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Abstract—In the last century together with Levon used for an analysis of codes (see [8]) and in that
Khachatrian we established a diametric theorem in Ham- connection words in/ were even considered with
ming spaceH" = (X", dx). multiplicities .

Now we contribute a diametric theorem for such spaces,

) ] In [2] we solved the long standing problem of deter-
if they are endowed with the group structureG" = > G,

mining

1
the direct sum of a groupG on X = {0,1,...,q — 1}, . ) n oo
and as candidates are considered subgroups of". A(n, d) = max{|A] : A C X" with D(A) < d}

For all finite groups G, every permitted distance 4, and we gave — up to isomorphy — all extremal anti-
and all n > d subgroups of G" with diameter d have codes:

maximal cardinality q?. ) , .
¥ q For0 < i < 4 defineK; c X™ as cartesian product of

. the ball B}~ %*"(0) with center0"~9*2' and radiusi
Other extremal problems can also be studied in this in An—d+2i gnd xd-2i

setting.
Clearly K; has diametet..

Diametric Theorem of [2]. Let r be the largest integer

I. INTRODUCTION s.t

As in [2] we study optimal anticodes in Hamming ,, — 7 4 27 < min {n +1,n—d+ o~ d—1 } ’
spacesH™ = (X",dy) but now with the additional q—2
constraint that they form aubgroup of g» = Y ¢, then
. T A(n,d) = |K,|.
the direct sum of a groug on X = {0,1,...,¢—1}.
Thus we consider Moreover, up to permutations ofl,2,...,n} and
B L " permutations of the alphabét = {0,...,¢ — 1} in
AG(n, d) = max{jif| : U is a subgroup ofj the components the optimal configuration is unique,

with D(U) < d}, (1.1) unless
n—d—1
where / n—d>1,n—d+2—q_2 <n
b) = ur,gaexu A (v, ) (1.2) and %d;l is integral, in which case we have two

is the diameter of{ optimal configurations:

Farrell [5], see also [8], has introduced anticodes Kazaa and Koucasr -

(n,r,d) as subspaces @FF'(2)™ with diameter con- Finally we mention that we write groups additive, be-
straintd and dimension. But even this special casecause we write concatenation of words multiplicative,
of our problem (consisting in maximizing for given for v™ € G" : u" = wjusy...u,. For A c g*! and
n, d) has not even been considered. They were actuallye G we write Aa for the set{a” = ajas...a,_1a:

he auth d by th s ey 102 An-1 € A} and more generally foB c g™
*The author was supported by the 'Finite Structures’ Mariei€Cu ¢ Y, . ’ el
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Il. MORE NOTIONS

Def. 1. The zero word of lengtlf and the one word
of length/ is denoted by’ and 1¢, respectively.

Def. 2. Forid C X" (or G™) we define forS C X,
S #0,

Us ={ur...up_1:uy...up1s €U forall se S
anduy ...u,—18 ¢ U forall s € X \ S},

Clearly

UsNUs =D if S#£S9". (2.1)
Def. 3 For Y C X" we define ("1
{ug...up—1 : uy...u, € U for someu, € X},
which equals | J Us.

S0
Def. 4 Ford ¢ X™ we definel/(,y = {u, € X :
there exists au; ... up—1 With uy ... u, € U}.

Def. 5. Forid c X™ we define fore ¢ X

Ul ={u" =u1...uy €U u, =¢}.

Def. 6: For G = C,, the cyclic group of order 2, we
define the down-pushing operatid} by setting for
anyl = Uy 0U U1 U U{oyl}{o, 1}
T& (U) = U{O}O UU{l}O U U{OJ}{O, 1}.
For convenience we also write
A ZU{O},B ZU{l}, andC ZU{071}. (2.2)

Obviously,

Ul =15 W)]. (2.3)

Def. 7: For two setsV,WW C A™ their maximal
distance is

DV,W) = max dg (u,v).

ueV,ve

II1. THE BINARY CASE

We first considered and settled the case= {0,1}
andg = Cs.

Theorem 1. Forn > d

() ACs(n,d) =27

(i) x?0"“is optimal and up to isomorphy (permu-

tations of components) unique far> 3.
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Proof: Since D(B1) = D(B0), it remains to notice
that

D(B1,A0UC{0,1}) > D(B0, A0UC{0,1}). (3.1)

Lemma 2. For a subgroug{ C C%
a subgroup.

T¢(U) is again

Proof: Sinceu +u = 0" € C¥, it suffices to show
thatue, vé € T (U) implies (u + v)(e + ) € TEH(U).
Since T} (U)[0] D U[0], the implication is obvious for
e =0 =0ande = § = 1. So ul + v0 remains
to be checked. That is;1 € C{0,1}, and therefore
alsou0 € C{0,1}. Sincel{ is a subgroup(u + v)1
and (u 4+ v)0 € U and in particularu + v € C and
ul +v0 € C{0,1}.

Lemma 3. For a subgroug/ C Cy

(i) C{0,1} is a subgroup

(i) AO is a subgroup

(i) C and A are subgroups i€y "
(iv) EitherC =0 or A=10.

Proof: Ad (i) If u,v € C, thenue,vd € U for all
e,0 € {0,1} and therefordu + v)0, (u+v)1 € Y and
(u+0)0, (u+v)l € C{0,1},u+v e C.

Ad (i) u0 + v0 = (u+v)0 € AOU C{0,1}. If now
(u+v)0 ¢ A0, then(u+v) € C and both(u+v)0 and
(u+v)1 € C{0,1}. Butthen(u+v)1+u0 =vl e U
and since alsa@0 € U/ we getv € C in contradiction
tov e A.

Ad (iii) This way it is also shown that is a subgroup
in 63*1. For C' this is shown already in (i).

Ad (iv) By definition C N A = ) and as subgroups, if
not empty, they contain botb~*, a contradiction.

Lemma 4. For a subgroug/ C C& C # () implies

B =0 andi = C{0,1}.

Proof: We know from Lemma 3 tha€ # () implies
A = (. Now suppose that € B. Thenbl + bl =
0"'0 € C{0,1} and therefor@" 1 € C{0, 1}, b1+
0"'1 = b0 € U, which contradictsh € B and thus
B =.

Lemma 5. For a subgroup{ C Cy with C = 0, clearly

() U =A0UB1=A0U A0+ o, U| = 2|A|
(i) ToU) = A0U (A + g)0.

(i) For d = 2 there is also the additional solutionpyqgs- (i) By Lemma 3 U = A0U B1. Since A0 is a

{110,101,011,000}0™ 3.
The proof is based on the following five lemmas.
Lemma 1. Fori/ c {0,1}"
D) > D(Ty U))-

I
subgroup o/, Y = AOU | ¢;1 + AO. Necessarily,
i=1

3

bl 401 = (b+1)0 € A0
b1 =01+ (b+10")0



and consequently, =1 andi/ = A0 U g1 + AO. V. THE CASEG = C3 AND BEYOND
(i) This is obvious.
We show now how the previous approach generalizes.

Key Example: For the subgroup We assume = 3 and the cyclic grougg; of order 3.

U = {011,101, 110,000} = A0 U B1, we have

TLU) = {010,100,110,000} = A0 U BO = C20.
Notice thatD(U) = 2 = D(T3 (U)).

Finally, these lemmas make it possible, to iteratively
apply transformationd to a subgroup, keeping thea simple basic observationis, that foru € U1y
cardinality constant and not increasing the diameter.

We keep extracting factor§0, 1} until in all compo- ul +u0 +ul +ul =u2 €l (5.1)
nentsC = () and Lemma 5 applies, and we can extract
a factor 0.The procedure ends with a subgroup of and therefor/p,,; = 0.
the form cgon—<. Similarily, for v € Uy oy

For any subgroup/ C C3 we consider set#(s, that
is,

Uroy, Upry, Upay, Ugo, 1y, Ugo, 23, Uga 23, Ugo, 1,23 -

We leave it as an exercise to show that the Key Exam- 0+ 0+ v2 02 =vlcl (5.2)

ple provides the only other extremal configuration.
and thereforé{o o, = 0.

IV. A RELATED INTERSECTION RESULT INTHE  Finally, forw € U 2y

BINARY CASE wl +wl + w2 + w2 = wo (5.3)

The caseg = 2 of the Diametric Theorem stated ingn(g thereforé/(;; oy = 0.

the Introduction was first proved much earlier by D. i
Kleitman [7]. This leaves us with

In [1] it was shown that this theorem and Katona’s Uroy, Upry, Upay, Ugo 1,23 -
Intersection Theorem in equivalent formulation fow . .
) . . e summarize this.
unions can be easily transformed into each other by
using operationdj. Since these operations transfornb.emma 6. For a subgroug/ C C%

subgroups into subgroups and for )
i U= Z/[{O}O U U{l}l U Z/[{Q}2 U U{07172}{0, 1,2}

EU) = max, W(u Vv ) (i) DU) > D(T§(U)) for o = 1,2, whereT¢" is
o defined analogously t@} in Definition 6.
with W counting the number of 1's, we have as
analogue to Lemma 1 Proof: W.l.0.g. considee = 1 and add to the proof of

Lemma 1 thatD(U{l}l,U{g}Z) = D(U{l}O,U{2}2>,

Lemma 1'. Fori/ C {0,1}" completing the present proof.

EMU) = E(Ty U)). Lemma 7. For a subgroug/ c C3 T¢(U) is again
a subgroup.

so we also get as analogue to Theorem 1 for _
KCy(n,d) = max{|| : U is subgroup ofC? with We leave the proof and the establishment of the ana-

EWU) < d} logues of the other lemmas in Section 3.

Theorem 1'. Forn > d and alld Also it is a nice exercise to find out how our approach
B with operationsT§ goes.
(i) KCy(n,d) =24
(i) x?0"“is optimal and up to isomorphy unique.
VI. A GENERAL APPROACH NOT USING DOWN
The case (iii) in Theorem 1 does not occur because PUSHING

the equivalence holds for downsets.
We have learnt thasubsetsS containing 0 play a

R k: The “dual problem” of intersection becomesbaS'C rolein proving Theorem 1. We denote them by

meaningless, becau$& has empty intersections with S0- They are the starting point of our second approach.
" o We begin with

other z™ € U. However, we can do it with a coset

of a subgroupl™ + U. This readily follows, because Lemma 8. For a subgroup/ C G" a non-emptyl4;;0

addition of 1" amounts to complementation. is a subgroup ot/.
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Proof: For u,v € Uyoy, if u0 +v0 € UsS, S # {0}, If s ¢ Sp, then this contradicts thaa" ! ¢ Us,.

then anz € S,z # 0 exists with Therefores+ s’ = s” € Sy. Concerning the inverse of
s in Sy use that)"~'s has an invers@”!(—s) € U.
(u+v)z €UsS and(u +v)z —u0 = vz €U, Again by definition ofids, —s € S.

but this contradicts) € Uy (becausev occurs with  Ad (iii) Us, Sy is subgroup because it is a direct sum
extension 0 only). of groups and contained .

Thereforeu0 + v0 € Uypy. It remains to be seen that

u0 has an inverse it/ 0. VIl. M ORE ON THE STRUCTURE OF SUBGROUH%

Clearly, it has an inverse0 in U ) ) )
We have learnt thaf, is a subgroup irg, that so is

u0 + v0 = 0™. (6.1) Us, in Gn1, and finallyl/s, Sy in U.
If now v0 € UsS, S # {0}, then for somer € S,z = We can decompos# into cosets ofi{s,S, and be-
0 vz €UsS and gin with coset leaders of the form" 'a; (i =

1,2,...,I), elements o/, such that
w+vr=u0+0v0+0" 1z =0""1z elU.
So + «; are disjoint fori = 1,2,...,1. (7.1)
Consequently0 + 0" '2 = ux € U in contradiction
with u0 € Us030. Thereforev0 € Iz andU{O}O IS This gives cosets idy:

subgroup of/.
Us, (S ;) fori=1,2,... 1.
Lemma 9 (Generalization of Lemma 8). For a subgroup 50(S0 + ) !

n i .
U g" anon-empti/s,0 is subgroup ot/. However, necessarily = 1, because otherwise we

Proof: If for u,v € Us, u0+v0 & Us,0, thenuO+ have a contradiction with the definition &fs. So we
v0 € UsO andu+v € Ug, whereS # S, andS D Sy, may choose alse; = 0.
becauseu0 € U/ and for alls € Sy wvs € U and

henceu0 4+ vs € U, (u+ v)s = u0 + vs € U. Now Next we considets, +o(a,) (So + @), @i ¢ So.

forx e S\ So (u+v)r—u0 =vx €U, but this 00 0
contradictsv € Us, and hence:0 + v0 € Ug, 0. For example for/ — 11 0 L So = {0}, Us, =
. . . 10 1 0
It remains to be seen that) has an inverse i{g,0. 0l 1
There is av0 in U with {00,11} we have
u0 + v0 = 0". (6.2) Us,So UUs, So + 101 =U

ith =1 d =10.
If v0 & Us,0, thenv0 € U0, where S # S, and Wi @z and(as)

S O Sy, because for alk € S, us € U and since Generally using/s,S, we can make a decomposition
u0 4+ vs = us +v0 € Y alsovs € U.

Now for x € S\ Sy w0+ vz € U and therefore U= U(Z’{SO +7)(So + (7)) (7.2)
uz +v0 € Y anduzx € U in contradiction tou € Us, . K
Thusis,0 is a subgroup. for suitable.
Lemma 10. For a subgroup/ C G™ Now comes a new idea.
(i) There is exactly ones, with s, # 0 Remember that
(i) So is a group U=0UUs S (7.3)

(iii) Us,So is a subgroup ot/

Proof: Ad (i) Since0" € Us,S, for all sets of type By Lemma 10 there exists exactly og with U, #
Sy (by Lemma 9), disjointness of these sets gives tik

result. Lemma 11. If for a subgroupg/ € G*  |Sy| > 2, then
Ad (i) Since0" € Us, Sy, also0™ s € Us, S, for all  the transformation

s € Sy, and for alls, s’ € Sy
L:| |UsS — Us |-G
anls +Qn715/ _ anls// c Z/[ LSJ <LSJ )



results in a group of diametet d and a not decreased [5 | P.G. Farrell, Linear binary anticodes, Electronics teet 6,

cardinality. 419-421, 1970. _ »

[6 ] G. Katona, Intersection theorems for systems of finites,set
Proof: Use the decomposition in (72) Acta Mat‘h. Acad. Sci. Hung.‘ 15, 329-33?, 1964.

[7 1 D. Kleitman, On a combinatorial conjecture of Erdos, J.
Consequently every”~! occuring in soméfs, + v Combin. Theory 1, 209-214, 1966.

[8 1 F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-

has multiplicity = [So + ¢(7)[ = [So| and gets by Correcting Codes, North-Holland.

the transformation multiplicity|G| > |So|. So the
cardinality does not decrease. Furthermore by (7.2)

D(Us, +7) <d—1
and also
D(Us, +7,Usy +7') <d—1
and the transformatioti is appropriate.
It remains to analyse the caseS, = {0}.

Here, due to the definition dfls,, the decomposition

U= U (Us, + ¢(a))a holds with Z(n) from
acU(n)

Definition 4. The terms(Us, + ¢(a))a are disjoint

or equal.

If Us, + p(a) = Us, + 0(B), p(a) — (B) € Us,,
sinced(a, B) =1

D(Z’{So + 50(0‘)) = D(USU) <d- 1,
whenD (Us, +¢(a)) < d—1 for all a we can replace
a by G.

So it remains

Us, + p(a) # Us, + @(B) for all o 7 .

Here replace altv by 0. As an illustration look at the

11 0
00 0
10 1
01 1

Theorem 3. For any finite abelian groug andn > d

AG(n,d) = |G|*.

Example: U =

As a further problem one can try to extend Theorem 1’
to the non-binary case with the constrgiit\vo"| < d.
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