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Abstract— In the last century together with Levon
Khachatrian we established a diametric theorem in Ham-
ming spaceHn = (Xn, dH).

Now we contribute a diametric theorem for such spaces,

if they are endowed with the group structureGn =
n

P

1

G,

the direct sum of a group G on X = {0, 1, . . . , q − 1},
and as candidates are considered subgroups ofGn.

For all finite groups G, every permitted distance d,
and all n ≥ d subgroups of Gn with diameter d have
maximal cardinality qd.

Other extremal problems can also be studied in this
setting.

I. I NTRODUCTION

As in [2] we study optimal anticodes in Hamming
spacesHn = (Xn, dH) but now with the additional

constraint that they form asubgroup of Gn =
n
∑

1
G,

the direct sum of a groupG on X = {0, 1, . . . , q− 1}.
Thus we consider

AG(n, d) = max{|U| : U is a subgroup ofGn

with D(U) ≤ d}, (1.1)

where
D(U) = max

u,u′∈U
dH(u, u′) (1.2)

is the diameter ofU .

Farrell [5], see also [8], has introduced anticodes
(n, r, d) as subspaces ofGF (2)n with diameter con-
straint d and dimensionr. But even this special case
of our problem (consisting in maximizingr for given
n, d) has not even been considered. They were actually
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used for an analysis of codes (see [8]) and in that
connection words inU were even considered with
multiplicities .

In [2] we solved the long standing problem of deter-
mining

A(n, d) = max{|A| : A ⊂ Xn with D(A) ≤ d}

and we gave – up to isomorphy – all extremal anti-
codes:

For 0 ≤ i ≤ d
2 defineKi ⊂ Xn as cartesian product of

the ballBn−d+2i
i (0̄) with center0̄n−d+2i and radiusi

in Xn−d+2i andX d−2i.

Clearly Ki has diameterd.

Diametric Theorem of [2]. Let r be the largest integer
s.t.

n − d + 2r < min

{

n + 1, n − d + 2
n − d − 1

q − 2

}

,

then
A(n, d) = |Kr|.

Moreover, up to permutations of{1, 2, . . . , n} and
permutations of the alphabetX = {0, . . . , q − 1} in
the components the optimal configuration is unique,
unless

n − d > 1, n − d + 2
n − d − 1

q − 2
≤ n

and n−d−1
q−2 is integral, in which case we have two

optimal configurations:

Kn−d−1

q−2

and Kn−d−1

q−2
−1.

Finally we mention that we write groups additive, be-
cause we write concatenation of words multiplicative,
for un ∈ Gn : un = u1u2 . . . un. For A ⊂ Gn−1 and
a ∈ G we writeAa for the set{an = a1a2 . . . an−1a :
a1a2 . . . an−1 ∈ A} and more generally forB ⊂ Gm

and aℓ ∈ Gℓ we write Baℓ for the set{bmaℓ : bm ∈
B}. Furthermore forA ⊂ Gm, B ⊂ Gℓ

AB = {ab : a ∈ A, b ∈ B}.



2

II. M ORE NOTIONS

Def. 1: The zero word of lengthℓ and the one word
of lengthℓ is denoted by0ℓ and1ℓ, respectively.

Def. 2: For U ⊂ Xn (or Gn) we define forS ⊂ X ,
S 6= ∅,

US = {u1 . . . un−1 : u1 . . . un−1s ∈ U for all s ∈ S

andu1 . . . un−1s /∈ U for all s ∈ X r S}.

Clearly
US ∩ US′ = ∅ if S 6= S′. (2.1)

Def. 3: For U ⊂ Xn we define U (n−1) =
{u1 . . . un−1 : u1 . . . un ∈ U for some un ∈ X},
which equals

⋃

S 6=∅

US .

Def. 4: For U ⊂ Xn we defineU(n) = {un ∈ X :
there exists au1 . . . un−1 with u1 . . . un ∈ U}.

Def. 5: For U ⊂ Xn we define forε ∈ X

U [ε] = {un = u1 . . . un ∈ U : un = ε}.

Def. 6: For G = C2, the cyclic group of order 2, we
define the down-pushing operationT 1

0 by setting for
anyU = U{0}0 ∪ U{1}1 ∪ U{0,1}{0, 1}

T 1
0 (U) = U{0}0

.
∪ U{1}0 ∪ U{0,1}{0, 1}.

For convenience we also write

A = U{0}, B = U{1}, andC = U{0,1}. (2.2)

Obviously,
|U| = |T 1

0 (U)|. (2.3)

Def. 7: For two setsV,W ⊂ Xn their maximal
distance is

D(V,W) = max
u∈V,v∈W

dH(u, v).

III. T HE BINARY CASE

We first considered and settled the caseX = {0, 1}
andG = C2.

Theorem 1. For n ≥ d

(i) AC2(n, d) = 2d

(ii) X d0n−d is optimal and up to isomorphy (permu-
tations of components) unique ford ≥ 3.

(iii) For d = 2 there is also the additional solution
{110, 101, 011, 000}0n−3.

The proof is based on the following five lemmas.

Lemma 1. For U ⊂ {0, 1}n

D(U) ≥ D
(

T 1
0 (U)

)

.

Proof: Since D(B1) = D(B0), it remains to notice
that

D
(

B1, A0∪C{0, 1}
)

≥ D
(

B0, A0∪C{0, 1}
)

. (3.1)

Lemma 2. For a subgroupU ⊂ Cn
2 T 1

0 (U) is again
a subgroup.

Proof: Since u + u = 0n ∈ Cn
2 , it suffices to show

that uε, vδ ∈ T 1
0 (U) implies (u + v)(ε + δ) ∈ T 1

0 (U).
SinceT 1

0 (U)[0] ⊃ U [0], the implication is obvious for
ε = δ = 0 and ε = δ = 1. So u1 + v0 remains
to be checked. That is,u1 ∈ C{0, 1}, and therefore
also u0 ∈ C{0, 1}. SinceU is a subgroup,(u + v)1
and (u + v)0 ∈ U and in particularu + v ∈ C and
u1 + v0 ∈ C{0, 1}.

Lemma 3. For a subgroupU ⊂ Cn
2

(i) C{0, 1} is a subgroup
(ii) A0 is a subgroup
(iii) C andA are subgroups inCn−1

2

(iv) Either C = ∅ or A = ∅.

Proof: Ad (i) If u, v ∈ C, then uε, vδ ∈ U for all
ε, δ ∈ {0, 1} and therefore(u+ v)0, (u+ v)1 ∈ U and
(u + v)0, (u + v)1 ∈ C{0, 1}, u + v ∈ C.

Ad (ii) u0 + v0 = (u + v)0 ∈ A0 ∪ C{0, 1}. If now
(u+v)0 /∈ A0, then(u+v) ∈ C and both,(u+v)0 and
(u+ v)1 ∈ C{0, 1}. But then(u+ v)1+u0 = v1 ∈ U
and since alsov0 ∈ U we getv ∈ C in contradiction
to v ∈ A.

Ad (iii) This way it is also shown thatA is a subgroup
in Cn−1

2 . For C this is shown already in (i).

Ad (iv) By definition C ∩ A = ∅ and as subgroups, if
not empty, they contain both0n−1, a contradiction.

Lemma 4. For a subgroupU ⊂ Cn
2 C 6= ∅ implies

B = ∅ andU = C{0, 1}.

Proof: We know from Lemma 3 thatC 6= ∅ implies
A = ∅. Now suppose thatb ∈ B. Then b1 + b1 =
0n−10 ∈ C{0, 1} and therefore0n−11 ∈ C{0, 1}, b1+
0n−11 = b0 ∈ U , which contradictsb ∈ B and thus
B = ∅.

Lemma 5. For a subgroupU ⊂ Cn
2 with C = ∅, clearly

(i) U = A0 ∪ B1 = A0
.
∪ A0 + α, |U| = 2|A|

(ii) T 1
0 (U) = A0

.
∪ (A + g)0.

Proof: (i) By Lemma 3 U = A0 ∪B1. SinceA0 is a

subgroup ofU , U = A0 ∪
I
⋃

i=1

gi1 + A0. Necessarily,

b1 + b′1 = (b + b′)0 ∈ A0

b1 = b′1 + (b + b′)0
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and consequently,I = 1 andU = A0 ∪ g1 + A0.
(ii) This is obvious.

Key Example: For the subgroup
U = {011, 101, 110, 000} = A0 ∪ B1, we have

T 1
0 (U) = {010, 100, 110, 000} = A0 ∪ B0 = C2

20.
Notice thatD(U) = 2 = D

(

T 1
0 (U)

)

.

Finally, these lemmas make it possible, to iteratively
apply transformationsT 1

0 to a subgroup, keeping the
cardinality constant and not increasing the diameter.
We keep extracting factors{0, 1} until in all compo-
nentsC = ∅ and Lemma 5 applies, and we can extract
a factor 0.The procedure ends with a subgroup of
the form Cd

20n−d.

We leave it as an exercise to show that the Key Exam-
ple provides the only other extremal configuration.

IV. A RELATED INTERSECTION RESULT IN THE

BINARY CASE

The caseq = 2 of the Diametric Theorem stated in
the Introduction was first proved much earlier by D.
Kleitman [7].

In [1] it was shown that this theorem and Katona’s
Intersection Theorem in equivalent formulation for
unions can be easily transformed into each other by
using operationsT 1

0 . Since these operations transform
subgroups into subgroups and for

E(U) = max
u,u′∈U

W (u ∨ u′)

with W counting the number of 1’s, we have as
analogue to Lemma 1

Lemma 1’. For U ⊂ {0, 1}n

E(U) ≥ E
(

T 1
0 (U)

)

.

so we also get as analogue to Theorem 1 for
KC2(n, d) = max{|U| : U is subgroup ofCn

2 with
E(U) ≤ d}

Theorem 1’. For n ≥ d and alld

(i) KC2(n, d) = 2d

(ii) X d0n−d is optimal and up to isomorphy unique.

The case (iii) in Theorem 1 does not occur because
the equivalence holds for downsets.

Remark: The “dual problem” of intersection becomes
meaningless, because0n has empty intersections with
other xn ∈ U . However, we can do it with a coset
of a subgroup1n + U . This readily follows, because
addition of1n amounts to complementation.

V. THE CASEG = C3 AND BEYOND

We show now how the previous approach generalizes.
We assumeq = 3 and the cyclic groupC3 of order 3.

For any subgroupU ⊂ Cn
3 we consider setsUS , that

is,

U{0},U{1},U{2},U{0,1},U{0,2},U{1,2},U{0,1,2}.

A simple basic observationis, that foru ∈ U{0,1}

u0 + u0 + u1 + u1 = u2 ∈ U (5.1)

and thereforeU{0,1} = ∅.

Similarily, for v ∈ U{0,2}

v0 + v0 + v2 + v2 = v1 ∈ U (5.2)

and thereforeU{0,2} = ∅.

Finally, for w ∈ U{1,2}

w1 + w1 + w2 + w2 = w0 (5.3)

and thereforeU{1,2} = ∅.

This leaves us with

U{0},U{1},U{2},U{0,1,2}.

We summarize this.

Lemma 6. For a subgroupU ⊂ Cn
3

(i) U = U{0}0 ∪ U{1}1 ∪ U{2}2 ∪ U{0,1,2}{0, 1, 2}
(ii) D(U) ≥ D

(

Tα
0 (U)

)

for α = 1, 2, whereTα
0 is

defined analogously toT 1
0 in Definition 6.

Proof: W.l.o.g. considerε = 1 and add to the proof of
Lemma 1 thatD(U{1}1,U{2}2) = D(U{1}0,U{2}2),
completing the present proof.

Lemma 7. For a subgroupU ⊂ Cn
3 Tα

0 (U) is again
a subgroup.

We leave the proof and the establishment of the ana-
logues of the other lemmas in Section 3.

Also it is a nice exercise to find out how our approach
with operationsTα

0 goes.

VI. A GENERAL APPROACH NOT USING DOWN

PUSHING

We have learnt thatsubsetsS containing 0 play a
basic role in proving Theorem 1. We denote them by
S0. They are the starting point of our second approach.
We begin with

Lemma 8. For a subgroupU ⊂ Gn a non-emptyU{0}0
is a subgroup ofU .
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Proof: For u, v ∈ U{0}, if u0 + v0 ∈ USS, S 6= {0},
then anx ∈ S, x 6= 0 exists with

(u + v)x ∈ USS and (u + v)x − u0 = vx ∈ U ,

but this contradictsv ∈ U{0} (becausev occurs with
extension 0 only).

Thereforeu0 + v0 ∈ U{0}. It remains to be seen that
u0 has an inverse inU{0}0.

Clearly, it has an inversev0 in U

u0 + v0 = 0n. (6.1)

If now v0 ∈ USS, S 6= {0}, then for somex ∈ S, x 6=
0 vx ∈ USS and

u0 + vx = u0 + v0 + 0n−1x = 0n−1x ∈ U .

Consequentlyu0 + 0n−1x = ux ∈ U in contradiction
with u0 ∈ U{0}0. Thereforev0 ∈ U{0}0 andU{0}0 is
subgroup ofU .

Lemma 9 (Generalization of Lemma 8). For a subgroup
U ⊂ Gn a non-emptyUS0

0 is subgroup ofU .

Proof: If for u, v ∈ US0
u0 + v0 6∈ US0

0, thenu0 +
v0 ∈ US0 andu+v ∈ US , whereS 6= S0 andS ⊃ S0,
becauseu0 ∈ U and for all s ∈ S0 vs ∈ U and
henceu0 + vs ∈ U , (u + v)s = u0 + vs ∈ U . Now
for x ∈ S \ S0 (u + v)x − u0 = vx ∈ U , but this
contradictsv ∈ US0

and henceu0 + v0 ∈ US0
0.

It remains to be seen thatu0 has an inverse inUS0
0.

There is av0 in U with

u0 + v0 = 0n. (6.2)

If v0 6∈ US0
0, then v0 ∈ US0, where S 6= S0 and

S ⊃ S0, because for alls ∈ S0 us ∈ U and since
u0 + vs = us + v0 ∈ U alsovs ∈ U .

Now for x ∈ S \ S0 u0 + vx ∈ U and therefore
ux + v0 ∈ U andux ∈ U in contradiction tou ∈ US0

.
ThusUS0

0 is a subgroup.

Lemma 10. For a subgroupU ⊂ Gn

(i) There is exactly oneS0 with US0
6= ∅

(ii) S0 is a group
(iii) US0

S0 is a subgroup ofU

Proof: Ad (i) Since 0n ∈ US0
S0 for all sets of type

S0 (by Lemma 9), disjointness of these sets gives the
result.

Ad (ii) Since0n ∈ US0
S0, also0n−1s ∈ US0

S0 for all
s ∈ S0, and for alls, s′ ∈ S0

0n−1s + 0n−1s′ = 0n−1s′′ ∈ U .

If s′′ /∈ S0, then this contradicts that0n−1 ∈ US0
.

Therefores+ s′ = s′′ ∈ S0. Concerning the inverse of
s in S0 use that0n−1s has an inverse0n−1(−s) ∈ U .
Again by definition ofUS0

−s ∈ S0.

Ad (iii) US0
S0 is subgroup because it is a direct sum

of groups and contained inU .

VII. M ORE ON THE STRUCTURE OF SUBGROUPSU

We have learnt thatS0 is a subgroup inG, that so is
US0

in Gn−1, and finallyUS0
S0 in U .

We can decomposeU into cosets ofUS0
S0 and be-

gin with coset leaders of the form0n−1αi (i =
1, 2, . . . , I), elements ofU , such that

S0 + αi are disjoint fori = 1, 2, . . . , I. (7.1)

This gives cosets inU :

US0
(S0 + αi) for i = 1, 2, . . . , I.

However, necessarilyI = 1, because otherwise we
have a contradiction with the definition ofUS . So we
may choose alsoα1 = 0.

Next we considerUS0+ϕ(αi)(S0 + αi), αi /∈ S0.

For example forU =















00 0
11 0
10 1
01 1















, S0 = {0}, US0
=

{00, 11} we have

US0
S0

.
∪ US0

S0 + 101 = U

with α2 = 1 andϕ(α2) = 10.

Generally usingUS0
S0 we can make a decomposition

U =

.
⋃

γ

(US0
+ γ)(S0 + ψ(γ)) (7.2)

for suitableψ.

Now comes a new idea.

Remember that

U =
.
∪ US · S. (7.3)

By Lemma 10 there exists exactly oneS0 with US0
6=

∅.

Lemma 11. If for a subgroupU ⊂ Gn |S0| ≥ 2, then
the transformation

L :
⋃

S

USS −→

(

⋃

S

US

)

· G
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results in a group of diameter≤ d and a not decreased
cardinality.

Proof: Use the decomposition in (7.2).

Consequently everyun−1 occuring in someUS0
+ γ

has multiplicity = |S0 + ψ(γ)| = |S0| and gets by
the transformation multiplicity|G| ≥ |S0|. So the
cardinality does not decrease. Furthermore by (7.2)

D
(

US0
+ γ

)

≤ d − 1

and also

D
(

US0
+ γ,US0

+ γ′
)

≤ d − 1

and the transformationL is appropriate.

It remains to analyse the caseS0 = {0}.

Here, due to the definition ofUS0
, the decomposition

U =
⋃

α∈U(n)

(

US0
+ ϕ(α)

)

α holds with U(n) from

Definition 4. The terms
(

US0
+ ϕ(α)

)

α are disjoint
or equal.

If US0
+ ϕ(α) = US0

+ ϕ(β), ϕ(α) − ϕ(β) ∈ US0
,

sinced(α, β) = 1

D
(

US0
+ ϕ(α)

)

= D(US0
) ≤ d − 1,

whenD
(

US0
+ϕ(α)

)

≤ d−1 for all α we can replace
α by G.

So it remains

US0
+ ϕ(α) 6= US0

+ ϕ(β) for all α 6= β.

Here replace allα by 0. As an illustration look at the

Example: U =















11 0
00 0
10 1
01 1















Theorem 3. For any finite abelian groupG andn ≥ d

AG(n, d) = |G|d.

As a further problem one can try to extend Theorem 1’
to the non-binary case with the constraint|an∨bn| ≤ d.
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