
About the number of step fun
tions with restri
tionsRudolf Ahlswede and Vladimir BlinovskyWe obtain the asymptoti
 formula for the number of s
aled step fun
tions with the restri
tionson the length and height of steps (shapes of Young diagrams) of given area in the neighborhoodof a given 
urve. This allows us to �nd the asymptoti
s of the whole number of su
h fun
tionsand �nd the limit shape-the 
urve of 
on
entration of the step fun
tios. 11 Introdu
tionConsider the x � 0; y � 0 quarter of the plain and step fun
tions with integer nodes whi
hstart from some point on the Y axis and end in some point on the X axis. In this workwe deal with the number of su
h step fun
tions, for whi
h the area under these fun
tions isasymptoti
ally equal to n and n!1:The main problem we solved in this work is to obtain the asymptoti
s of the number ofs
aled step fun
tions in the neighborhood of a given 
urve when the length and height ofsteps are taking values from given sets A and B 
orrespondingly. The 
ase when thereare no su
h restri
tions, i.e. A = B = f1; 2; : : :g was, 
onsidered in [3℄ and independentlyin [5℄ by using an essentially di�erent method. In [4℄ the 
ase was 
onsidered, where thereare restri
tions only on the height of steps i.e. A = f1; 2; : : :g and B is an arbitrary set ofpositive integers. Here we 
omplete these investigations by the 
ase where A and B are givensets of positive integers. This 
ase also di�ers from the previous ones by some new diÆ
ultiesin the proof. In parti
ular we don't know another method of obtaining the asymptoti
s ofthe whole number of step fun
tions with the restri
tions on the height and length of steps.At the same time the asymptoti
s in the 
ase without restri
tions is known due to a resultof Hardy- Ramanujan [2℄ be
ause the number of step fun
tions without restri
tions is thenumber of partitions of n whi
h in turn has the logarithmi
 asymptoti
s � �qn23 : The 
asewhen A = f1; 2; : : :g 
an be done expli
itly also.The problem 
onsidered here 
an be viewed as the large deviations problem. The di�eren
e2C � L(f) (see next se
tion for notations) is the rough logarithmi
 asymptoti
s (asymp-toti
s under several parameters) of the probability that the step fun
tion belong to the1This work is partially supported by RFFI grant No 03-01-00592 and 03-01-00098 and INTAS grant No00-738. 1



neighborhood of the 
urve f: At the same time the obtaining of the expli
it expression forthe fun
tional L(�) uses the tools from the large deviation theory in fun
tional spa
es. Inparti
ular in the proof of the Theorem 1 we use the following s
heme (whi
h we des
riberoughly) : we 
onsider instead of given 
urve the spline with the nodes on the 
urve and for
onse
utive nodes (
i; 
i+1) we �nd the asymptoti
s of the number of the step fun
tions whi
hstart in the neighborhood of 
i and end in the neighborhood of 
i+1: The it is shown that thewhole number of step fun
tions in the neighborhood of f is the produ
t of these numberswhen i runs over all nodes. Ea
h this number has the rough logarithmi
 asymptoti
s givenby Lemma 2 and depends only on di�eren
es between 
orresponding 
oordinates of 
i and
i+1: When �nding the logarithmi
 asymptoti
s of the whole number of step fun
tions inthe neighborhood of f; the logarithm of the produ
t of evaluations of pairs of 
onse
utivenodes gives the integral sum whose limit gives the integral appeared in the expression forL(f): Besides this pro
edure we have to take into a

ount some te
hni
al and routine details
on
erning the singular properties of the fun
tion f:In the Theorem 2 using variational method we �nd the maximum of the fun
tional L(�)over suÆ
iently smooth fun
tions and prove that the same maximum a
hieved on the setof ` `all' fun
tions from C: Here we also have to take into a

ount some te
hni
al details tomake the 
al
ulus of variations to be 
orre
t. Also we �nd limit shape, on whi
h a
hievedthe maximum of the fun
tional L(�): Taking into a

ount Lemma 2 we see that this shapeattra
t the most of the step fun
tions. The range of the problems of �nding the limit shapesof random step fun
tions with given area whi
h 
an be viewed as random Young diagramwas 
onsidered in the paper [1℄. There was o�ered the number of limit shapes under di�erentdistributions.At last in the Lemma 2 we �nd the logarithmi
 asymptoti
s of the whole number of stepfun
tions with restri
tions.Note the one of the di�eren
es between the usual large deviations s
heme: we �rst 
onsiderthe restri
tions of the fun
tions on the interval [1=r; r℄ and last limit whi
h we take is thelimit when r ! 1: This is done, be
ause the 
onsidered ensemble of step fun
tions is notexponentially 
ompa
t (see [5℄ for de�nitions) under L1 ��metri
s.Let's start with pre
ise formulations. Here we 
onsider only the 
ase when sets A; B �f1; 2; : : :g are in�nite: jAj; jBj =1: The 
ase of �nite sets we shall 
onsider somewhere else.By step fun
tion we mean a pie
ewise 
onstant non in
reasing fun
tion with nodes in integerpoints (later we 
onsider the s
aling of the points with integer 
oordinates and 
onsider thes
aled step fun
tions). We 
onsider the 
ase when the lengths of the step fun
tion are takenfrom the set A and the di�eren
e between 
onse
utive di�erent values of these step fun
tions(height of the steps) are taken from the set B:First we formulate the lemmas we need and next formulate the main results in two theorems.Everywhere in the text we assume that expressions like 
pn are integers. We will omit thelabel `restri
ted' and speak simply about step fun
tions.
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2 Formulation of resultsLet `Amin = minf` 2 Ag, (`Bmin = minf` 2 Bg) and #k;�A (a) (#k;�B (a)) is the number of sequen
es(xi)k1; xi 2 A; (xi 2 B) su
h that 1kPki=1 xi 2 U(a; �); where U(a; �) = fx 2 R : jx�aj < �g:Lemma 1 The following relation is validlim�!0 limk!1 ln#k;�Ak = JA(a) �= inf��0 lnX̀2A e�` � �a! ; a � 0: (1)Now we formulate the result about the asymptoti
s of the number #n;�1;�2A;B (a; b) of stepfun
tions starting from some point (
pn; dpn) and ending in the re
tangle x = (
 + a ��1)pn; y = (d� b� �2)pn: Note that #n;�1;�2A;B (a; b) depends only on a; b but not on 
; d:Lemma 2 The following equalities are valid:lim�1;�2!0 lim supn!1 ln#n;�1;�2A;B (a; b)pn = lim�1;�2!0 lim infn!1 ln#n;�1;�2A;B (a; b)pn = N � ba� ;where N(�) = max�2[0;minf1;�g℄ � (JA(1=�) + JB(�=�)) :Now we de�ne the set of fun
tions C: It 
ontains the fun
tions su
h that for ea
h f 2 C thereexists an f̂ ; f = f̂ a:s: and f̂ is non-negative, non-in
reasing, 
ontinuous from the right on[0;1) and Z 10 f(x)dx � 1:For given n; Æ let Sn;Æ be the set of step fun
tions 'n;Æ for whi
h was applied the s
aling: alllinear sizes of step fun
tions are divided by pn i.e. we 
onsider the step fun
tions with thenodes from the latti
e 1pnZ� 1pnZ whi
h are non in
reasing fun
tions in the positive quarterx; y � 0 su
h that Z 10 'n;Æ(x)dx = 1� Æ:Let Sn;Æ;r be the set of restri
tions of Sn;Æ on the interval [1=r; r℄: Let alsoB(f; �; r) = �y 2 L1[1=r; r℄ : Z r1=r jy(x)� f(x)jdx < ��be the L1� ball of radius � > 0 on the interval [1=r; r℄:Next we formulate our main result. 3



Theorem 1 Let #n;�;Æ;r(f) = #fSn;Æ;r[B(f; �; r)g;then the following equalities are validlimr!1 lim supÆ!0 lim sup�!0 lim supn!1 ln#n;�;Æ;r(f)pn= limr!1 lim infÆ!0 lim inf�!0 lim infn!1 ln#n;�;Æ;r(f)pn = L(f);where L(f) = � R10 N(�f̂ 0(x))dx; f 2 C;�1; f 62 C:Denote by C1 the 
lass of fun
tions from C whi
h have 
ontinuous �rst derivative and by C2the 
lass of fun
tions from C with 
ontinuous se
ond derivative.Theorem 2 The following relations are validmaxf2C L(f) = maxf2C2 L(f) = 2C; (2)and if argmaxf2C2 L(f) = fmax; (3)then fmax is determined by the equationX̀2A e�Cx`X̀2B e�Cfmax(x)` = 1 (4)and C is determined by the equationZ 10 fmax(x)dx = 1: (5)Note, that from (4) and (5) follows that if  (x) is the solution of the equationX̀2A e�x`X̀2B e� (x)` = 1;then C =qR10  (x)dx: The integrability of  (x) we will prove at the end of the paper.Let #n;ÆA;B = #fSn;Æg be the whole number of step fun
tions in Sn;Æ:Theorem 3 The following equalities are validlimÆ!0 lim supn!1 ln#n;ÆA;Bpn = limÆ!0 lim infn!1 ln#n;ÆA;Bpn = 2C:4



3 ProofsThe proof the Lemma 1 is similar to the one for Cramer's theorem for large deviations ofthe sum of i.i.d. random variables. On the set A we de�ne the 
ounting measure � : �(`) =1; ` 2 A and �(z) = 0 otherwise. Analogi
ally to the probabilisti
 
ase we de�ne thesequen
e (Xi)k1 of `pseudo' random variables (`pseudo' means that we 
onsider not normedmeasures) taking values in A su
h that �(Xi 2 A) = �(A): Also de�ne the produ
t measure�k kOi=1 Ai! = �k(Xi 2 Ai; i = 1; : : : ; k) = kYi=1 �(Ai):Sin
e U(a; �) is an open 
onvex set, by the standard subadditivity argument (see for ex. [6℄)it follows that the limit limk!1 ln�k � 1kPki=1Xi 2 U(a; �)�k (6)exists. Note, that �k � 1kPki=1Xi 2 U(a; �)� = #k;�A : We omit the details of the proof of theLemma whi
h are literally the same as the proof of the Cramer's theorem [5℄.Note also that JA is aT�
onvex, di�erentiable, monotone in
reasing fun
tion and JA(`Amin) =0; JA(a) = �1; a < `Amin:Proof of Lemma 2. By simple use of the Chebyshev's inequality it is easy to obtain theinequality
n;k;�(a) �= ln#f(xi)k1 : Pki=1 xi 2 pnU(a; �)gpn � (a+ �)H � kpn(a + �)� ; (7)where H(z) = �z ln z � (1 � z) ln(1 � z): Sin
e H(z) z!0! 0 and H is monotone in
reasingon [0; 1=2℄ we 
on
lude that if k < pnÆ1; then 
n;k;�(a) Æ!0! 0: The same is valid for the setB instead of A: Let a > 0; b � 0 be some reals. If a step fun
tion starts in (
pn; dpn) andrea
hes re
tangle x = (
+ a� �1)pn; y = (d� b� �2)pn in some point (xp; yp) and on thisinterval it has k horizontal segments, it is possible for it to have k � 1; k or k + 1 verti
alsegments. DenoteAn;�1;�2k1;j (a; b) = minf(a+�1)pn;(b+�2)pn+jgXk=k1 #k;�1A �apnk �#k�j;�2B � bpnk � j� ; (8)�1; �2 > 0; then#n;�1;�2A;B (a; b) = �An;�1;�21;0 (a; b) + An;�1;�21;1 (a; b) + An;�1;�21;�1 (a; b)� 2pno�1;�2 (1): (9)Here term 2pno�1;�2 (1) arises from the fa
t that we 
ount the step fun
tions a

ording totheir end points in the re
tangle and one step fun
tion 
an have several nodes in the samere
tangle. 5



We underline that we write the same symbol o(1) for di�erent values whi
h have the propertythat they tend to zero as parameters tend to in�nity or zero a

ording to their meaning andthe �rst limit is taken for the left parameter in their order. In parti
ular o�1;�2(1) in the lefthand side and right hand side of (9) are di�erent and �rst �1 ! 0 and then �2 ! 0:Next we omit index j in An;�1;�2k1;j (a; b) be
ause the value j does not 
hange the asymptoti
sof the expressions. Next using Lemma 1 and (8) we havelnAn;�1;�2Æ1pn (a; b) = maxk=Æ1pn;:::;maxf(a+�1)pn;(b+�2)png �k�JA�apnk �+ JB �bpnk ���+ok;�1;�2(1)pn:(10)Denote A(�; �) = �(JA(1=�) + JB(�=�)); �; � � 0:Then the expression in the square bra
kets in the right hand side of (8) 
an be written asapnA(k=(apn), b=a). Fun
tion A(�; �) for given � 2 [0;1) is 
ontinuous and non in
reasingwhen 0 � � � �1 �= minf1=`Amin; �=`Bmingand = �1 when � > �1: Note also, that for suÆ
iently small � > 0; A(�; b=a) > �1 forthe arbitrary a; b > 0 and hen
e making Æ1 > 0 suÆ
iently small we a
hieve the situationwhere max�2[Æ1=a;minf1;b=ag℄A(�; b=a) > �1and the interval [Æ1=a;minf1; b=ag℄ is nonempty. Thus we have lnAn;�1;�2Æ1pn (a;b)pn > �1:Combining this inequality, relations (9) (10) we have (a; b > 0)a max�2[Æ1=a;minf1;b=ag℄A(�; b=a) + oÆ1;�1(1) + oÆ1;�2(1) � lim infn!1 ln#n;�1;�2A;B (a; b)pn (11)� lim supn!1 ln#n;�1;�2A;B (a; b)pn � a max�2[Æ1=a;minf1;b=ag℄A(�; b=a) + oÆ1;�1(1) + oÆ1;�2(1):Be
ause the estimated value in (11) does not depends on Æ1 we 
an 
hoose Æ1 ! 0 and obtainthe relations a sup�2(0;minf1;b=ag℄A(�; b=a) + o�1(1) + o�2(1) (12)� lim infn!1 ln#n;�1;�2A;B (a; b)pn � lim supn!1 ln#n;�1;�2A;B (a; b)pn� a sup�2(0;minf1;b=ag℄A(�; b=a) + o�1(1) + o�2(1):Note, that A(�; b=a) is 
ontinuous at � = 0, A(0; b=a) = 0 and thus we 
an 
hange the rangeof � in the sup in (12) to [0;minf1; b=ag℄ and 
hange sup to max :Now if b = 0; a > 0; then for suÆ
iently small �1; �2ln#n;�1;�2A;Bpn = o�1(1) + o�2(1): (13)6



This is be
ause the value k 
annot ex
eed O(�2pn=`Bmin); otherwise #k;�2B (b) = 0 and theestimation (7) shows that ln#n;�1;�2A;Bpn is as in (13). Also max�2[0;minf1;b=ag℄ A(�; 0) = 0 andhen
e the formula from Lemma 2 is also valid in the 
ase b = 0: Lemma 2 is proved.Proof of the Theorem 1. First of all we investigate the properties of the fun
tionN(�) = max�2[0;minf1;�g℄ � (JA(1=�) + JB(�=�)) : (14)Fun
tion N(�) is T�
onvex. Indeed �1(�2), at whi
h the inf in the de�nition of JA(JB)from (14) is a
hieved should satisfy the equalities�P`2A `e�1`P`2A e�1` = 1; �P`2B `e�1`P`2B e�1` = �: (15)Here � is the value at whi
h the max in the de�nition of N(�) is a
hieved. Then �1; �2should also satisfy the equality X̀2A e�1`X̀2B e�2` = 1 (16)(here we assume 0 �1 = 1). Equations (15) are obtained by setting the derivatives in �1(�2)under the inf in the expressions for JA(1=�)(JB(�=�)) to zero and expression (16) is obtainedby setting the derivative of A(�; �) by � to zero and using equations (15). It 
an be easilyseen that, when � > 0 and � vary in the interval [0;minf1=`Amin; �=`Bmin℄ and equations (15) arevalid, A0(�; �) varies in the range from �1 to 1: Be
ause A0�(�; �) is 
ontinuous when (15)are valid, we obtain that there exists a � su
h that (15) are valid and A0�(�; �) = 0:When � = 0 we have � = 0; �1 = 0: In this 
ase we set �2 = �1: Then (15), (16) are alsovalid in the 
ase � = 0:Sin
e for � > 0 A(�; �) is �nite i� � 2 [0;minf1=`Amin; �=`Bming℄, A00��(�; �) < 0 and A(�; �) =�1 otherwise, we obtain that A(�; �) is T�
onvex. If � = 0; A(0; 0) = 0 and A(�; 0) =�1; � > 0; hen
e A(�; 0) is T�
onvex also.Now we have the system of equations (15), (16) whi
h determines �1(�); �2(�); �(�) in all
ases where N(�) > �1: From the previous 
onsiderations follows that N(�) > �1 when� � 0:Fun
tion N(�) is T�
onvex. Indeed, from the relations (15), (16) follows thatN(�) = ��1(�)� ��2(�) (17)and N 00�� = ��02(�) � 0: (18)Also we need the following estimateN(z + �)�N(z) � N(�); z; � � 0: (19)7



Indeed N 0(z) = ��2(z)and N 0(z + �)�N 0(z) = �2(z)� �2(z + �) � 0:Now to prove Theorem 1 we prove two statements from whi
h the theorem follows.Statement 1 The following bound is validlimr!1 lim supÆ!0 lim sup�!0 lim supn!1 ln#n;�;Æ;r(f)pn = K1(f) � L(f): (20)Statement 2 The following bound is validlimr!1 lim infÆ!0 lim inf�!0 lim infn!1 ln#n;�;Æ;r(f)pn = K2(f) � L(f) (21)Proof of Statement 1. First note that if f 62 C; then K1(f) = �1: Indeed if R10 fdx > 1or �(f < 0) > 0 or �(f̂ 0 > 0) > 0 (� is Lebesgue measure), then for suÆ
iently large r andn and small �; Æ > 0 B(f; �; r)TSn;Æ;r = ;:We �x some r > 1 and f 2 C and 
onsider the de
ompositionf̂ = f̂ 1 + f̂ 2;where f̂ 1 is absolutely 
ontinuous and f̂ 2 singular monotone 
omponents of f̂ : Note that f̂ 2is 
ontinuous from the right, be
ause f̂ is.Now we 
onsider three 
ases. First 
ase: f̂(x) > 0; x 2 [0;1); se
ond 
ase: f̂(x) = 0for some x 2 (0;1) and last 
ase: f̂(x) � 0:Let's make a note. Step fun
tions 'n;Æ have no horizontal and (
ertainly) no verti
al segmentsafter it a
hieves the X-axis (when 'n;Æ(x) = 0 for the �rst time). Otherwise we would havean in�nite number of step fun
tions, be
ause we 
an 
ontinue the step fun
tion after x0;where 'n;Æ(x0) = 0 for the �rst time by an in�nite number of horizontal segments from A:Now we partition the interval [1=r; r℄ into 
onse
utive intervals [xi; xi+1℄ and to make our
onsiderations proper we must assume that every step fun
tion 'n;Æ has a node in ea
hre
tangle Ri = (xi � o�(1); f̂(xi)� o�(1)): We will prove that every 'n;Æ has the propertyj'n;Æ(xi)� f̂(xi)j < o�(1):Thus to have a 'n;Æ, whi
h has a node in Ri, we should 
onsider only 'n;Æ whi
h have a nodewith 
oordinate x 2 (xi � o�(1)):At the same time it is possible to have the situation where 'n;Æ has very long horizontalsegments, so long, that they pass throw the intervals xi � o�(1) without nodes. The smaller8



f̂(xi) is, the longer segments 
an o

ur. It will be
ome 
lear soon that the logarithmi
asymptoti
s of the number #fSn;Æ;rTB(f; �; r)g and the number of 'n;Æ 2 B(f; �; r) withoutlong segments (length ex
eeds o�(1)) is the same, if we 
onsider the fun
tions f su
h thatf̂(f) > C0 > 0: If f̂(r) = 0 and r1 is the smallest number with this property, our nextredu
tion in that form does not work and we will 
onsider some r0 su
h that f̂(r0) > C0 > 0for some C0 and make the 
onsiderations similar to the �rst 
ase of positive f̂ not on thewhole interval [1=r; r℄, but on the interval [1=r; r0℄ (surely we should have 1=r < r0) and onthe interval [r0; r℄) estimate the number of restri
tions of 'n;Æ su
h that����Z rr0 'n;Æ(x)dx� Z rr0 f(x)dx���� < o�(1)and R rr0 f(x)dx! 0 as r0 ! r1: It means thatZ rr0 'n;Æ(x)dx = o�;r0(1): (22)The whole number of restri
tions on the interval [r0; r℄ of the step fun
tions 'n;Æ, whi
hsatisfy (22), is small, less than the whole number (without restri
tions) of step fun
tionswith area o�(1): By the Hardy-Ramanujan formula this number is less than o�;r0(1)pn:Let's pro
eed �rst with the 
ase f̂ > 0; x � 0: Let x0 2 [1=r; r℄ be su
h that jf̂ 0(x0)j < C1for some C1: If 'n;Æ 2 B(f; �; r); thenj'n;Æ(x0)� f̂(x0)j < o�(1): (23)Indeed it is easy to 
he
k, 
onsidering the graphs of the fun
tions 'n;Æ; f̂ ; that otherwise,be
ause fun
tions are monotone, the area of the gap between the graphs of these fun
tionsin the neighborhood of x0 would be positive and non vanished as �! 0 whi
h is the 
ontra-di
tion with the 
ondition 'n;Æ 2 B(f; �; r):Now 
onsider the whole set B0 = Sn;Æ;rTB(f; �; r): Let B1 � B0 be the set of step fun
tionswhi
h 
ontains exa
tly one horizontal segment of length ex
eeding o�(1) when x 2 [0; r℄: Thissegment 
an start at any point 0; 1=pn; : : : ; r on X and 
an have the length � su
h that� � �max; where (f̂(r)� o�(1))�max = 1 + Æ: (24)This follows from the fa
t that the area under this segment should be less than 1 + Æ andthe length 
an be maximal, when the Y 
oordinate of the segment is minimal (this is whywe take 
are about positivity of f̂):Let B11 be the subset of B1 
onsisting of the step fun
tions with the property that B11 isthe maximal subset of B1 over the 
hoi
e of long horizontal segment �: Then#fB1g � rn�max#fB11g � rn(1 + Æ)f̂(r)� o�(1)#fB11g: (25)The 
oeÆ
ient before #fB11g is the number of possible 
hoi
es of segment �:9



Now we make the following pro
edure with the elements fromB11:We take the segment � and
onsider the partition of it into b�pn` 
 parts for some ` 2 A: If ` - �pn then we simply omitthe rest after the division and have b�pn` 
 parts of length `: Then between ea
h 
onse
utiveparts we insert the verti
al segment of length `Bmin: It will be b�pn` 
 insertions. Then we liftup our 
onstru
tion simultaneously with the whole left to � pie
e step fun
tion in su
h a waythat a proper 
onne
tion with the right to � part of 'n;Æ (the new step fun
tion should bealso monotone) 
an be made. We re
eive new step fun
tion '1n, su
h that '1n(x) � 'n;Æ(x);maxx ('1n(x)� 'n;Æ(x)) < �̀`Bmin (26)and Z 10 ('1n(x)� 'n;Æ(x))dx < �22``Bmin: (27)Here (26) is obvious and (27) follows from the fa
t that the area under 'n;Æ after liftingin
reases on the area of the triangle with edges �; �̀`Bmin:From (26) and (27) follows that 
hoosing small � > 0 and suÆ
iently large ` 2 A we 
anmake the expression in the right hand side of (26) arbitrary small and if'n;Æ;r 2 B(f; �; r)then '1n;r 2 B(f; 2�; r):Also from (27) we have Z 10 '1n;r(x)dx < 1 + 2Æand hen
e '1n;r = 'n;2Æ;r: Note, that we 
an do this pro
edure for ea
h 'n;Æ 2 B11 and obtainthe new set ~B11: Also this pro
edure establishes the one-to-one 
orresponden
e between B11and ~B11: Sin
e, as it is shown, ~B11 is the subset of B(f; 2�; r), elements of ~B11 have nodesin the arbitrary interval x0 � o�(1); x0 2 [0; r℄, and ~B11 
onsists of step fun
tions 'n;2Æ: Wedenote this set by S 0n;2Æ(f; 2�; r): We have#fB11g � #fS 0n;2Æ(f; 2�; r)g (28)and from (25) follows #fB1g � r(1 + Æ)f̂(r)� o�(1)n#fS 0n;2Æ(f; 2�; r)g: (29)Now the reader easily re
onstru
t the similar 
onsiderations for the subsets Bi when i longsegments appear. We omit these details and only demonstrate the �nal relation#fSn;Æ\B(f; �; r)g � #8<:br=o�(1)
[i=0 �Bi\S 0n;Æ(f; �; r)�9=; � C2nbr=o�(1)
+1=2#fS 0n;2Æ(f; 2�; r)g:(30)10



Hen
e, if we estimate the value #fS 0n;2Æ(f; 2�; r)g, then we �nd the estimate for #fSn;ÆTB(f; �; r)gand the 
oeÆ
ient in the right hand side of (30) does not in
uen
e the logarithmi
 asymp-toti
s of the estimates.Now we will show how to 
onstru
t the upper estimate for the number #fS 0n;2Æ(f; 2�; r)g:In order to do it we preliminary make the 
hoi
e of the intervals, on whi
h we 
ount thenumber of restri
tions of 'n;2Æ with pres
ribed properties. Then we will use the multipli
ativeproperty: the number of restri
tions of step fun
tions on the whole interval [1=r; r℄ is equalto the produ
t of the number of restri
tions of step fun
tions on the subintervals whi
h arethe partition of [1=r; r℄: Now we 
ome to the pre
ise formulations.We de�ne the measure �((a; b℄) = f̂ 2(a)� f̂ 2(b): From the regularity of the Lebesgue measurefollows that there exists an open set B 2 [1=r; r℄; �(B) = �([1=r; r℄) su
h that for thearbitrary given Æ1 > 0; �(B) < Æ1: The set B is the union of not more than a 
ountablenumber of intervals Bi and for some m we have � �Si>mBi� < Æ1: Next we add to everyinterval Bi; i � m its boundary points and obtain the 
losed intervals �Bi and the unionSmi=1 �Bi is the union of a �nite number m1 of noninterse
ting 
losed intervals [ai; bi℄; i �m1; Sm1i=1[ai; bi℄ = Smi=1 �Bi: Then � m1[i=1[ai; bi℄! < Æ1and the set [1=r; r℄ n Sm1i=1(ai; bi) = Ssi=1[
i; di℄ is the union of a �nite number s of nonin-terse
ting 
losed intervals and f
i; dig � f1=r; r; ai; big: For every i = 1; : : : ; s 
onsider thede
omposition [
i; di℄ = si[j=1[
ji ; dji ℄of the interval [
i; di℄ into si 
onse
utive subintervals of `almost' equal length dji � 
ji �(di � 
i)=si: `Almost' means the following: we assume that jf̂ 0(x)j < C1; x 2 f
ji ; djig forsome 
onstant C1; otherwise, we slightly move points 
ji ; dji in order to satisfy this 
onditionand previous 
onditions, 
onne
ted with 
hoi
es of these intervals.The set S 0n;2Æ(f; 2�; r) has the property that ea
h step fun
tion 'n;2Æ 2 S 0n;2Æ(f; 2�; r) hasa node in ea
h re
tangle Rji = fx = 
ji � o�(1); y = f̂(
ji ) � o�(1)g; ~Rji = fx = dji �o�(1); y = f̂(dji )�o�(1)g: The total number �i;j;n of the restri
tions of the step fun
tions fromS 0n;2Æ(f; 2�; r) starting in the re
tangle � = (x = 
ji � o�(1); f̂(
ji ) � o�(1)) 
an be estimatedas follows �i;j;npn � �xjiN  ��f̂ ji�xji !+ on;�(1);where �xji = dji � 
ji ; �f̂ ji = f̂(dji )� f̂ (
ji ): This follows from the Lemma 2 and the fa
t thatthe number of nodes in � is O(n):Next we will use the multipli
ative property for �i;j;n, whi
h tells that the number �n =#fS 0n;2Æ(f; 2�; r)g is upper bounded by the produ
t of the restri
tions of these fun
tions11



on subintervals, whi
h form the partition of the large interval (with interse
tions of thesubintervals only on boundaries). Sin
e f[
ji ; dji ℄; [a`; b`℄g is the partition of the interval [1=r; r℄we have ln�npn � ln�Qi;j �i;j;n �Q`�`;n�pn� Xi;j ln�i;j;npn + X̀ �`;npn + s0on;�(1)� Xi;j �xjiN  ��f̂ ji�xji !+ X̀�x`N  ��f̂`�x`!+ s0on;�(1): (31)Here �`;n is the number of restri
tions of the step fun
tions from S 0n;2Æ(f; 2�; r) on the interval[a`; b`℄; s0 = Psi=1 si +m1; �x` = b` � a`; f̂` = f̂(b`) � f̂(a`): Here we on
e more use theLemma 2.Then the whole number #n;Æ;�;r(f) is estimated by the produ
t of �n and the numbers �n;rand �n;r of restri
tions of the step fun
tions on the interval [0; 1=r℄ or [r;1) 
orrespondingly.Ea
h of these numbers 
an be estimated by the number of step fun
tions ~'n without restri
-tions on steps su
h that maxx2[0;1) ~'n(x) � (1 + 2Æ)=r: Indeed on the left interval [0; 1=r℄,if we ex
hange axis X and Y we obtain from 'n(x); x 2 [0; 1=r℄ step fun
tion ~'n: Also, forx � r; 'n;2Æ(x) � (1 + 2Æ)=r; be
ause R10 'n;2Æ(x)dx � 1 + 2Æ:Later we will prove that ln�n;rpn ; ln�n;rpn = on;�;r(1): (32)Next we show that the 
ontribution ofP` to the estimate (31) 
an be made arbitrary small.Indeed N(�) is T�
onvex and from Jensen inequality follows thatX̀�x`N  ��f̂`�x`! � N  �P`�f̂`P`�x`!X̀�x`:Then we haveN(z) = max�2[0;minf1;zg℄ �(JA(1=�) + JB(z=�))� max�2[0;minf1;zg℄ inf��0(� lnX̀2A e�1` � �1) + inf�2�0(� lnX̀2B e�2` � z�2)! = (1 + z)H � z1 + z� :We have, if �((1=r; r℄) = f̂ 2(1=r) � f̂ 2(r) > 0; that for some C4; C5 > 0; 1 > C5 >f̂(1=r) � f̂(r) > jP`�f̂`j > C4: This follows from the 
hoi
e of intervals [a`; b`℄; wheremeasure � 
on
entrates. Also we have P`�x` < �(B) < Æ1 and hen
e if we de�ne z =�P`�f̂`=P`�x`; thenN(z)z  �X̀�f̂`! < C5N(z)z ! 0 as Æ1 ! 0:12



If f̂ 2(1=r)� f̂ 2(r) = 0; then we do not 
onsider intervals [a`; b`℄ at all.Thus the sum on ` in the right hand side of (31) 
an be made arbitrary small as Æ1 ! 0:Next we deal with the term Pi;j in (31). From (19) we have (�f̂ ji = �f̂ 1ji +�f̂ 2ji )N  ��f̂ ji�xji ! � N  ��f̂ 1ji�xji !+N  ��f̂ 2ji�xji ! :Using Jensen inequality we obtainXi;j �xjiN  ��f̂ 2ji�xji ! � 
 �=  Xi;j �xji!N  �Pi;j�f̂ 2jiPi;j�xji ! : (33)Sin
e Pi;j�f̂ 2ji = � �Si>mBi� < Æ1 and Pi;j�xji > r � 1=r � Æ1 we have
 ! 0 as Æ1 ! 0: (34)Now we estimate the term �n;r (�n;r will have the same estimation). As we mentionedbefore �n;r has as upper bound the logarithm of the number of partitions of n(1� 2Æ) withmaximal element of ea
h partition less than pn=r:We must estimate from above the numberof solutions of the equationpn=rXi=1 ixi � n(1 + 2Æ); xi = 0; 1; 2; : : : :This 
an be done by simple using of Chebyshev's inequality, we omit the details and it followsthat lim supr!0 lim supn!1 ln#n(xi)pn=r1 Ppn=ri=1 ixi � n(1 + 2Æ)opn = 0: (35)Taking together all established fa
ts (31), (32) (33), (34), (35) we 
an write the following
hain of inequalities ln#n;Æ;�;r(f)pn � ln�npn + s0on;�;Æ(1) + oÆ1(1) + or(1)� Xi;j �xjiN  ��f̂ 1ji�xji !+ s0on;�;Æ(1) + oÆ1(1) + or(1)or lim supn!1 ln#n;Æ;�;r(f)pn �Xi;j �xjiN  ��f̂ 1ji�xji !+ s0o�;Æ(1) + oÆ1(1) + or(1): (36)We 
an rewrite the P in the right hand side of (36) as followsXi;j �xjiN  � 1�xji Z dji
ji f̂ 10(x)dx! = ZSi[
i;di℄N(�f
(x))dx;13



where f
 is a pie
ewise 
onstant fun
tion su
h that for a given partition f[
ji ; dji ℄g of the setSi[
i; di℄ f
(x) = 1�xji Z dji
ji f̂ 10(x)dx; x 2 [xji ; dji ):Taking �! 0; Æ ! 0 we obtain from (36)F = lim supÆ!0 lim sup�!0 lim supn!1 ln#n;Æ;�;r(f)pn �Xi;j �xjiN  ��f̂ 1ji�xji !+ oÆ1;r(1)= ZSi[
i;di℄N(�f
(x))dx + oÆ1;r(1):Next we take !i = dji � 
ji su
h that ! = maxi !i ! 0 and we have f
(x) ! f̂ 10(x) a.s. onSi[
i; di℄ andF � lim sup!!0 Z[
i;di℄N(�f
(x))dx + oÆ1;r(1) (37)� ZSi[
i;di℄ lim sup!!0 N(�f
(x))dx = ZSi[
i;di℄N(lim sup!!0 (�f
(x))dx= ZSi[
i;di℄N(�f̂ 10(x))dx = ZSi[
i;di℄N(�f̂ 0(x))dx� Z r1=rN(�f̂ 0(x))dx:Here for simpli
ity we omit oÆ1(1)+or(1) in the last relations. The �rst equality follows fromthe 
ontinuity of N(�): In the se
ond inequality we use Fatou Lemma whi
h is possible touse, be
ause N(�f̂ 0(x)) is integrable on [0;1) as follows from Theorem 2 (we will prove itlater). The se
ond equality in (37) follows from the fa
t that, if y 2 L1([a; b℄; dx); thenlimq!1 1jDqj ZDq y(x)dx = y(x0) a:s:;where (Dq)11 is an arbitrary sequen
e of 
losed intervals with nonempty interior su
h thatTqDq = fx0g: The third inequality in (37) follows from the fa
t that f̂ 10 = f̂ 0 a:s:Now we take Æ ! 0; Æ1 ! 0; r!1 at both sides of (37) and obtain the inequalityF � Z 10 N(�f̂ 0(x))dx:Thus (20) is proved for stri
tly positive fun
tions.Now we des
ribe how to deal with fun
tions f 2 C su
h that f̂(x0) = 0 for some 0 < x0 <1and x0 is minimal with this property. We will not show the whole proof in this 
ase, be
ausein many steps it is similar to the �rst 
ase, but we will underline the di�eren
es in the proof.Consider on
e more the interval [1=r; r℄; r > x0 and another interval [1=r; r0℄; r0 < x0: On14



the interval [1=r; r0℄ we make the same 
onsiderations and estimates as in the �rst 
ase onthe interval [1=r; r℄: Thus we estimate the number of restri
tions S 0n;2Æ(f; 2�; fr; r0g); it hasthe same meaning as S 0n;2Æ(f; 2�; r) but the restri
tions of step fun
tions are on the interval[1=r; r0℄: Then the number of restri
tions of the step fun
tions on intervals [0; 1=r℄; [r;1) areestimated in the same way as in the �rst 
ase and their asymptoti
s is on;r(1): The number ofrestri
tions of step fun
tions on the interval [r0; r℄ is o�;r0(1) as �! 0 and r0 ! r1: This is dueto the same argument as in estimating �n;r or �n;r : the number of these restri
tions is lessthan the number of step fun
tions 'n;Æ with maxx 'n;Æ � o�(1)+f̂(r0)! 0 as �! 0; r0 ! x0:A
tually we 
an 
onstru
t the upper bound in this 
ase only on interval [1=r; r0℄ instead of[1=r; r℄ and then r0 ! r; but we 
hoose the last interval to make the formulations of theTheorem 1 uniform in all 
ases. As before we obtain the estimateF � Z r01=r N(�f̂ 0(x))dx+ or0;r(1):Taking r0 ! x0; r!1 we obtainF � Z x00 N(�f̂ 0(x))dx = Z 10 N(�f̂ 0(x))dxand Statement 1 is proved in the se
ond 
ase.The last 
ase, when f̂ � 0 
an be done in a simple way. On the intervals [0; 1=r℄; [r;1)we have as before the number of restri
tions of 'n;Æ is on;r(1) and R r1=r 'n;Æ(x)dx < �: Thusthe number of restri
tions of Sn;Æ on [1=r; r℄ is less than the whole number of step fun
tionswith the area � �n; whi
h due to Hardy-Ramanujan result is pno�(1): The produ
t of thesenumbers of restri
tions on the di�erent parts of [0;1) as before gives the upper bound on#n;Æ;�;r(f) and F � 0 = Z 10 N(�f̂ 0(x))dx:Statement 1 is 
ompletely proved.Proof of Statement 2. This proof is simpler than the proof of the upper bound (20),be
ause now we do not 
are about the long horizontal segments. Choose the partition of theinterval [1=r; r℄ into s 
onse
utive intervals [ai; bi℄ of equal length � = bi � ai = (r� 1=r)=s:Note, that in the proof of (20) we 
onsider also the 
ontributions to #n;Æ;�;r(f) of stepfun
tions whose restri
tions does not belong to B(f; �; r): To prove (21) we should restri
tour attention only to the step fun
tions whose restri
tions belong to B(f; �; r): As before we
onsider the subset of step fun
tions 'n;Æ su
h that they have the node in ea
h re
tangle (x =ai� o�(1); y = f̂(ai)� o�(1)); i = 1; : : : ; s and in re
tangle (x = bs� o�(1); y = f̂(bs)� o�(1)):We 
hoose 'n;Æ; x 2 [0; 1=r℄ or x 2 [r;1) in an arbitrary way su
h that 'n;Æ 2 Sn;Æ: Be
ausewe have restri
tions on steps, sometimes it 
an happen that it is not possible to 
ontinuethe step fun
tion with given restri
tion on [1=r; r℄ to the intervals [0:1=r) or [r;1) withoutviolation of the restri
tions on steps. In su
h 
ases we shift the step fun
tion in verti
aldire
tion by not more than `Bmin=pn units of the s
aled integer latti
e and in horizontaldire
tion by not more than `Amin=pn units to obtain the step fun
tion whi
h starts at (0; p)15



and ends in (q; 0) for some p; q: Be
ause the number of shifts is �nite it does not 
hange thelogarithmi
 asymptoti
s of the number of step fun
tions.Now we estimate the L1([1=r; r℄; dx)�distan
e between the restri
tions Sn;Æ;r and f̂ : It 
anbe easily seen that if the pair of monotone non-in
reasing fun
tions y; 'n;Æ is su
h thatjy(x)� 'n;Æ(x)j < �1 (38)when x = a; b; a < b; thenZ ba jy1(x)� y2(x)jdx � (b� a)(y1(a)� y1(b) + 2�1): (39)This is be
ause the area restri
ted by the 
urves y; 'n;Æ and lines x = a; x = b is 
overed bythe re
tangle with edges y = y1(a) + �1; y = y1(b) � �1; x = a; x = b: Let (38) be true fory(x) = f̂(x) and all x = ai and x = bi: Then by (39) we have for every given r; suÆ
ientlysmall � = maxi(bi � ai) and �1 Z r1=r j'n;Æ(x)� f(x)jdx < �: (40)Next as in the proof of the upper bound (20) the logarithm of the number of restri
tionsSn;Æ on interval [ai; bi℄ is estimated from below by the valuepn"(bi � ai)N  f̂(ai)� f̂(bi)bi � ai !+ on;�;Æ(1)# : (41)A
tually the step fun
tion 
an have a node in any point from the s
aled latti
e in the re
tangle(x = ai�o�(1); y = f̂(ai)�o�(1)) and end in re
tangle (x = bi�o�(1); y = f̂(bi)�o�(1)); butthe number of points in these re
tangles is O(n) and this does not in
uen
e the logarithmi
asymptoti
s in (41).As before the 
ontribution of all intervals [ai; bi℄ in the lower estimation of #fSn;Æ;rTB(f; �; r)gis bounded by the sum of values (41):pn" sXi=1 �xiN  � f̂(bi)� f̂(ai)bi � ai !+ son;�;Æ(1)#and taking into a

ount the 
hoi
e of 'n;Æ on the intervals [0; 1=r); [r;1) we obtain thelogarithmi
 asymptoti
s of the lower bound of the number #n;�;Æ;r :lim infn!1 ln#n;�;Æ;rpn � sXi=1 �xiN  ��f̂ 1i�xi � �f̂ 2i�xi!+ so�;Æ(1)� sXi=1 �xiN  ��f̂ 1i�xi! + so�;Æ(1)� sXi=1 �xiN  R aibi f̂ 10(x)dx�xi !+ so�;Æ(1)� sXi=1 Z biai N(�f̂ 10(x))dx+ so�;Æ(1) = Z r1=r N(�f̂ 10(x))dx+ so�;Æ(1):16



Here the se
ond inequality follows from the fa
t that N(�) is a monotone fun
tion.Taking limits from both sides of the last 
hain of inequalities we obtain the inequalitylim infr!1 lim infÆ!0 lim inf�!0 lim infn!1 ln#n;�;Æ;rpn � L(f):This proves (21) and the Statement 2.Now we turn to the proof of Theorem 2. First we prove, thatsupf2C L(f) = supf2C1 L(f): (42)We will prove more, namely that the sup in the right hand side of (42) is a
hieved on thefun
tions y 2 C1 su
h that Z 10 y(x)dx < 1: (43)To prove this it is enough to show that for � > 0 and ea
h f 2 C su
h thatZ 10 f(x)dx � 1there exists a y 2 C1 su
h thatZ 10 jN(�y0(x))�N(�f̂ 0(x))jdx < �1 (44)and R10 y(x)dx < 1: Choose x0 > 0 su
h thatZ 1=x00 N(�f̂ 0(x))dx; Z 1x0 N(�f̂ 0(x))dx < �1: (45)This is always possible, be
ause Z 10 N(�f̂ 0(x))dx <1:Now denote a = ess infx62A0 f̂ 0(x); where A0 = fx : f̂ 0(x) = 0g and denote for � > � > 
 > 0the restri
ted fun
tionf̂ 0(x; �; �; 
) = 8>><>>: f̂ 0(x); �� a � �f̂ 0(x) � �; x 2 [1=x0; x0℄;a� 
; �f̂ 0(x) < �� a; x 2 [1=x0; x0℄;��; �f̂ 0(x) > �; x 2 [1=x0:x0℄;0; x 62 [1=x0; x0℄and f̂(x; �; �; 
) ! 0 as x ! 1: Next we 
hoose � ! 1 and � ! 0: Then we 
an 
hoose� > � > 
 > 0 su
h thatZ x01=x0 jN(�f̂ 0(x; �; �; 
))�N(�f̂ 0(x))jdx < �1 (46)17



and Z x01=x0 jf̂ 0(x; �; �; 
)� f̂ 0(x)jdx < Æ1; (47)Z 10 f̂(x; �; �; 
)dx < Z 10 f(x)dx� Æ: (48)Inequalities (46), (47) follow from standard arguments about the restri
ted fun
tions. Whenne
essity of the restri
tion of the fun
tion f̂ 0(x; �; �; 
) from below di
tates by the validityof the inequality (48), and the fa
t that N 0�(z) z!0! 1 (see estimations (55)).Now we approximate uniformly the fun
tion �f̂ 0(x; �; �; 
) on [1=x0; x0℄ by the simple fun
-tion �(x) with a �nite number of values, su
h that
 � a � �(x) � �f̂ 0(x; �; �; 
) (49)and on [0; 1=x0) and (x0;1) fun
tion �(x) = 0: At last approximate �(x) by a 
ontinuousfun
tion ��(x) : Z 10 j�(x)� ��(x)jdx < Æ2: (50)This approximation 
an be done by using the standard arguments (see for ex.[8℄, p.86). It isimportant and follows from the proof of possibility of su
h approximation, that the Lebesguemeasure �0 = �(fx : j�(x)� ��(x)j 6= 0g) (51)
an be made arbitrary small andŝmaxx �(x) � ��(x) � minx �(x); (52)where ŝ is the number of di�erent values of �(x): For the arbitrary Æ3 > 0 we 
an 
hoose ��su
h that it satis�es the additional 
ondition��(x) = 0; x > x0 + Æ3: (53)We set y0(x) = ���(x) and require y(x)! 0 as x!1:Next we have the �nal 
hain of relationsZ 10 y(x)dx = Z 10 �Z 1x ��(z)dz� dx � Z x00 �Z x00 �(z)dz� dx+ Æ2(x0 + Æ3) (54)� Z 10 f(x)dx� Æ + Æ2(x0 + Æ3):Here in the �rst inequality we use (50) and in the last inequality (48) and (49).
18



Next estimation is for L(�) :jL(��(x))� L(�f̂ 0(x))jdx = Z 1=x00 jN(��(x))�N(�f̂ 0(x))jdx (55)+ Z x01=x0 jN(��(x))�N(�f̂ 0(x))jdx + Z 1x0 jN(��(x))�N(�f̂ 0(x))jdx� 2�1 + 2�0N(ŝ�) + Z x01=x0 jN(�f̂ 0(x; �; �; 
))�N(�f̂ 0(x))jdx+ Z x01=x0 jN(�f̂ 0(x; �; �; 
))�N(�(x))jdx + Z x01=x0 jN(�(x))�N(��(x))jdx� 3�1 + 2�0N(ŝ�) +N 0�(
 � a)(Æ1 + Æ2):We should explain some of the estimates above. In the se
ond inequality we use the fa
tthat �(fx : ��(x) > 0gTA0) � �0 and maxN(�(x)) � N(ŝ�): In the last inequality we usethe fa
t that N 0(z) is monotoni
ally de
reasing. Now we 
hoose �1 < �=3; then �; � > 0 su
hthat (46), (48) and (47) are valid. Then we 
hoose �0; Æ1; Æ2; Æ3 su
h that Æ2(x0 + Æ3) < Æ=2and N 0�(
 � a)(Æ1 + Æ2) + 2�0N(ŝ�) < �� 3�1:Then the right hand side of (54) and (55) is less than R10 f(x)dx � Æ=2 and � 
orrespond-ingly. Then we 
hoose 
orresponding to the previous 
hoi
e of the parameters fun
tionsf̂ 0(x; �; �; 
); �(x); ��(x): This proves (42) with the assertion 
onne
ted with (43).Now we are ready to prove that supf2C1 L(f) = supf2C2 L(f): (56)Taking into a

ount previous 
onsiderations we should prove that for arbitrary � > 0; f 2 C1su
h that Z 10 f(x)dx < 1� Æthere exists y 2 C2 su
h that jL(y)� L(f)j < �:The proof of this fa
t is quite similar to the proof of (42) and we des
ribe the simpleidea omitting routine details. It is ne
essary to repeat 
onsiderations of the previous proofof (42) with one ex
eption: now we 
onsider not an arbitrary simple fun
tion �(x) but astep fun
tion- a fun
tion whi
h is 
onstant on intervals. This is possible to do when fun
tionf 0 is 
ontinuous, if instead of fun
tion f̂ 0(x; �; �; 
) we 
onsider the fun
tionf 01(x; �; �) = 8<: f 0(x); � � �f 0(x) � �; x 2 [1=x0; x0℄;�; �f 0(x) < �; x 2 [1=x0; x0℄; or x 62 [1=x0; x0℄;��; �f 0(x) > �; x 2 [1=x0; x0℄and Z 10 f1(x; �; �) < 1� Æ:19



Then all previous 
onsiderations are valid with 1 instead of R10 f(x)dx:When 
onstru
ting the fun
tion ��(x) 2 C2 we 
onne
t the 
onse
utive steps of fun
tion �(x)by a smooth 
urve and obtain the smooth 
urve �(x): It is easy to see that all 
onditionsand inequalities 
an be satis�ed. This proves (56).To prove the still remaining statement of Theorem 2 we �rst prove Theorem 3. FromTheorem 1 and the inequality (f 2 C)#n;Æ;�;r(fmax) � #n;ÆA;Bfollows thatlimÆ!0 lim infn!1 ln#n;ÆA;Bpn � limr!1 lim infÆ!0 lim inf�!0 lim infn!1 ln#n;Æ;�;r(fmax)pn = Z 10 N(�f 0max))dx = 2C;(57)where C is determined by the relations (4), (5). The last equality follows from the followingrelations: N(�f 0max) = ��1(�f 0max) + f 0max(x)�2(�f 0max(x)): (58)Comparing (15), (16) and (4) we see that�1(�f 0max(x)) = �Cfmax(x); �2(�f 0max(x)) = �Cx:substituting these values into (58) we haveZ 10 N(�f 0max(x))dx = 2C:Here we use integration by parts.After (57) all what we need to prove is the inequalitylimÆ!0 lim supn!1 ln#n;ÆA;Bpn � Z 10 N(�f 0max(x))dx:On
e more we 
onsider the interval [1=r; r℄ and the set of restri
tions Sn;Æ on this intervaland on intervals [0; 1=r); (r;1): As before for suÆ
iently large r the number of restri
tionsof Sn;Æ on [0; 1=r) and (r;1) is small:ln�n;rpn ; ln�n;rpn = on;r(1): (59)Now we must estimate the number of restri
tions Sn;Æ;r; the whole number #n;ÆA;B is upperbounded by the produ
t of the numbers of restri
tions on these three intervals.Note that, if 'n;Æ;r is the restri
tion of the step fun
tion 'n;Æ; thenZ r1=r 'n;Æ;r(x)dx � 1 + Æ � 1r'n;Æ(1=r): (60)20



Thus 'n;Æ(x) � 'n;Æ(1=r) � r(1 + Æ); x 2 [1=r; r℄: (61)Now by using standard arguments it is easy to see that the set of monotone non-in
reasingfun
tions '(x) on [1=r; r℄ with the restri
tionsZ r1=r '(x)dx � 1 + Æ � 1r'(1=r) (62)and (61) is 
ompa
t in L1([1=r; r℄; dx) topology. We denote this 
ompa
t by Kr:From the proof of the Theorem 1 follows that for ea
h f 2 C we 
an writeK(f; �; r) = lim supn!1 ln#fSn;Æ;rTB(f; �; r)gpn = Z r1=rN(�f̂ 0(x))dx + o�(1):Next for every f 2 C we 
hoose �f su
h that����K(f; �; r)� Z r1=rN(�f̂ 0(x))dx���� < �2 = o�f (1):Then for every fun
tion f 2 Kr we 
onsider the ball B(f; �f ; r) and from this set of balls we
an 
hoose a �nite number of balls B(fi; �fi ; r) su
h that Kr � SiB(fi; �fi ; r):Next we have lim supn!1 ln#fSn;Æ;rgpn � maxi ln#fSn;Æ;rTB(fi; �fi ; r)gpn (63)= lim supn!1 maxi Z r1=rN(�f̂ 0i(x))dx + �2 � supf2Cr Z r1=rN(�f̂ 0(x))dx + �2;where Cr is the set of restri
tions of fun
tions from C on [1=r; r℄: As in Theorem 2 we 
antake in (63) the set Cr2 instead of C; where Cr2 � Cr is the set of fun
tions on [1=r; r℄ with
ontinuous se
ond derivative. The proof of this fa
t is the same as in the proof of Theorem 2and even simpler, be
ause we 
onsider here the �nite interval [1=r; r℄:Be
ause the fun
tional Lr(f) = Z r1=rN(�f̂ 0(x))dxis 
onvex, to �nd the extremal of this fun
tional it is enough to �nd the lo
al extremal ofthis fun
tional. We have the following problem: �ndfmax = argmaxf2Cr2 Lr(f): (64)We will try to �nd the lo
al extremal among the fun
tionsf 2 Cr2 su
h that jf 0(x)j > y0 (65)21



for some y0 > 0: If we �nd su
h lo
al un
onditional extremal for suÆ
iently small y0 it willbe the solution of the problem (64).If (65) is valid, then y0(x) = f 0(x) + th0(x) < �y0; x 2 [1=r; r℄ (66)for suÆ
iently small t and we restri
t our attention on su
h h(x) 2 Cr2 thatZ r1=r h(x)dx = 0; h(1=r) = h(r) = 0; (67)then y 2 Cr2 : Sin
e y0(x) < �y0; y 2 Cr2 and N(�); �2(�) are in
reasing fun
tions. we have0 < N 0�(�y0(x)) = ��2(�y0(x)) < ��(y0):Hen
e we 
an move the derivative before the integral and obtainddtLr(f + th)jt=0 = Z r1=rN 0�(�f 0(x))h0(x)dx �=M:If f is extremal, then M = 0 and integrating by parts we obtainN 0�(�f 0(x))h(x)jr1=r � Z r1=r h ddxN 0�(�f 0(x))dx = 0: (68)Sin
e h 2 Cr2 is arbitrary su
h that (65), (67) are valid, standard arguments from 
al
ulus ofvariations (see for ex.[7℄) show, that for the integral in (68) to vanish it is ne
essary thatddxN 0�(�f 0(x)) = C = 
onst: (69)The �rst term in the left hand side of (68) vanishes, be
ause of the 
ondition (67).Equation (69) has the solutionN 0�(�f 0(x)) = C(x + �); C; � = 
onstand hen
e �2(�f 0(x)) = �C(x + �): (70)At the same time from (15), (16) follows thatd�1d�2 = f 0(x)i.e �1(x) = �C Z f 0(x)dx + 
onst = �C(f(x) + �); � = 
onst: (71)Using (16), (70), (71) we obtain the equalityX̀2A e�C(x+�)` X̀2B e�C(y+�)` = 1:22



This equation determines (up to 
onstants C; �; �) y as a fun
tion of x: Also we have the
ondition Z r1=r y(x)dx � 1� 1r y(1=r): (72)Values � and � are simply the shifts along X and Y axis of the graph of fun
tion y(x), when� = � = 0. Shifts along the Y axis do not in
uen
e expli
itly the fun
tionalLr(f) �= Z r1=rN(�f̂ 0(x))dxand the best 
hoi
e of � whi
h gives the max of the fun
tional Lr(f) is su
h that 
ondi-tion (72) is the least restri
tive, i.e. when y(r) = 0: Sin
e y0(x) is a 
ontinuous fun
tion of�; �; C; fun
tional Lr(y) is also a 
ontinuous fun
tion of these variables. Also it is easy tosee for some y0; jy0(x)j > y0; x 2 [1=r; r℄ for every given �;C; r: But we must 
onsider thepossibility that sup of Lr(f) is a
hieved when �!1: In su
h 
asey0(x)! C1 = 
onst; x 2 [1=r; r℄: (73)If this is the 
ase when Lr(�) a
hieves its sup; thensupf2C Lr(f) = �r � 1r�N(�C1):We will show that it is not true (this is not the sup of Lr(f)): Indeed, if y0(x) = C1 andy(r) = 0; then �C1 = y(1=r)r�1=r and from (72) follows thaty(1=r) � 2r + 1=ror �C1 � 2r2 � 1=r2 :Sin
e Z r1=rN(�y0(x))dx � (1� C1)rH � �C11� C1�! 0 as r!1;for large r fun
tional Lr(�y0(x)) vanishes and for large r; y(x) 
annot be sup of Lr(f),be
ause it is easy to introdu
e a fun
tion f whi
h satis�es 
ondition (72) and for whi
hLr(f) in
reases with r (for example when f(x) =  (x), where  (x) is de�ned in (75)).Hen
e the extremum of Lr(f) is a
hieved for some �nite �: For given C, jy0(x)j in
reases,when � de
reases and � � �1=r: We give a rough upper estimate of maxLr(y) and assumethat � = �1=r and instead of the 
ondition (72) we 
onsider the more rough 
onditionZ r1=r y(x)dx � 1: (74)Then, if  (x) is the solution of the equationX̀2A e�x`X̀2B e� (x)` = 1; (75)23



we have 1 = X̀2A e�x`X̀2B e� (x)` � 1X̀=1 e�x` 1X̀=1 e� (x)` 1(ex � 1)(e (x) � 1)and thus  (x) is an integrable fun
tion on [0;1) : (x) � � ln(1� e�x);Z 10  (x)dx � � Z 10 ln(1� e�x)dx = Z 10 xex � 1dx = �26 :We have y(x) = 1C �C �x� 1r��� � (76)and y(r) = 1C �C �r � 1r��� � = 0 (77)From the 
ondition (74) follows thatM(C; r; �) �= Z r1=r y(x)dx = 1C2 Z C(r�1=r)0  (x)dx� � �r � 1r� � 1: (78)Also we have Lr(y) = 1C Z C(r�1=r)0 N(� 0(x))dxand  (x); � 0(x)& 0 as x!1:Next (Lr)0C(y) < 0 and using the di�erentiation of (75), (77) and (78) it is easy to see thatM 0C(C; r; �) < 0:Hen
e we should 
hoose C as small as possible su
h that 
ondition (78) is still valid i.e weshould have 1C2 Z C(r�1=r)0  (x)dx = �(C)�r � 1r� + 1: (79)Equations (77), (79) together with (75) de�ne C as a fun
tion of r: it is always possibleto �nd a unique C whi
h satis�es these relations, be
ause for given r M(C; r; �(C)) is a
ontinuous, monotone fun
tion of C and tends to 0 as C !1 andM(C; r; �(C))!1 as C ! 0: (80)It is left to show that C(r)!sZ 10  (x)dx as r!1: (81)Assume for the moment that (81) is true. Then sin
eN(� 0(x)) =  (x)� x 0(x)24



with the validity of (81) we havelimr!1Lr(y) = 2C Z 10  (x)dx = 2C:Taking into a

ount (59) we obtain the inequalitylim supÆ!0 lim supn!1 ln#n;ÆA;Bpn � limr!1Lr(y) = 2C:From this inequality and (57) follows Theorem 3.Now inequality maxf2C2 L(f) � 2Cfollows from Theorems 1 and 3. Alsomaxf2C2 L(f) � L(fmax) = 2Cand this 
ompletes the proof of (2). Theorem 2 is also proved. Hen
e limr!1C(r) exists.Next, taking into a

ount that  (x) is monotone de
reasing and R10  (x)dx 
onverges, it iseasy to see that �(C(r))r! 0 as r!1. Taking limr!1 from both sides of (79) we obtain1C2 Z 10  (x)dx = 1:This proves (81). All proves are 
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