26) and (27) follows that hoosing small � > 0 and suÆiently large ` 2 A we anmake the expression in the right hand side of (26) arbitrary small and if'n;Æ;r 2 B(f; �; r)then '1n;r 2 B(f; 2�; r):Also from (27) we have Z 10 '1n;r(x)dx < 1 + 2Æand hene '1n;r = 'n;2Æ;r: Note, that we an do this proedure for eah 'n;Æ 2 B11 and obtainthe new set ~B11: Also this proedure establishes the one-to-one orrespondene between B11and ~B11: Sine, as it is shown, ~B11 is the subset of B(f; 2�; r), elements of ~B11 have nodesin the arbitrary interval x0 � o�(1); x0 2 [0; r℄, and ~B11 onsists of step funtions 'n;2Æ: Wedenote this set by S 0n;2Æ(f; 2�; r): We have#fB11g � #fS 0n;2Æ(f; 2�; r)g (28)and from (25) follows #fB1g � r(1 + Æ)f̂(r)� o�(1)n#fS 0n;2Æ(f; 2�; r)g: (29)Now the reader easily reonstrut the similar onsiderations for the subsets Bi when i longsegments appear. We omit these details and only demonstrate the �nal relation#fSn;Æ\B(f; �; r)g � #8<:br=o�(1)[i=0 �Bi\S 0n;Æ(f; �; r)�9=; � C2nbr=o�(1)+1=2#fS 0n;2Æ(f; 2�; r)g:(30)10



Hene, if we estimate the value #fS 0n;2Æ(f; 2�; r)g, then we �nd the estimate for #fSn;ÆTB(f; �; r)gand the oeÆient in the right hand side of (30) does not inuene the logarithmi asymp-totis of the estimates.Now we will show how to onstrut the upper estimate for the number #fS 0n;2Æ(f; 2�; r)g:In order to do it we preliminary make the hoie of the intervals, on whih we ount thenumber of restritions of 'n;2Æ with presribed properties. Then we will use the multipliativeproperty: the number of restritions of step funtions on the whole interval [1=r; r℄ is equalto the produt of the number of restritions of step funtions on the subintervals whih arethe partition of [1=r; r℄: Now we ome to the preise formulations.We de�ne the measure �((a; b℄) = f̂ 2(a)� f̂ 2(b): From the regularity of the Lebesgue measurefollows that there exists an open set B 2 [1=r; r℄; �(B) = �([1=r; r℄) suh that for thearbitrary given Æ1 > 0; �(B) < Æ1: The set B is the union of not more than a ountablenumber of intervals Bi and for some m we have � �Si>mBi� < Æ1: Next we add to everyinterval Bi; i � m its boundary points and obtain the losed intervals �Bi and the unionSmi=1 �Bi is the union of a �nite number m1 of noninterseting losed intervals [ai; bi℄; i �m1; Sm1i=1[ai; bi℄ = Smi=1 �Bi: Then � m1[i=1[ai; bi℄! < Æ1and the set [1=r; r℄ n Sm1i=1(ai; bi) = Ssi=1[i; di℄ is the union of a �nite number s of nonin-terseting losed intervals and fi; dig � f1=r; r; ai; big: For every i = 1; : : : ; s onsider thedeomposition [i; di℄ = si[j=1[ji ; dji ℄of the interval [i; di℄ into si onseutive subintervals of `almost' equal length dji � ji �(di � i)=si: `Almost' means the following: we assume that jf̂ 0(x)j < C1; x 2 fji ; djig forsome onstant C1; otherwise, we slightly move points ji ; dji in order to satisfy this onditionand previous onditions, onneted with hoies of these intervals.The set S 0n;2Æ(f; 2�; r) has the property that eah step funtion 'n;2Æ 2 S 0n;2Æ(f; 2�; r) hasa node in eah retangle Rji = fx = ji � o�(1); y = f̂(ji ) � o�(1)g; ~Rji = fx = dji �o�(1); y = f̂(dji )�o�(1)g: The total number �i;j;n of the restritions of the step funtions fromS 0n;2Æ(f; 2�; r) starting in the retangle � = (x = ji � o�(1); f̂(ji ) � o�(1)) an be estimatedas follows �i;j;npn � �xjiN  ��f̂ ji�xji !+ on;�(1);where �xji = dji � ji ; �f̂ ji = f̂(dji )� f̂ (ji ): This follows from the Lemma 2 and the fat thatthe number of nodes in � is O(n):Next we will use the multipliative property for �i;j;n, whih tells that the number �n =#fS 0n;2Æ(f; 2�; r)g is upper bounded by the produt of the restritions of these funtions11



on subintervals, whih form the partition of the large interval (with intersetions of thesubintervals only on boundaries). Sine f[ji ; dji ℄; [a`; b`℄g is the partition of the interval [1=r; r℄we have ln�npn � ln�Qi;j �i;j;n �Q`�`;n�pn� Xi;j ln�i;j;npn + X̀ �`;npn + s0on;�(1)� Xi;j �xjiN  ��f̂ ji�xji !+ X̀�x`N  ��f̂`�x`!+ s0on;�(1): (31)Here �`;n is the number of restritions of the step funtions from S 0n;2Æ(f; 2�; r) on the interval[a`; b`℄; s0 = Psi=1 si +m1; �x` = b` � a`; f̂` = f̂(b`) � f̂(a`): Here we one more use theLemma 2.Then the whole number #n;Æ;�;r(f) is estimated by the produt of �n and the numbers �n;rand �n;r of restritions of the step funtions on the interval [0; 1=r℄ or [r;1) orrespondingly.Eah of these numbers an be estimated by the number of step funtions ~'n without restri-tions on steps suh that maxx2[0;1) ~'n(x) � (1 + 2Æ)=r: Indeed on the left interval [0; 1=r℄,if we exhange axis X and Y we obtain from 'n(x); x 2 [0; 1=r℄ step funtion ~'n: Also, forx � r; 'n;2Æ(x) � (1 + 2Æ)=r; beause R10 'n;2Æ(x)dx � 1 + 2Æ:Later we will prove that ln�n;rpn ; ln�n;rpn = on;�;r(1): (32)Next we show that the ontribution ofP` to the estimate (31) an be made arbitrary small.Indeed N(�) is T�onvex and from Jensen inequality follows thatX̀�x`N  ��f̂`�x`! � N  �P`�f̂`P`�x`!X̀�x`:Then we haveN(z) = max�2[0;minf1;zg℄ �(JA(1=�) + JB(z=�))� max�2[0;minf1;zg℄ inf��0(� lnX̀2A e�1` � �1) + inf�2�0(� lnX̀2B e�2` � z�2)! = (1 + z)H � z1 + z� :We have, if �((1=r; r℄) = f̂ 2(1=r) � f̂ 2(r) > 0; that for some C4; C5 > 0; 1 > C5 >f̂(1=r) � f̂(r) > jP`�f̂`j > C4: This follows from the hoie of intervals [a`; b`℄; wheremeasure � onentrates. Also we have P`�x` < �(B) < Æ1 and hene if we de�ne z =�P`�f̂`=P`�x`; thenN(z)z  �X̀�f̂`! < C5N(z)z ! 0 as Æ1 ! 0:12



If f̂ 2(1=r)� f̂ 2(r) = 0; then we do not onsider intervals [a`; b`℄ at all.Thus the sum on ` in the right hand side of (31) an be made arbitrary small as Æ1 ! 0:Next we deal with the term Pi;j in (31). From (19) we have (�f̂ ji = �f̂ 1ji +�f̂ 2ji )N  ��f̂ ji�xji ! � N  ��f̂ 1ji�xji !+N  ��f̂ 2ji�xji ! :Using Jensen inequality we obtainXi;j �xjiN  ��f̂ 2ji�xji ! �  �=  Xi;j �xji!N  �Pi;j�f̂ 2jiPi;j�xji ! : (33)Sine Pi;j�f̂ 2ji = � �Si>mBi� < Æ1 and Pi;j�xji > r � 1=r � Æ1 we have ! 0 as Æ1 ! 0: (34)Now we estimate the term �n;r (�n;r will have the same estimation). As we mentionedbefore �n;r has as upper bound the logarithm of the number of partitions of n(1� 2Æ) withmaximal element of eah partition less than pn=r:We must estimate from above the numberof solutions of the equationpn=rXi=1 ixi � n(1 + 2Æ); xi = 0; 1; 2; : : : :This an be done by simple using of Chebyshev's inequality, we omit the details and it followsthat lim supr!0 lim supn!1 ln#n(xi)pn=r1 Ppn=ri=1 ixi � n(1 + 2Æ)opn = 0: (35)Taking together all established fats (31), (32) (33), (34), (35) we an write the followinghain of inequalities ln#n;Æ;�;r(f)pn � ln�npn + s0on;�;Æ(1) + oÆ1(1) + or(1)� Xi;j �xjiN  ��f̂ 1ji�xji !+ s0on;�;Æ(1) + oÆ1(1) + or(1)or lim supn!1 ln#n;Æ;�;r(f)pn �Xi;j �xjiN  ��f̂ 1ji�xji !+ s0o�;Æ(1) + oÆ1(1) + or(1): (36)We an rewrite the P in the right hand side of (36) as followsXi;j �xjiN  � 1�xji Z djiji f̂ 10(x)dx! = ZSi[i;di℄N(�f(x))dx;13



where f is a pieewise onstant funtion suh that for a given partition f[ji ; dji ℄g of the setSi[i; di℄ f(x) = 1�xji Z djiji f̂ 10(x)dx; x 2 [xji ; dji ):Taking �! 0; Æ ! 0 we obtain from (36)F = lim supÆ!0 lim sup�!0 lim supn!1 ln#n;Æ;�;r(f)pn �Xi;j �xjiN  ��f̂ 1ji�xji !+ oÆ1;r(1)= ZSi[i;di℄N(�f(x))dx + oÆ1;r(1):Next we take !i = dji � ji suh that ! = maxi !i ! 0 and we have f(x) ! f̂ 10(x) a.s. onSi[i; di℄ andF � lim sup!!0 Z[i;di℄N(�f(x))dx + oÆ1;r(1) (37)� ZSi[i;di℄ lim sup!!0 N(�f(x))dx = ZSi[i;di℄N(lim sup!!0 (�f(x))dx= ZSi[i;di℄N(�f̂ 10(x))dx = ZSi[i;di℄N(�f̂ 0(x))dx� Z r1=rN(�f̂ 0(x))dx:Here for simpliity we omit oÆ1(1)+or(1) in the last relations. The �rst equality follows fromthe ontinuity of N(�): In the seond inequality we use Fatou Lemma whih is possible touse, beause N(�f̂ 0(x)) is integrable on [0;1) as follows from Theorem 2 (we will prove itlater). The seond equality in (37) follows from the fat that, if y 2 L1([a; b℄; dx); thenlimq!1 1jDqj ZDq y(x)dx = y(x0) a:s:;where (Dq)11 is an arbitrary sequene of losed intervals with nonempty interior suh thatTqDq = fx0g: The third inequality in (37) follows from the fat that f̂ 10 = f̂ 0 a:s:Now we take Æ ! 0; Æ1 ! 0; r!1 at both sides of (37) and obtain the inequalityF � Z 10 N(�f̂ 0(x))dx:Thus (20) is proved for stritly positive funtions.Now we desribe how to deal with funtions f 2 C suh that f̂(x0) = 0 for some 0 < x0 <1and x0 is minimal with this property. We will not show the whole proof in this ase, beausein many steps it is similar to the �rst ase, but we will underline the di�erenes in the proof.Consider one more the interval [1=r; r℄; r > x0 and another interval [1=r; r0℄; r0 < x0: On14



the interval [1=r; r0℄ we make the same onsiderations and estimates as in the �rst ase onthe interval [1=r; r℄: Thus we estimate the number of restritions S 0n;2Æ(f; 2�; fr; r0g); it hasthe same meaning as S 0n;2Æ(f; 2�; r) but the restritions of step funtions are on the interval[1=r; r0℄: Then the number of restritions of the step funtions on intervals [0; 1=r℄; [r;1) areestimated in the same way as in the �rst ase and their asymptotis is on;r(1): The number ofrestritions of step funtions on the interval [r0; r℄ is o�;r0(1) as �! 0 and r0 ! r1: This is dueto the same argument as in estimating �n;r or �n;r : the number of these restritions is lessthan the number of step funtions 'n;Æ with maxx 'n;Æ � o�(1)+f̂(r0)! 0 as �! 0; r0 ! x0:Atually we an onstrut the upper bound in this ase only on interval [1=r; r0℄ instead of[1=r; r℄ and then r0 ! r; but we hoose the last interval to make the formulations of theTheorem 1 uniform in all ases. As before we obtain the estimateF � Z r01=r N(�f̂ 0(x))dx+ or0;r(1):Taking r0 ! x0; r!1 we obtainF � Z x00 N(�f̂ 0(x))dx = Z 10 N(�f̂ 0(x))dxand Statement 1 is proved in the seond ase.The last ase, when f̂ � 0 an be done in a simple way. On the intervals [0; 1=r℄; [r;1)we have as before the number of restritions of 'n;Æ is on;r(1) and R r1=r 'n;Æ(x)dx < �: Thusthe number of restritions of Sn;Æ on [1=r; r℄ is less than the whole number of step funtionswith the area � �n; whih due to Hardy-Ramanujan result is pno�(1): The produt of thesenumbers of restritions on the di�erent parts of [0;1) as before gives the upper bound on#n;Æ;�;r(f) and F � 0 = Z 10 N(�f̂ 0(x))dx:Statement 1 is ompletely proved.Proof of Statement 2. This proof is simpler than the proof of the upper bound (20),beause now we do not are about the long horizontal segments. Choose the partition of theinterval [1=r; r℄ into s onseutive intervals [ai; bi℄ of equal length � = bi � ai = (r� 1=r)=s:Note, that in the proof of (20) we onsider also the ontributions to #n;Æ;�;r(f) of stepfuntions whose restritions does not belong to B(f; �; r): To prove (21) we should restritour attention only to the step funtions whose restritions belong to B(f; �; r): As before weonsider the subset of step funtions 'n;Æ suh that they have the node in eah retangle (x =ai� o�(1); y = f̂(ai)� o�(1)); i = 1; : : : ; s and in retangle (x = bs� o�(1); y = f̂(bs)� o�(1)):We hoose 'n;Æ; x 2 [0; 1=r℄ or x 2 [r;1) in an arbitrary way suh that 'n;Æ 2 Sn;Æ: Beausewe have restritions on steps, sometimes it an happen that it is not possible to ontinuethe step funtion with given restrition on [1=r; r℄ to the intervals [0:1=r) or [r;1) withoutviolation of the restritions on steps. In suh ases we shift the step funtion in vertialdiretion by not more than `Bmin=pn units of the saled integer lattie and in horizontaldiretion by not more than `Amin=pn units to obtain the step funtion whih starts at (0; p)15



and ends in (q; 0) for some p; q: Beause the number of shifts is �nite it does not hange thelogarithmi asymptotis of the number of step funtions.Now we estimate the L1([1=r; r℄; dx)�distane between the restritions Sn;Æ;r and f̂ : It anbe easily seen that if the pair of monotone non-inreasing funtions y; 'n;Æ is suh thatjy(x)� 'n;Æ(x)j < �1 (38)when x = a; b; a < b; thenZ ba jy1(x)� y2(x)jdx � (b� a)(y1(a)� y1(b) + 2�1): (39)This is beause the area restrited by the urves y; 'n;Æ and lines x = a; x = b is overed bythe retangle with edges y = y1(a) + �1; y = y1(b) � �1; x = a; x = b: Let (38) be true fory(x) = f̂(x) and all x = ai and x = bi: Then by (39) we have for every given r; suÆientlysmall � = maxi(bi � ai) and �1 Z r1=r j'n;Æ(x)� f(x)jdx < �: (40)Next as in the proof of the upper bound (20) the logarithm of the number of restritionsSn;Æ on interval [ai; bi℄ is estimated from below by the valuepn"(bi � ai)N  f̂(ai)� f̂(bi)bi � ai !+ on;�;Æ(1)# : (41)Atually the step funtion an have a node in any point from the saled lattie in the retangle(x = ai�o�(1); y = f̂(ai)�o�(1)) and end in retangle (x = bi�o�(1); y = f̂(bi)�o�(1)); butthe number of points in these retangles is O(n) and this does not inuene the logarithmiasymptotis in (41).As before the ontribution of all intervals [ai; bi℄ in the lower estimation of #fSn;Æ;rTB(f; �; r)gis bounded by the sum of values (41):pn" sXi=1 �xiN  � f̂(bi)� f̂(ai)bi � ai !+ son;�;Æ(1)#and taking into aount the hoie of 'n;Æ on the intervals [0; 1=r); [r;1) we obtain thelogarithmi asymptotis of the lower bound of the number #n;�;Æ;r :lim infn!1 ln#n;�;Æ;rpn � sXi=1 �xiN  ��f̂ 1i�xi � �f̂ 2i�xi!+ so�;Æ(1)� sXi=1 �xiN  ��f̂ 1i�xi! + so�;Æ(1)� sXi=1 �xiN  R aibi f̂ 10(x)dx�xi !+ so�;Æ(1)� sXi=1 Z biai N(�f̂ 10(x))dx+ so�;Æ(1) = Z r1=r N(�f̂ 10(x))dx+ so�;Æ(1):16



Here the seond inequality follows from the fat that N(�) is a monotone funtion.Taking limits from both sides of the last hain of inequalities we obtain the inequalitylim infr!1 lim infÆ!0 lim inf�!0 lim infn!1 ln#n;�;Æ;rpn � L(f):This proves (21) and the Statement 2.Now we turn to the proof of Theorem 2. First we prove, thatsupf2C L(f) = supf2C1 L(f): (42)We will prove more, namely that the sup in the right hand side of (42) is ahieved on thefuntions y 2 C1 suh that Z 10 y(x)dx < 1: (43)To prove this it is enough to show that for � > 0 and eah f 2 C suh thatZ 10 f(x)dx � 1there exists a y 2 C1 suh thatZ 10 jN(�y0(x))�N(�f̂ 0(x))jdx < �1 (44)and R10 y(x)dx < 1: Choose x0 > 0 suh thatZ 1=x00 N(�f̂ 0(x))dx; Z 1x0 N(�f̂ 0(x))dx < �1: (45)This is always possible, beause Z 10 N(�f̂ 0(x))dx <1:Now denote a = ess infx62A0 f̂ 0(x); where A0 = fx : f̂ 0(x) = 0g and denote for � > � >  > 0the restrited funtionf̂ 0(x; �; �; ) = 8>><>>: f̂ 0(x); �� a � �f̂ 0(x) � �; x 2 [1=x0; x0℄;a� ; �f̂ 0(x) < �� a; x 2 [1=x0; x0℄;��; �f̂ 0(x) > �; x 2 [1=x0:x0℄;0; x 62 [1=x0; x0℄and f̂(x; �; �; ) ! 0 as x ! 1: Next we hoose � ! 1 and � ! 0: Then we an hoose� > � >  > 0 suh thatZ x01=x0 jN(�f̂ 0(x; �; �; ))�N(�f̂ 0(x))jdx < �1 (46)17



and Z x01=x0 jf̂ 0(x; �; �; )� f̂ 0(x)jdx < Æ1; (47)Z 10 f̂(x; �; �; )dx < Z 10 f(x)dx� Æ: (48)Inequalities (46), (47) follow from standard arguments about the restrited funtions. Whenneessity of the restrition of the funtion f̂ 0(x; �; �; ) from below ditates by the validityof the inequality (48), and the fat that N 0�(z) z!0! 1 (see estimations (55)).Now we approximate uniformly the funtion �f̂ 0(x; �; �; ) on [1=x0; x0℄ by the simple fun-tion �(x) with a �nite number of values, suh that � a � �(x) � �f̂ 0(x; �; �; ) (49)and on [0; 1=x0) and (x0;1) funtion �(x) = 0: At last approximate �(x) by a ontinuousfuntion ��(x) : Z 10 j�(x)� ��(x)jdx < Æ2: (50)This approximation an be done by using the standard arguments (see for ex.[8℄, p.86). It isimportant and follows from the proof of possibility of suh approximation, that the Lebesguemeasure �0 = �(fx : j�(x)� ��(x)j 6= 0g) (51)an be made arbitrary small andŝmaxx �(x) � ��(x) � minx �(x); (52)where ŝ is the number of di�erent values of �(x): For the arbitrary Æ3 > 0 we an hoose ��suh that it satis�es the additional ondition��(x) = 0; x > x0 + Æ3: (53)We set y0(x) = ���(x) and require y(x)! 0 as x!1:Next we have the �nal hain of relationsZ 10 y(x)dx = Z 10 �Z 1x ��(z)dz� dx � Z x00 �Z x00 �(z)dz� dx+ Æ2(x0 + Æ3) (54)� Z 10 f(x)dx� Æ + Æ2(x0 + Æ3):Here in the �rst inequality we use (50) and in the last inequality (48) and (49).
18



Next estimation is for L(�) :jL(��(x))� L(�f̂ 0(x))jdx = Z 1=x00 jN(��(x))�N(�f̂ 0(x))jdx (55)+ Z x01=x0 jN(��(x))�N(�f̂ 0(x))jdx + Z 1x0 jN(��(x))�N(�f̂ 0(x))jdx� 2�1 + 2�0N(ŝ�) + Z x01=x0 jN(�f̂ 0(x; �; �; ))�N(�f̂ 0(x))jdx+ Z x01=x0 jN(�f̂ 0(x; �; �; ))�N(�(x))jdx + Z x01=x0 jN(�(x))�N(��(x))jdx� 3�1 + 2�0N(ŝ�) +N 0�( � a)(Æ1 + Æ2):We should explain some of the estimates above. In the seond inequality we use the fatthat �(fx : ��(x) > 0gTA0) � �0 and maxN(�(x)) � N(ŝ�): In the last inequality we usethe fat that N 0(z) is monotonially dereasing. Now we hoose �1 < �=3; then �; � > 0 suhthat (46), (48) and (47) are valid. Then we hoose �0; Æ1; Æ2; Æ3 suh that Æ2(x0 + Æ3) < Æ=2and N 0�( � a)(Æ1 + Æ2) + 2�0N(ŝ�) < �� 3�1:Then the right hand side of (54) and (55) is less than R10 f(x)dx � Æ=2 and � orrespond-ingly. Then we hoose orresponding to the previous hoie of the parameters funtionsf̂ 0(x; �; �; ); �(x); ��(x): This proves (42) with the assertion onneted with (43).Now we are ready to prove that supf2C1 L(f) = supf2C2 L(f): (56)Taking into aount previous onsiderations we should prove that for arbitrary � > 0; f 2 C1suh that Z 10 f(x)dx < 1� Æthere exists y 2 C2 suh that jL(y)� L(f)j < �:The proof of this fat is quite similar to the proof of (42) and we desribe the simpleidea omitting routine details. It is neessary to repeat onsiderations of the previous proofof (42) with one exeption: now we onsider not an arbitrary simple funtion �(x) but astep funtion- a funtion whih is onstant on intervals. This is possible to do when funtionf 0 is ontinuous, if instead of funtion f̂ 0(x; �; �; ) we onsider the funtionf 01(x; �; �) = 8<: f 0(x); � � �f 0(x) � �; x 2 [1=x0; x0℄;�; �f 0(x) < �; x 2 [1=x0; x0℄; or x 62 [1=x0; x0℄;��; �f 0(x) > �; x 2 [1=x0; x0℄and Z 10 f1(x; �; �) < 1� Æ:19



Then all previous onsiderations are valid with 1 instead of R10 f(x)dx:When onstruting the funtion ��(x) 2 C2 we onnet the onseutive steps of funtion �(x)by a smooth urve and obtain the smooth urve �(x): It is easy to see that all onditionsand inequalities an be satis�ed. This proves (56).To prove the still remaining statement of Theorem 2 we �rst prove Theorem 3. FromTheorem 1 and the inequality (f 2 C)#n;Æ;�;r(fmax) � #n;ÆA;Bfollows thatlimÆ!0 lim infn!1 ln#n;ÆA;Bpn � limr!1 lim infÆ!0 lim inf�!0 lim infn!1 ln#n;Æ;�;r(fmax)pn = Z 10 N(�f 0max))dx = 2C;(57)where C is determined by the relations (4), (5). The last equality follows from the followingrelations: N(�f 0max) = ��1(�f 0max) + f 0max(x)�2(�f 0max(x)): (58)Comparing (15), (16) and (4) we see that�1(�f 0max(x)) = �Cfmax(x); �2(�f 0max(x)) = �Cx:substituting these values into (58) we haveZ 10 N(�f 0max(x))dx = 2C:Here we use integration by parts.After (57) all what we need to prove is the inequalitylimÆ!0 lim supn!1 ln#n;ÆA;Bpn � Z 10 N(�f 0max(x))dx:One more we onsider the interval [1=r; r℄ and the set of restritions Sn;Æ on this intervaland on intervals [0; 1=r); (r;1): As before for suÆiently large r the number of restritionsof Sn;Æ on [0; 1=r) and (r;1) is small:ln�n;rpn ; ln�n;rpn = on;r(1): (59)Now we must estimate the number of restritions Sn;Æ;r; the whole number #n;ÆA;B is upperbounded by the produt of the numbers of restritions on these three intervals.Note that, if 'n;Æ;r is the restrition of the step funtion 'n;Æ; thenZ r1=r 'n;Æ;r(x)dx � 1 + Æ � 1r'n;Æ(1=r): (60)20



Thus 'n;Æ(x) � 'n;Æ(1=r) � r(1 + Æ); x 2 [1=r; r℄: (61)Now by using standard arguments it is easy to see that the set of monotone non-inreasingfuntions '(x) on [1=r; r℄ with the restritionsZ r1=r '(x)dx � 1 + Æ � 1r'(1=r) (62)and (61) is ompat in L1([1=r; r℄; dx) topology. We denote this ompat by Kr:From the proof of the Theorem 1 follows that for eah f 2 C we an writeK(f; �; r) = lim supn!1 ln#fSn;Æ;rTB(f; �; r)gpn = Z r1=rN(�f̂ 0(x))dx + o�(1):Next for every f 2 C we hoose �f suh that����K(f; �; r)� Z r1=rN(�f̂ 0(x))dx���� < �2 = o�f (1):Then for every funtion f 2 Kr we onsider the ball B(f; �f ; r) and from this set of balls wean hoose a �nite number of balls B(fi; �fi ; r) suh that Kr � SiB(fi; �fi ; r):Next we have lim supn!1 ln#fSn;Æ;rgpn � maxi ln#fSn;Æ;rTB(fi; �fi ; r)gpn (63)= lim supn!1 maxi Z r1=rN(�f̂ 0i(x))dx + �2 � supf2Cr Z r1=rN(�f̂ 0(x))dx + �2;where Cr is the set of restritions of funtions from C on [1=r; r℄: As in Theorem 2 we antake in (63) the set Cr2 instead of C; where Cr2 � Cr is the set of funtions on [1=r; r℄ withontinuous seond derivative. The proof of this fat is the same as in the proof of Theorem 2and even simpler, beause we onsider here the �nite interval [1=r; r℄:Beause the funtional Lr(f) = Z r1=rN(�f̂ 0(x))dxis onvex, to �nd the extremal of this funtional it is enough to �nd the loal extremal ofthis funtional. We have the following problem: �ndfmax = argmaxf2Cr2 Lr(f): (64)We will try to �nd the loal extremal among the funtionsf 2 Cr2 suh that jf 0(x)j > y0 (65)21



for some y0 > 0: If we �nd suh loal unonditional extremal for suÆiently small y0 it willbe the solution of the problem (64).If (65) is valid, then y0(x) = f 0(x) + th0(x) < �y0; x 2 [1=r; r℄ (66)for suÆiently small t and we restrit our attention on suh h(x) 2 Cr2 thatZ r1=r h(x)dx = 0; h(1=r) = h(r) = 0; (67)then y 2 Cr2 : Sine y0(x) < �y0; y 2 Cr2 and N(�); �2(�) are inreasing funtions. we have0 < N 0�(�y0(x)) = ��2(�y0(x)) < ��(y0):Hene we an move the derivative before the integral and obtainddtLr(f + th)jt=0 = Z r1=rN 0�(�f 0(x))h0(x)dx �=M:If f is extremal, then M = 0 and integrating by parts we obtainN 0�(�f 0(x))h(x)jr1=r � Z r1=r h ddxN 0�(�f 0(x))dx = 0: (68)Sine h 2 Cr2 is arbitrary suh that (65), (67) are valid, standard arguments from alulus ofvariations (see for ex.[7℄) show, that for the integral in (68) to vanish it is neessary thatddxN 0�(�f 0(x)) = C = onst: (69)The �rst term in the left hand side of (68) vanishes, beause of the ondition (67).Equation (69) has the solutionN 0�(�f 0(x)) = C(x + �); C; � = onstand hene �2(�f 0(x)) = �C(x + �): (70)At the same time from (15), (16) follows thatd�1d�2 = f 0(x)i.e �1(x) = �C Z f 0(x)dx + onst = �C(f(x) + �); � = onst: (71)Using (16), (70), (71) we obtain the equalityX̀2A e�C(x+�)` X̀2B e�C(y+�)` = 1:22



This equation determines (up to onstants C; �; �) y as a funtion of x: Also we have theondition Z r1=r y(x)dx � 1� 1r y(1=r): (72)Values � and � are simply the shifts along X and Y axis of the graph of funtion y(x), when� = � = 0. Shifts along the Y axis do not inuene expliitly the funtionalLr(f) �= Z r1=rN(�f̂ 0(x))dxand the best hoie of � whih gives the max of the funtional Lr(f) is suh that ondi-tion (72) is the least restritive, i.e. when y(r) = 0: Sine y0(x) is a ontinuous funtion of�; �; C; funtional Lr(y) is also a ontinuous funtion of these variables. Also it is easy tosee for some y0; jy0(x)j > y0; x 2 [1=r; r℄ for every given �;C; r: But we must onsider thepossibility that sup of Lr(f) is ahieved when �!1: In suh asey0(x)! C1 = onst; x 2 [1=r; r℄: (73)If this is the ase when Lr(�) ahieves its sup; thensupf2C Lr(f) = �r � 1r�N(�C1):We will show that it is not true (this is not the sup of Lr(f)): Indeed, if y0(x) = C1 andy(r) = 0; then �C1 = y(1=r)r�1=r and from (72) follows thaty(1=r) � 2r + 1=ror �C1 � 2r2 � 1=r2 :Sine Z r1=rN(�y0(x))dx � (1� C1)rH � �C11� C1�! 0 as r!1;for large r funtional Lr(�y0(x)) vanishes and for large r; y(x) annot be sup of Lr(f),beause it is easy to introdue a funtion f whih satis�es ondition (72) and for whihLr(f) inreases with r (for example when f(x) =  (x), where  (x) is de�ned in (75)).Hene the extremum of Lr(f) is ahieved for some �nite �: For given C, jy0(x)j inreases,when � dereases and � � �1=r: We give a rough upper estimate of maxLr(y) and assumethat � = �1=r and instead of the ondition (72) we onsider the more rough onditionZ r1=r y(x)dx � 1: (74)Then, if  (x) is the solution of the equationX̀2A e�x`X̀2B e� (x)` = 1; (75)23



we have 1 = X̀2A e�x`X̀2B e� (x)` � 1X̀=1 e�x` 1X̀=1 e� (x)` 1(ex � 1)(e (x) � 1)and thus  (x) is an integrable funtion on [0;1) : (x) � � ln(1� e�x);Z 10  (x)dx � � Z 10 ln(1� e�x)dx = Z 10 xex � 1dx = �26 :We have y(x) = 1C �C �x� 1r��� � (76)and y(r) = 1C �C �r � 1r��� � = 0 (77)From the ondition (74) follows thatM(C; r; �) �= Z r1=r y(x)dx = 1C2 Z C(r�1=r)0  (x)dx� � �r � 1r� � 1: (78)Also we have Lr(y) = 1C Z C(r�1=r)0 N(� 0(x))dxand  (x); � 0(x)& 0 as x!1:Next (Lr)0C(y) < 0 and using the di�erentiation of (75), (77) and (78) it is easy to see thatM 0C(C; r; �) < 0:Hene we should hoose C as small as possible suh that ondition (78) is still valid i.e weshould have 1C2 Z C(r�1=r)0  (x)dx = �(C)�r � 1r� + 1: (79)Equations (77), (79) together with (75) de�ne C as a funtion of r: it is always possibleto �nd a unique C whih satis�es these relations, beause for given r M(C; r; �(C)) is aontinuous, monotone funtion of C and tends to 0 as C !1 andM(C; r; �(C))!1 as C ! 0: (80)It is left to show that C(r)!sZ 10  (x)dx as r!1: (81)Assume for the moment that (81) is true. Then sineN(� 0(x)) =  (x)� x 0(x)24
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