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Abstract

In [8] we posed a series of extremal (set system) problems under dimension con-
straints. In the present paper we study one of them: the intersection problem. The
geometrical formulation of our problem is as follows. Given integers 0 ≤ t, k ≤ n deter-
mine or estimate the maximum number of (0, 1)–vectors in a k–dimensional subspace
of the Euclidean n–space Rn, such that the inner product (“intersection”) of any two is
at least t. Also we are interested in the restricted (or the uniform) case of the problem;
namely, the problem considered for the (0, 1)–vectors of the same weight ω.

The paper consists of two parts, which concern similar questions but are essentially
independent with respect to the methods used.

In Part I we consider the unrestricted case of the problem. Surprisingly, in this
case the problem can be reduced to a weighted version of the intersection problem for
systems of finite sets. A general conjecture for this problem is proved for the cases
mentioned in [8]. We consider also a diametric problem under dimension constraint.

In Part II we study the restricted case and solve the problem for t = 1 and k < 2ω,
and also for any fixed 1 ≤ t ≤ ω and k large.
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1 Introduction

N denotes the set of positive integers. For i, j ∈ N, i < j the set {i, i + 1, . . . , j} is denoted
by [i, j] and [n] stands for [1, n]. For w, n ∈ N, w ≤ n we set

2[n] =
{
F : F ⊂ [n]

}
,

(
[n]

w

)

=
{
F ∈ 2[n] : |F | = w

}
.

With each subset we associate its characteristic (0,1)– vector in Rn. For the sets of (0,1)–
vectors corresponding to 2[n] and

(
[n]
ω

)
we use the notation

E(n) = {0, 1}n ⊂ Rn and E(n,w) =
{
xn ∈ E(n) : xn has w ones

}
.

For A ⊂ E(n) we write dim(A) = k if the vector space spanned by A has dimension k.

The set theoretical extremal problems can be formulated in terms of vector spaces and vice
versa. In particular concepts like t–intersecting families of subsets and antichains of subsets
translate in the language of (0,1)–vectors in a natural way.

A family F ⊂ 2[n] is called t–intersecting if |F1 ∩ F2| ≥ t holds for all F1, F2 ∈ F .

Correspondingly A ⊂ E(n) is called t–intersecting if any two vectors from A have at least t
common ones.
Note that families of sets are denoted here by script letters.

We ask now for a maximum sized t–intersecting system A ⊂ E(n), contained in a k–
dimensional subspace of Rn. Given 0 ≤ t, k ≤ n define

Jt(n, k) = max
{
|A| : A ⊂ E(n) is a t–intersecting system with dim(A) = k

}
.

Notice that the case k = n is the well known intersection problem solved by Katona [16].
Let us define the family

K(n, t) =

{

A ∈ 2[n] : |A| ≥ n + t

2

}

=
n⋃

i=n+t
2

(
[n]

i

)

, if 2 | (n + t).

Theorem Ka [16]. Suppose that A ⊂ 2[n] is t–intersecting. Then

|A| ≤ Jt(n, n) =

{

|K(n, t)|, if 2 | (n + t)

2|K(n − 1, t)|, if 2 ∤ (n + t).
(1.1)

The general case of our intersection problem under dimension constraint (called unrestricted
case) is studied in Part I. We aim to prove the following conjecture, stated also in [8].

Conjecture 1. For t > n − k + 1

Jt(n, k) =







k−1∑

i=k−1−n−t
2

(
k−1

i

)
+

k−1∑

i=n+t
2

(
k−1

i

)
, if 2 | (n + t)

2
k−2∑

i=k−1−n−t+1

2

(
k−2

i

)
+ 2

k−2∑

i=n+t−1

2

(
k−2

i

)
, if 2 ∤ (n + t) .

(1.2)
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We establish the conjecture for some range of parameters. Note that the case t ≤ n− k + 1
is simple as it is shown in Section 5. We also consider a diametric problem under dimension
constraint.

In Part II our problem is considered for (0,1)–vectors of the same weight: the restricted case.
Namely, given positive integers t ≤ ω ≤ n, k ≤ n, the problem is to determine or estimate

Jt(n, k, ω) , max
{
|A| : A ⊂ E(n, ω), A is a t–intersecting system with dim(A) ≤ k

}
.

Here we study the problem mainly for intersecting systems, that is for the case t = 1. For
this case we use the notation J(n, k, ω). The general case of the problem seems to be more
difficult.

We recall now the famous Erdős–Ko–Rado Theorem in our terminology.

Theorem EKR [11].

(i) For 2ω ≤ n

J(n, n, ω) =

(
n − 1

ω − 1

)

. (1.3)

(ii) For 1 < t < ω and n ≥ no(ω, t)

Jt(n, n, ω) =

(
n − t

ω − t

)

. (1.4)

For sharpenings of Theorem EKR (with t > 1) see [9], [14], [18]. The complete solution of
the problem is given in [2].

Note that for 2ω < n the unique intersecting system A ⊂ E(n, ω) achieving bound (1.3)
is a “star”, that is all vectors in E(n, ω) with 1 in a fixed coordinate. For 2ω = n there
are many other choices for an optimal system. For the case (ii) the unique (up to obvious
isomorphisms) optimal t–intersecting system is a “t–star”, that is all vectors with ones in t
fixed positions.

Observe that a t–star A has dim(A) = n − t. Thus Theorem EKR gives also a solution for
our intersection problem in the case k = n − 1.

Corollary EKR. For 2ω ≤ n we have

J(n, n − 1, ω) =

(
n − 1

ω − 1

)

.

Note that the obvious restriction in Theorem EKR is just to avoid triviality, since in the
case 2ω > n E(n, ω) is “automatically” intersecting, and hence J(n, n, ω) =

(
n
ω

)
.

It is also clear that for 2ω > n

J(n, k, ω) = max |Uk ∩ E(n, ω)|, (1.5)
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taken over all k–dimensional subspaces Uk of Rn. For 1 ≤ ω ≤ n let us denote by M(n, k, ω)
the quantity in the RHS of (1.5).

In [7] M(n, k, ω) has been determined for all parameters.

Theorem AAK [7]. Given ω, k, n ∈ N; ω, k ≤ n

(a) M(n, k, ω) = M(n, k, n − ω)

(b) For ω ≤ n
2

we have

M(n, k, ω) =







(
k
ω

)
, if (i) 2ω ≤ k

(
2(k−ω)

k−ω

)
22ω−k, if (ii) k ≤ 2ω ≤ 2(k − 1)

2k−1, if (iii) k − 1 ≤ ω.

The key sets giving the maximal values in the three cases are

(i) S1 = E(k, ω) × {0}n−k

(ii) S2 = E(2k − 2ω, k − ω) × {10, 01}2ω−k × {0}n−2ω

(iii) S3 = {10, 01}k−1 × {1}ω−k+1 × {0}n−k−ω+1.

We state now our conjecture in terms of M(n, k, ω).

Conjecture 2. For ω ≤ n/2

J(n, k, ω) = M(n − 1, k, ω − 1).

In Part II the conjecture is established for the case k < 2ω.

We also determine Jt(n, k, ω) for any 1 ≤ t ≤ ω and k sufficiently large.

PART I: The unrestricted case
The main results of this part concern Conjecture 1, and they are stated in Section 3. But
we start with a key observation in Section 2, showing that the problem (for the unrestricted
case) can be reduced to a weighted version of the t– intersection problem for systems of finite
sets. In section 5 we give proofs of the main results using auxiliary results from Section 4.
Finally, in Section 6 we consider a diametric problem under dimension constraint which
turns out to have a simple solution.

2 Reformulation of the problem

Given integers 1 ≤ k ≤ n we assign to each element i ∈ [k] a weight wi ∈ N such that
k∑

i=1

wi = n. Then the sequence (w1, . . . , wk) is called a weight distribution on [k].
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For each A ∈ 2[k] define its weight w(A) =
∑

i∈A wi.

Given a weight distribution w, we say that a set system A ⊂ 2[k] is t–weight intersecting
if w(A ∩ B) ≥ t holds for all A,B ∈ A.

Our weight–intersecting problem is to determine

f(n, k, t) , max
w:

k
P

i=1

wi=n

{|A| : A ⊂ 2[k] is t–weight intersecting with weight distribution w}.

Another problem is given t, k and a weight distribution (w1, . . . , wk) determine

g(w1, . . . , wk; t) , max{|A| : A ⊂ 2[k] is a t–weight intersecting system }.

The second problem seems to be more difficult than the first one. However we will see below
that for our purposes the first problem is more important.

Denote by F (w1, . . . , wk) (wi ∈ N; i = 1, . . . , k) the set of all k–tuples with entries 0 or wi in
the i–th coordinate, i.e. F (w1, . . . , wk) = {0, w1}× · · ·×{0, wk}. This is another description
of the set 2[k] with the weight distribution w : (w1, . . . , wk) on the ground set [k].

We need also the following notion from [7].

An r × n real matrix M of rank(M) = r is said to have a positive step form if it has the
form shown in Figure 1.

l 1 l r

rM = . . .

0

l 2

Figure 1

where each shade (“step”) of size ℓi ≥ 1 (i = 1, . . . , r), with
∑r

i=1 ℓi = n, depicts ℓi positive
entries of the i–th row and above the steps M has only zero entries.

Lemma 1.1 [7]. A matrix M can be brought to a positive step form by elementary row
operations or permutations of columns iff the space spanned by rows of M contains a positive
vector (a vector with positive coordinates only).
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Remark 1.1. It follows from the proof of Lemma 1.1 [7] that M can be brought also to a
positive step form with ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓr.

Lemma 1.2. The quantities Jt(n, k) and f(n, k, t) are equal.

Proof. Let A ⊂ E(n) be a t–intersecting system of vectors with dim(A) = k. W.l.o.g. we
can assume that there is no coordinate set {i1, . . . , ir} ⊂ [n] in which all vectors of A have
all–zeros. This is clear because otherwise we can replace the coordinates i1, . . . , ir into 1’s in
each vector of A r A∗, where A∗ is a maximal subset of A with dim(A∗) = k − 1. Obviously
the new set A′ is also t–intersecting and dim(A′) = k. Let G be a generator matrix for the
k–dimensional subspace U , span(A) ⊂ Rn. U contains a positive vector, therefore (by
Lemma 1.1) G can be transformed to a positive step form. In particular w.l.o.g. we may
assume that G has a form, shown in Figure 2, where Ik is the k × k identity matrix.

Ik

l −1

n−k k

G =
. . .

Figure 2

Let un
1 be the first row of G and suppose it has ℓ nonzero coordinates. Consider the following

partition A = A1

.∪ A′
0

.∪ A′′
0, where A1 consists of the elements of A which are obtained by

linear combinations (of the row vectors of G) involving un
1 , i.e. the elements of A with 1 in

the (n− k + 1)–th coordinate, A′
0 consists of the vectors from A r A1 with zeros in the first

ℓ− 1 coordinates, and A′′
0 = Ar (A0 ∪A′

0). Consider now the following transformation of A.

Replace all nonzero entries of un
1 by 1’s: un

1 → vn
1 . Replace all other entries of the first

ℓ − 1 columns of G by 0’s. Note that the same linear combinations as for G, (now for the
new generating matrix) give a new set B ⊂ E(n) with |B| = |A|. Denote the set of vectors
(obtained after the described transformation) corresponding to A1, A

′
0, A

′′
0 by B1, B

′
0, B

′′
0 resp.

That is we have A1 → B1, A′
0 → B′

0, A′′
0 → B′′

0 . Turn now to the sets B1, B
′
0, B

′′
0 + vn

1 .
Observe that these sets are disjoint and moreover their union B∗ = B1

.∪ B′
0

.∪ (B′′
0 + vn

1 ) is
a t–intersecting system with |B∗| = |A| and dim(B∗) = k.

Applying this transformation to all other “steps” we can reduce G to a positive step form
G′ where all steps consist of 1’s and all other entries in G′ are 0’s, i.e. all columns of G′ are
unit vectors.

Now the rows vn
1 , vn

2 , . . . , vn
k of G′ can be associated with the elements of {1, . . . , k} where

each element i ∈ {1, . . . , k} has weight wi , the number of 1’s in vn
i .

This completes the proof. ¤
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Given weight distribution w = (w1, . . . , wk) on [k] we define the weighted Katona family

K(k, t)w =

{

F ∈ 2[k] : w(F ) ≥ n + t

2

}

,

where n = w1 + · · · + wk and 2 | n + t.

Note that K(k, t)w is t–intersecting. Our Conjecture 1 can be explained now in terms of the
weighted Katona family. It says that given n, k and t > n−k+1, 2 | n+t an optimal t–weight
intersecting family A ⊂ 2[k] can be realized for the weight distribution w = (n−k+1, 1, . . . , 1)
and

Jt(n, k) = f(n, k, t) = g(n − k + 1, 1, . . . , 1; t) =

{

|K(k, t)w|, if 2 | (n + t)

2|K(k − 1, t)w|, if 2 ∤ (n + t).
(2.1)

For 2 ∤ n+ t the bound in (1.2) is attained for A = K(k, t+1)∪
{
A ∈ 2[k−1] : w(A) = n+t−1

2

}
.

Remark 1.2. One may expect also that the family K(k, t)w is optimal also for any weight
distribution w. However in general this is not the case. Note for instance that g(3, 3, 3, 1; 6) ≥
4, while the Katona family (consisting of the sets with weight ≥ 8) contains only two
elements: {1, 2, 3} and {1, 2, 3, 4}.

3 Main results

We state now our main results for the unrestricted case of our problem, considered in Part I.
In the sequel we will use f(n, k, t) rather than the identical (in view of Lemma 1.2) notation
Jt(n, k). Let us also denote the RHS of (1.2) by m(n, k, t).

Theorem 1.1.

(i) f(n, k, t) ≤ 2k−1.

(ii) For t ≤ n − k + 1 we have f(n, k, t) = 2k−1.

The smallest t for which the problem is open is t = n − k + 2. The next theorem gives a
partial solution for this case.

Theorem 1.2. For n ≥ 3
2
k − 1, t = n − k + 2 we have

f(n, k, t) = m(n, k, t) = 2k−2.

Theorem 1.3. Given positive integers t, k and w1 ≥ · · · ≥ ws ≥ 2, s < k, such that
t > w1 + · · · + ws. Then

g(w1, . . . , ws, 1, . . . , 1; t) =

{

|K(k, t)w|, if 2 | (n + t)

2|K(k − 1, t)w|, if 2 ∤ (n + t).
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Corollary 1.1. For positive integers k and t > w1 (n , w1 + k − 1) we have

g(w1, 1, . . . , 1
︸ ︷︷ ︸

k−1

; t) = m(n, k, t) =







k−1∑

i=n+t
2

−w1

(
k−1

i

)
+

k−1∑

i=n+t
2

(
k−1

i

)
, 2 | (n + t)

2
k−2∑

i=n+t−1

2
−w1

(
k−2

i

)
+ 2

k−2∑

i=n+t−1

2

(
k−2

i

)
, 2 ∤ (n + t).

Theorem 1.4. For t ≥ 2(n − k) − 1 we have

f(n, k, t) = m(n, k, t).

Corollary 1.2. For k ≤ n ≤ k + 3 we have

f(n, k, t) = m(n, k, t).

Theorem 1.5. For 3
2
(n − t) − 1 ≤ k ≤ n+t

2
we have

f(n, k, t) = m(n, k, t).

Theorem 1.6. For n > k
√

2k/2, t ≥ n − k + 2 we have

f(n, k, t) = m(n, k, t).

4 Auxiliary tools and results

4.1 Distance properties

For xk, yk ∈ F (w1, . . . , wk) define the distance dist(xk, yk) =
∑k

i=1 |xi − yi|.
Lemma 1.3. Let A,B ⊂ F (w1, . . . , wk) be such that the nonzero distances occuring in A do
not occur in B. Then

|A||B| ≤ 2k.

Proof. Let us think of elements of F (w1, . . . , wk) as vectors in the k–dimensional vector
space GF (2)k. Then the statement follows from the observations:

a) For uk, vk ∈ F (w1, . . . , wk) one has dist(uk, vk) = weight(uk + vk),
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b) For uk
1, u

k
2 ∈ A and for vk

1 , v
k
2 ∈ B

dist(uk
1, u

k
2) 6= dist(vk

1 , v
k
2) ⇒ uk

1 + uk
2 6= vk

1 + vk
2 ⇒ uk

1 + vk
1 6= uk

2 + vk
2 .

Hence
|A + B| , |{uk + vk : uk ∈ A, vk ∈ B}| = |A||B| ≤ 2k.

¤

Lemma 1.4. Given a1, a2, . . . , ak ∈ N, let n =
∑k

i=1 ai = 3
2
k − 1,

then there exist I, J ⊂ [k] with I ∩ J = ∅ such that

(i)
∑

i∈I

ai =
∑

j∈J

aj = k
2
, if 2 | k

(ii)
∑

i∈I

ai =
∑

j∈J

aj = k−1
2

, if 2 ∤ k.

Proof. We prove only the case (i) (the case (ii) is similar). W.l.o.g let a1 ≥ · · · ≥ ak.

Note that the number of 1’s in a1, . . . , ak is at least k
2

+ 1. That is we have

a1 ≥ · · · ≥ am ≥ 2, am+1 = · · · = ak = 1 with m ≤ k

2
− 1.

Also note that if a1 + · · · + am ≤ k
2
, then we are done. Therefore let a1 + · · · + am > k

2
.

Suppose now a1 + . . . as ≤ k
2
, for some 1 ≤ s ≤ m. Such an s always exists since a1 ≤ k

2
.

If a1 + · · ·+ as = k
2
− 1 or k

2
then we are done, since we have at least k

2
+ 1 ones and one can

find disjoint sets I and J satisfying the condition (i). Thus let

a1 + · · · + as =
k

2
− y, y ≥ 2 and a1 + · · · + as + as+1 ≥

k

2
+ 1. (4.1)

Now to complete the proof it suffices to justify the following

Claim. The number of ones, k − m ≥ k
2

+ y − 1.

Proof. In view of (4.1) we have as+1 ≥ y + 1.

Therefore
s+1∑

i=1

ai ≥ (y + 1)(s + 1)

and hence 2(m − s − 1) + k − m ≤ as+2 + · · · + ak ≤ 3
2
k − 1 − (y + 1)(s + 1).

Finally, since y ≥ 2 and s ≥ 1, we getconstraints12-2703 k−m ≥ k
2
+(y−1)(s+1)−1 ≥ k

2
+y.

¤
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4.2 Shifting and multiexchange techniques

Recall the known operation in Extremal Set Theory called shifting, which was introduced
by Erdös, Ko and Rado [11]. Given B ⊂ 2[k], B ∈ B and integers 1 ≤ i ≤ j ≤ k

Sij(B) ,

{

{i} ∪ (B r {j}), if i /∈ B, j ∈ B, {i} ∪ (B r {j} /∈ B
B otherwise

Sij(B) , {Sij(B) : B ∈ B}.

It is known (see e.g. [10]) that the following properties hold for any B ⊂ 2[k].

S1. |Sij(B)| = |B|.

S2. After finitely many shifting operations B can be reduced to a shifted family, i.e. a
family B′ with Sij(B′) = B′ for all 1 ≤ i < j ≤ n.

S3. If B is t–intersecting then so is Sij(B).

We extend now the shifting operation to any set system B over a ground set [k] with a weight
distribution w : (w1, . . . , wk), w1 ≥ · · · ≥ wk. For any B ∈ B ⊂ 2[k] define the weighted
shifting operation Si,J where i ∈ [k], J = {j1, . . . , jm} ⊂ [k] and i < min{j1, . . . , jm}.

Si,J(B)w ,

{

{i} ∪ (B r J), if i /∈ B, J ⊂ B, {i} ∪ (B r J) /∈ B and wj1 + · · · + wjm
≤ wi

B, otherwise

Si,J(B)w , {Si,J(B)w : B ∈ B}.
Note that for |J | = 1 we have standard shifting and properties S1, S2, S3 are valid.

Suppose now Si,j(B) = B for all 1 ≤ i < j ≤ k. Apply then Si,J for some admissible

i and J ∈
(
[k]
2

)
. It is easy to show that properties S1, S2, S3 hold with respect to Si,J .

Thus B can be reduced to a shifted family, that is to a family B′ with Si,J(B′)w = B′ for

all admissible i and J ∈
(
[k]
2

)
. This procedure can be applied consecutively to all possible

J ⊂ [k] (|J | = 2, 3, . . . ) reducing B to a family B∗, such that Si,J(B∗)w = B∗ for all admissible
i and J . Such a family B∗ is called then w–shifted.
More precisely, it is not difficult to prove the following.

Suppose B ⊂ 2[k] is shifted with respect to all shifts Si,J with J ⊂
(
[k]
ℓ

)
. Then for any

J ⊂
(

[k]
ℓ+1

)
one has

1. |Si,J(B)w| = |B|

2. If B is t–intersecting then so is Si,J(B)w.
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• In the sequel, when we deal with families over weighted ground sets, by shiftedness we will
always mean the w–shiftedness and t-intersecting will mean t-weight-intersecting.

Next define a multiexchange operation introduced in [5].

Given A ⊂ 2[k] and disjoint sets I,H ⊂ [k] define

AI,H =
{
A ⊂ A : I ⊂ A,H ∩ A = ∅ and (A r I) ∪ H /∈ A

}
.

Then the multiexchange operation TI,H , called an (|I|, |H|)–exchange, is defined by

TI,H(A) =
(
A r AI,H) ∪

{
(A r I) ∪ H : A ∈ AI,H

}
.

Note that in case |I| = |H| = 1 we have the exchange operation in usual sense denoted here
by Tij (i, j ∈ [k]). We consider now only a special type of this operation when |H| = |I|+ 1.

Given A ⊂ 2[k] we apply first a (0,1)–exchange TI,H . Repeatedly applying this operation for

all H ∈
(
[k]
1

)
the family A can be brought to another family B which is stable with respect

to each (0,1)–exchange, i.e. TI,H(B) = B for all H ∈
(
[k]
1

)
. Clearly |B| = |A| and if A is

t–intersecting so is B.

Next we apply to B a (1,2)–exchange TI,H .

Again we have |TI,H(B)| = |B| and it is easy to show that TI,H(B) preserves the intersection

property of A. This procedure we continue for all I ∈
(
[k]
1

)
and H ∈

(
[k]
2

)
reducing B to a

stable family C such that TI,H(C) = C.

Iteratively applying the described procedure of (i − 1, i)–exchanges (i = 1, 2, . . . ) TI,H for

all I ∈
(

[k]
i−1

)
and H ∈

(
[k]
i

)
we reduce A to a stable, with respect to all multiexchange

operations, family A∗ (see [5]).

Now the following properties of A∗ can be easily observed.

Let A ⊂ 2[k] be a t–intersecting family. Then

T1. |A∗| = |A|.

T2. A∗ is t–intersecting.

T3. If A ∈ A∗ with |A| = r, then A∗ contains all subsets B ⊂ [k] with |B| > r.

Lemma 1.5. Given weight distribution w : (w1, . . . , ws, 1, . . . , 1) on [k], with 2 | (n + t);

n =
k∑

i=1

wi, let A ⊂ 2[k] be an optimal t–weight intersecting family. Then there exists a

t–weight intersecting family A∗ with |A∗| = |A| which is invariant on [s + 1, k]. Namely if
A = (A1 ∪ A2) ∈ A∗, where A1 = A ∩ [1, s], A2 = A ∩ [s + 1, k], then A∗ contains every
subset B = A1 ∪ E (E ∈ 2[s+1,k]) with |E| ≥ |A2|.
Proof. Apply successively multi–exchange operations TI,H(A) for all I ∈

(
[s+1,k]

i−1

)
, H ∈

(
[s+1,k]

i

)
i = 1, 2, . . . , reducing A to a stable, with respect to the described multiexchange

operations, family. Thus w.l.o.g. we may assume that A is a shifted and stable (with
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respect to (|I|, |H|)-exchange) family. Note that, in view of property T3, if (A1 ∪ A2) ∈ A
(A1 ⊂ [1, s], A2 ⊂ [s + 1, k]), then A contains also all elements (A1 ∪F ), F ⊂ [s + 1, k] with
|F | > |A2|.
Given i, j ∈ [s + 1, k], define now A1 = {A ∈ A : i ∈ A, j /∈ A}, B = {B ∈ A1 :
(B \ {i})∪{j} /∈ A1}, B′ = {(B \ {i})∪{j} : B ∈ B}. Thus |B| = |B′|, B′ ∩A = Ø. Define
also F1 = {B ∈ B : w(B) ≤ n+t

2
− 1}, F2 = B \ F1, F ′

1 = {B′ ∈ B′ : w(B′) ≤ n+t
2

− 1},
F ′

2 = B′ \ F ′
1. Consider now two new families

A′ = (A \ F1) ∪ F ′
2, A′′ = (A \ F2) ∪ F ′

1.

Claim. (i) A′ and A′′ are t-intersecting. (ii) |A′| = |A′′| = |A|.
Proof. To prove that A′ (resp. A′′) is intersecting it suffices to show that F2∪F ′

2 (resp. F1∪
F ′

1) is intersecting. This follows from the definition of A1. Suppose now, for a contradiction,
E ∈ F1, F ′ ∈ F ′ and w(E ∩ F ′) < t. Since w(E) + w(F ′) ≤ n + t − 2, there exists l ∈ [k]
such that l /∈ (E ∪ F ′). If l ∈ [s], then (by the shiftedness of A) F , ((F ′ \ {j}) ∪ {l}) ∈ A
and w(E ∩ F ) = w(E ∩ F ′) < t, a contradiction. Suppose now l ∈ [s + 1, k]. Then by the
stability of A (defined above) F , (F ′ ∪ {l}) ∈ A and again w(E ∩ F ) < t, a contradiction.
Thus F1 ∪ F ′

1 is t-intersecting. The family F2 ∪ F ′
2 is t-intersecting because w(F ) ≥ n+t

2
for

all F ∈ (F2 ∪ F ′
2), completing the proof of (i).

To prove (ii) note that

|A′| = |A| + |F ′
2| − |F1|, |A′′| = |A| + |F ′

1| − |F2|. (4.2)

Since |F1| = |F ′
1|, |F2| = |F ′

2|, we infer that |F1| = |F2|, otherwise by (4.2) max{|A′|, |A′′|} >
|A|, a contradiction with the optimality of A. This with (4.2) completes the proof of the
claim. ¤

As a new intersecting family of the same size we take now A′ for which w(A′) ≥ w(A) where
w(A) ,

∑

A∈A
w(A). We continue this procedure transforming A to a family A∗ which is

either stable with respect to all exchange operations Tij with i, j ∈ [s + 1, k], or consists of
all sets A with w(A) ≥ n+t

2
. This completes the proof of Lemma 1.5. ¤

4.3 Properties of function g(w1, . . . , wk; t)

Lemma 1.6. For integers w1 ≥ · · · ≥ wk = 1 with 2 ∤

(
k∑

i=1

wi + t

)

we have

g(w1, . . . , wk; t) = 2g(w1, . . . , wk−1; t).

Proof. Let A ⊂ 2[k] be an optimal t–weight intersecting system for the weight distribution
w : (w1, . . . , wk). Suppose also w.l.o.g. that A is shifted. Define the families

A0 = {A ∈ A : k /∈ A}, A1 = A r A0.

12



A0 ⊂ 2[k−1] is a t–intersecting family with the weight distribution w : (w1, . . . , wk−1). Corre-
spondingly the family A0∪A′

0, where A′
0 =

{
A∪{k} : A ∈ A0

}
, is also t–intersecting. Since

|A′
0| = |A0| we have |A| ≥ 2|A0| and hence, in view of optimality of A, we have |A1| ≥ |A0|.

Note that if |A1| = |A0|, then we are done. Thus assume that |A1| > |A0|. The idea of the
proof is to reduce A to another t–intersecting family A∗ with |A∗| = |A| so that |A∗

0| = |A∗
1|

(A∗
0 and A∗

1 are defined as A0 and A1 in A).

Define the subclass B ⊂ A1 and the family B′ by

B =
{
B ∈ A1 : (B r {k}) /∈ A

}
, B′ =

{
B r {k} : B ∈ B

}
.

Next partition B into two sets B = F1 ∪ F2 with F1 ,
{
B ∈ B : w(B) < n+t

2

}
and F2 ,

B r F1. Correspondingly for B′ we get the induced partition B′ = F ′
1 ∪ F ′

2, where F ′
i =

{
F r {k} : F ∈ Fi

}
, i = 1, 2.

Define now the families A′ = (A r F1) ∪ F ′
2, A′′ = (A r F2) ∪ F ′

1.

Claim. (i) A′ and A′′ are t-intersecting families. (ii) |A′| = |A′′| = |A|.
Proof. For (i) it suffices to show that both F1 ∪ F ′

1 and F2 ∪ F ′
2 are t-intersecting. Conse-

quently it suffices to show that F1 and F2 are (t + 1)-intersecting. Suppose E,F ∈ F1 and
w(E ∩ F ) = t. Since w(E) + w(F ) < n + t, the shiftedness of A implies that there exists
j ∈ [1, k − 1] such that F ′ , (F \ {k}) ∪ {j} ∈ A. But w(E ∩ F ′) < t, a contradiction. The
family F2 is (t + 1)-intersecting since w(E) + w(F ) ≥ n + t + 1 for all E,F ∈ F2.

Part (ii) can be proved by repeating the argument used in Lemma 1.5. Equivalently it follows
that |F1| = |F2| = |F ′

1| = |F ′
2|. ¤

To complete the proof of Lemma 1.6 note that we reduce A to a new t–intersecting family
A∗ = A′ or A′′ of the same size, so that |A∗| = 2|A∗

0|. ¤

Lemma 1.7. Let w1 ≥ w2 ≥ · · · ≥ ws ≥ 2, ws+1 = · · · = wk = 1 and let
s∑

i=2

wi < t, then

g(w1, . . . , ws, 1, . . . , 1; t) ≤ g(w1 + 1, . . . , ws − 1, 1, . . . , 1; t).

Proof. Let A ⊂ 2[k] be an optimal t–intersecting system over [k] with w : (w1, . . . , ws, 1 . . . 1),
i.e. |A| = g(w1, . . . , ws, 1, . . . , 1; t), and w2 + · · ·+ws < t (note that the case s = k is trivial).

We start with the assumption that A is w–shifted. By Lemma 1.6 it suffices to prove the
statement for 2 | (n + t) (n = w1 + · · · + ws + k − s). Then in view of Lemma 1.5 we may
also assume that A is invariant in [s + 1, . . . , k].

Next partition A into four subfamilies A = A00 ∪ A01 ∪ A10 ∪ A11,

A00 = {A ∈ A : 1 /∈ A, s /∈ A},A10 = {A ∈ A : 1 ∈ A, s /∈ A},
A01 = {A ∈ A : 1 /∈ A, s ∈ A},A11 = {A ∈ A : 1 ∈ A, s ∈ A}.

Define now the set of minimal elements M ⊂ A : M = {M ∈ A : E ⊂ M ⇒ E /∈ A}.
Define also M01 = M∩A01 and M10 = M∩A10.
Represent each element A ∈ A by the pair (X,Y ), where X = A ∩ [1, s], Y = A ∩ [s + 1, k].

13



The following properties of A will be used below.

(a) For A1 ∈ A10 and A2 ∈ A00 we have w(A1 ∩ A2) ≥ t + ws.

(b) For E ∈ A01 and F ∈ A10 we have w(E) + w(F ) ≥ n + t (n = w1 + · · · + ws + k − s).

(c) Suppose (X,V ) ∈ M10 and ((X r {1}) ∪ {s}, U) ∈ M01. Then |U | ≥ |V | + w1 − ws.

(d) If (X,W ) ∈ M then there are exactly
(

k−s
|W |

)
elements (X,Y ) ∈ M with |Y | = |W |.

Let A1 = (X1, Y1), A2 = (X2, Y2) and w(A1 ∩ A2) = l. Since t > w2 + · · · + ws we have
|Y1 ∩ Y2| > ws. By the shiftedness A contains an element B = (X2 ∪ {s}, Y2 r Z) with
Z ⊂ (Y1 ∩ Y2) and |Z| = ws. Hence w(A1 ∩ B) ≥ l − ws ≥ t concluding property (a).
To prove (b) suppose the converse. A is w–shifted and invariant in [s + 1, n]. This with
t > w2 + · · ·+ws implies that there exist E ∈ M10 and F ∈ M01 with E ∪F = [k]. Observe
now that the assumption w(E)+w(F ) < n+t is contradictory with the t–weight intersection
property of A.
Property (c) directly follows from the shiftedness of A. Since A is invariant in [s + 1, n],
property (d) follows as well.

Define then M∗
10 =

{
(X,Y r {i}) : (X,Y ) ∈ M10, i ∈ Y

}
and consider a new family A∗,

A∗ , (A00 ∪ A11) ∪ (A01 r M01) ∪ (A10 ∪M∗
10).

Claim. (i) A∗ is a t–weight intersecting family for the weight distribution
w∗ : (w1 + 1, . . . , ws − 1, . . . , 1) of the ground set [k].
(ii) |A∗| ≥ |A|.
Proof. First note that M∗

10 is t–intersecting. Further in view of property (a), M∗
10∪A10∪A00

is t–intersecting for weight distribution w∗. Note also that M∗
10 ∪ A11 is t–intersecting for

w∗ (since it is (t−1)–intersecting for w). By property (b), for E ∈ M10 and B ∈ A01 rM01

holds w(E)+w(B) ≥ n+t+1. This implies that for all M ∈ M∗
10 holds w(M)+w(B) ≥ n+t

and hence M∗
10 ∪ A01 is also t–intersecting, completing the proof of (i).

Let us show now that for every E = (X,U) ∈ M01 there exists an element F =
(
(X r

{s})∪ {1}, V
)
∈ M10. This is true because otherwise, in view of the shiftedness of A, there

exists F ′ ∈ M01, F ′ ⊂ F such that F ′ ∩ [s + 1, k] = ∅. But this is a contradiction since
w2 + · · · + ws < t and hence w(F ′ ∩ E) < t. In fact, since ws ≥ 2 we have |V | ≥ 3.

To prove (ii) (that is |M01| ≤ |M∗
10|) it suffices, in view of property (d), to show that

(
k − s

|U |

)

≤
(

k − s

|V | − 1

)

. (4.4)

First observe that property (b) implies

|U | + |V | ≥ k − s + t − (w2 + · · · + ws−1). (4.5)
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This with property (c) and the condition t > w2 + · · · + ws−1 implies that |U | > k−s
2

. Then
(4.5) gives k − s − |U | < |V | ≤ |U |, which implies (4.4) and consequently (ii).

This completes the proof of Lemma 1.7. ¤

Remark 1.4. Note that Lemma 1.7 is not true in general. For example, observe that
g(2, 2, 2, 2, 2, 2; 8) = 7 while g(3, 2, 2, 2, 2, 1; 8) = 6.constraints12-2703

Lemma 1.8. Given n, a1, . . . , ak, α ∈ N with a1 + · · · + ak = n, α ≥ n+1
2

. Let X be the set
of solutions (x1, . . . , xk) ∈ E(k) of the inequality

k∑

i=1

aixi ≥ α. (4.6)

Then

G(n, k, α) , max
k

P

i=1

ai=n

|X| =
k−1∑

i=α−(n−k+1)

(
k − 1

i

)

+
k−1∑

i=α

(
k − 1

i

)

(4.7)

and the maximum is assumed for a1 = n − k + 1, a2 = · · · = ak = 1.

Proof. Assume w.l.o.g. a1 ≥ · · · ≥ ak. We proceed by induction on α, n, k.

Claim. For n+1
2

≤ α ≤ n − k + 1

G(n, k, α) = 2k−1.

Proof. Note first that G(n, k, α) ≤ 2k−1. Indeed, since α ≥ n+1
2

then (x1, . . . , xk) ∈ X
implies that (1 − x1, . . . , 1 − xk) /∈ X.

On the other hand setting a1 = n − k + 1, a2 = · · · = ak = 1 we get

constraints12 − 2703G(n, k, α) ≥ |X| = RHS(4.7) = 2k−1.

¤

Suppose now that α > n+1
2

and α > n− k + 1. Given n and k suppose also that (4.7) holds
for all smaller values of n and k. Separating the solutions (x1, . . . , xk) ∈ X of (4.6) with
xk = 0 and with xk = 1, we may apply the induction hypothesis since α − ak ≥ n−ak+1

2
.

Then we get

|X| ≤ G(n − ak, k − 1, α) + G(n − ak, k − 1, α − ak)

=
k−2∑

i=α−(n−ak−k+2)

(
k − 2

i

)

+
k−2∑

i=α

(
k − 2

i

)

+
k−2∑

i=α−(n−k+2)

(
k − 2

i

)

+
k−2∑

i=α−ak

(
k − 2

i

)

. (4.8)

To complete the proof of the lemma it remains to verify that RHS(4.8) ≤ RHS(4.7). ¤

Remark 1.5. We note that later on Lemma 1.8 will not be used. However it shows that
given n, k and t the ”biggest” Katona family K(k, t)w is assumed for the weight distribution
w : (n − k + 1, 1, . . . , 1).This fact could be helpful for comparisons of K(k, t)w with other
”competitor” t–weight intersecting families.
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5 Proofs of Theorems 1.1 – 1.6

Proof of Theorem 1.1

In view of Lemma 1.2 the statement (i) follows.constraints12-2703

Let now t ≤ n− k + 1. Then for the weight distribution w : (n− k + 1, 1, . . . , 1) we take the
t–weight intersecting family A =

{
A ∈ 2[k] : {1} ∈ A

}
. ¤

Proof of Theorem 1.2

It is more convenient to proceed here with F (w1, . . . , wk) defined in Section 2.
First we prove the theorem for

Case n = 3k

2
− 1; 2 | k. Let B ⊂ F (w1, . . . , wk) be a t–weight intersecting system. In

view of Lemma 1.4 there exist subsets I, J ⊂ [1, k]; I ∩ J = ∅ so that

∑

i∈I

wi =
∑

j∈J

wj =
k

2
. (5.1)

Consider the following subsets of [1, k]

S1 = ∅, S2 = [1, k] r I, S3 = [1, k] r J, S4 = I ∪ J.

For any subset S ⊂ [k] we define now its characteristic vector by

X (S) = (x1, . . . , xk) ∈ F (w1, . . . , wk), where xj =

{

wj, if j ∈ S

0, if j /∈ S.

Thus let X (Si) = vk
i (i = 1, 2, 3, 4), and let us denote C = {vk

1 , v
k
2 , v

k
3 , v

k
4}. In view of (5.1)

the minimum distance of C is k − 1, that is dist(vk
i , v

k
j ) ≥ k − 1 for any distinct vk

i , v
k
j ∈ C.

Since B is t–intersecting, it is also clear that for any xk, yk ∈ B dist(xk, yk) ≤ n− t = k− 2.

Applying now Lemma 1.3 we get |B||C| = |B|4 ≤ 2k. ¤

Case n > 3k

2
− 1; 2 | k. Given w1 ≥ · · · ≥ wk, with

k∑

i=1

wi = n clearly there exist

w′
1 ≥ · · · ≥ w′

k so that wi ≥ w′
i,

k∑

i=1

w′
i = 3k

2
− 1. Then by the previous case there exists a set

C ′ = {vk′
1 , vk′

2 , vk′
3 , vk′

4 } ⊂ F (w′
1, . . . , w

′
k) with minimum distance k − 1.

Construct now the set C = {vk
1 , v

k
2 , v

k
3 , v

k
4} ⊂ F (w1, . . . , wk), where each vector vk

i (i =
1, 2, 3, 4) is obtained from vk′

i by replacing every nonzero coordinate w′
j (j ∈ [k]) by wj.

Since wj ≥ w′
j the new set C has minimum distance at least k − 1. The rest of the proof is

the same as for the case n = 3
2
k − 1.

The proof of case 2 ∤ k is similar. ¤

Proof of Theorem 1.3

Let A ⊂ 2[k] be an optimal t–weight intersecting family with w : (w1, . . . , wk). In view of
Lemma 1.6 we consider only the case 2 | n + t. Suppose A ∈ A. We assume w.l.o.g. that A
is shifted and invariant in [s+1, n]. These properties of A with t > w1 + · · ·+ws imply that
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A contains also an element B, with w(B) = w(A), so that A∪B = [k]. Since A is t–weight
intersecting we infer that w(A) ≥ n+t

2
. ¤

Proof of Theorem 1.4

Suppose A ⊂ 2[k] is an optimal t–weight intersecting family for a weight distribution w :

(w1, . . . , wk),
k∑

i=1

wi = n. Assume w1 ≥ · · · ≥ ws ≥ 2, ws+1 = · · · = wk = 1, 1 ≤ s ≤ k. Then

w2 + · · · + ws = n − k + s − w1 < 2(n − k) − 1 ≤ t.

Now using Lemma 1.7 and then Corollary 1.1 we get

|A| ≤ g(n − k + 1, 1, . . . , 1; t) = m(n, k, t).

¤

Proof of Theorem 1.5

We need the following simple
Fact. For positive integers w1, . . . , wk with wi ≥ 2, i ∈ [k] we have

g(w1, . . . , wk; t) ≤ g(w1, . . . , wi − 1, . . . , wk; t − 1). (5.2)

This is clear because any t–weight intersecting family A ⊂ 2[k] with w : (w1, . . . , wk) is also
(t − 1)–weight intersecting for w : (w1, . . . , wi − 1, . . . , wk).

Note also that (5.2) implies

f(n + 1, k, t + 1) ≤ f(n, k, t). (5.3)

Note first that the condition of the theorem can be written as n− 4k+1
3

≤ n+t
2

− k, n+t
2

≥ k.
Suppose first that n ≤ 4k+1

3
. This together with n+t

2
≥ k implies that t ≥ 2(n−k)−1. Then

by Theorem 1.4 we have f(n, k, t) = m(n, k, t).

Suppose now n > 4k+1
3

. Then in the case 2|(n + t) there exists an integer α ≥ 1 such
that n − 4k+1

3
≤ α ≤ n+t

2
− k. Put further n′ = n − α, t′ = t − α and note that n′ ≤

4k+1
3

, n′ + t′ ≥ 2k. Note also that for 2 ∤ (n + t) there exists an integer 1 ≤ α < n+t
2

− k
such that n′ = n − α = ⌈4k+1

3
⌉ and t′ + n′ ≥ 2k + 1 (t′ = t − α). In both cases this implies

that t′ ≥ 2(n′ − k) − 1 and hence (by Theorem 1.4) f(n′, k, t′) = m(n′, k, t′). Now by (5.3)
we get f(n, k, t) ≤ m(n′, k, t′). On the other hand, since n′+t′

2
= n+t

2
− α ≥ k, for 2|(n + t)

(and similarly for 2 ∤ (n + t)) we have

f(n, k, t) ≥ m(n, k, t) =
k−1∑

i=k−1−n−t
2

(
k − 1

i

)

+
k−1∑

i=n+t
2

(
k − 1

i

)

=
k−1∑

i=k−1−n−t
2

(
k − 1

i

)

= m(n′, k, t′).

¤
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Proof of Theorem 1.6

We proceed by induction on t and n.

Case t = n − k + 2, n ≥ k
√

2k

2
.

Since k
√

2k
2

≥ 3k
2
− 1, Theorem 1.2 gives the result.

Case n =
⌈

k
√

2k

2

⌉

, t ≥ n − k + 2 (for convenience let k
√

2k
2

be an integer).

Suppose A ⊂ 2[k] is a t–weight intersecting family with weight distribution w : (w1, . . . , wk)
of the ground set and w1 ≥ · · · ≥ wk. By property (5.2)

g(w1, . . . , wk; t) ≤ g(w1, . . . , ws, 1, . . . , 1; t′)

for some 1 ≤ s < k and t′ = t− (ws+1 + · · ·+ wk) + (k− s). Let us denote α = (ws+1 + · · ·+
wk)−(k−s), n′ = w1+ · · ·+ws+(k−s). The family A considered for the weight distribution
(w1, . . . , ws, 1, . . . , 1) is a t′–weight intersecting family, with t′ = t − α; n′ = n − α.

We have n+t
2

≥ k and we aim to choose now an α, such that

n′ + t′

2
=

n + t

2
− α ≥ k. (5.4)

Observe then that α ≤ (k − s)(
√

2k/2 − 1) ≤ n − k − s(
√

2k/2 − 1).
Consequently

n′ ≥ k + s(

√
2k

2
− 1), t′ ≥ n′ − k + 2 ≥ s(

√
2k

2
− 1),

n′ + t′

2
≥ s(

√
2k

2
− 1) + 1 +

k

2
. (5.5)

Hence to guarantee (5.4) it is sufficient to take s =
√

2k
2

+ 1. Thus, given t′ = t − α there

exists s ≤
√

2k
2

+ 1 so that (5.4) holds.

Observe now that w1 ≥
√

2k
2

≥ s− 2. This together with w2 + · · ·+ ws = n′ − k + s−w1 and
t′ > n′ − k + 2 implies that t′ > w2 + · · · + ws.

Finally applying Lemma 1.7 and Corollary 1.1 we get

|A| ≤ g(w1, . . . , ws, 1, . . . , 1; t′) ≤ m(n′, k, t′) =
k−1∑

i=k−1−n−t
2

(
k − 1

i

)

.

We are prepared now to apply induction.

Let n ≥ k
√

2k
2

+ 1 and t > n − k + 2. Then the value α = 1 satisfies inequality (5.4). Since
|A| ≤ f(n, k, t) ≤ f(n − 1, k, t − 1), the induction hypothesis gives

|A| ≤ f(n − 1, k, t − 1) = m(n − 1, k, t − 1) = m(n, k, t).

This completes the proof of Theorem 1.6. ¤
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6 Diametric problems

The Hamming distance between two vectors xn = (x1, . . . , xn), yn = (y1, . . . , yn) ∈ E(n) is
defined by dH(xn, yn) = |

{
i ∈ [n] : xi 6= yi

}
|. The diameter of a set A ⊂ E(n) is defined by

diam(A) = max
xn,yn∈A

dH(xn, yn).

Kleitman proved the following

Theorem Kl [17]. For a set A ⊂ E(n) with diam(A) = δ < n one has

max
A⊂E(n)

|A| =







δ/2∑

i=0

(
n
i

)
, if 2 | δ

2
(δ−1)/2∑

i=0

(
n−1

i

)
, if 2 ∤ δ.

(6.1)

The diametric problem for n–sequences over any q–ary alphabet is solved in [4].

In [1] it was shown that the intersection and diametric problems are equivalent, that is
Theorem Ka and Theorem Kl can be reduced to each other.

Consider now the diametric problem under dimension constraint.

Define
Dδ(n, k) = max

{
|A| : A ⊂ E(n), diam(A) = δ, dim(A) = k < n

}
.

For n = k by Theorem Kl we readily have Dδ(n, n) = RHS (6.1). A simple observation
shows that Theorem Kl gives the answer for any n ≥ k.

Theorem 1.7.

Dδ(n, k) =

{

2k, if k ≤ δ ≤ n

Dδ(k, k), if δ < k.
(6.2)

Proof. Let A ⊂ E(n) with diam(A) = δ and dim(A) = k. One needs only to note that
there exist n − k coordinates i1, . . . , in−k ∈ [n], such that deleting them in all vectors of A
we get a new set of vectors A′ ⊂ E(k) with dim(A′) = k, |A′| = |A| and diam(A′) ≤ δ. ¤

Thus the intersection and diametric problems under dimension constraint are
not equivalent!

Let us consider also the following weight diametric problem in F (w1, . . . , wk).

The diameter δ of a set B ⊂ F (w1, . . . , wk) is defined by δ(B) = max dist
xk,yk∈B

(xk, yk).

Given n, k, δ define

f ∗(n, k, δ) = max
F (w1,...,wk)

k
P

i=1

wi=n

{
|B| : δ(B) = δ, B ⊂ F (w1, . . . , wk)

}
.

Given k, δ and F (w1, . . . , wk) define also the function

g∗(w1, . . . , wk; δ) = max
{
|B| : δ(B) = δ, B ⊂ F (w1, . . . , wk)

}
.
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Then we have the following

Lemma 1.9.

(i) f(n, k, t) = f ∗(n, k, n − t).

(ii) g(w1, . . . , wk; t) = g∗(w1, . . . , wk; n − t) (n ,
k∑

i=1

wi).

Proof. We mentioned above that the case n = k was proved in [1]. The idea of the proof
works also in our case and the reader can prove the statement repeating all the steps. ¤

PART II: The restricted case

Our main result in this part is

Theorem 2.1.

J(n, k, ω) =







M(n − 1, k, ω − 1) =
(
2k−2ω+2
k−ω+1

)
22ω−k−2, if (i) k < 2ω ≤ 2(k − 1); ω ≤ n

2

M(n − 1, k, ω − 1) = 2k−1, if (ii) k ≤ ω ≤ n
2

M(n, k, ω), if (iii) ω > n
2
.

Note that Theorem 2.1 doesn’t cover the case k ≥ 2ω.

Besides the cases in Theorem 2.1 we establish Conjecture 1 for k sufficiently large. In this
case we have a more general result for t–intersecting systems.

Theorem 2.2 For 1 ≤ t ≤ ω and k ≥ ko(ω, t)

Jt(n, k, ω) =

{

M(n − t, k, ω − t) =
(

k
ω−t

)
, if k ≤ n − t

(
n−t
ω−t

)
, if k > n − t.

To prove these theorems we use several auxiliary results derived in sections 7, 8 and also
results and tools from [7]. However, the main auxiliary result is a LYM-type inequality
proved in Section 7. It should be also noted that the shifting technique used in Part 1 does
not seem to work here.

7 Main auxiliary result

Recall the notion of a chain and antichain for set systems, (translated into the language of
(0, 1)–vectors). A ⊂ E(n) is called a chain of length |A| if an ≥ bn or an ≤ bn holds for all
an, bn ∈ A (here we mean the componentwise inequality, which corresponds to an inclusion
for the corresponding sets). A chain of length n + 1 is called maximal. Also A ⊂ E(n) is an
antichain if it contains no chain of length two.
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Given a1, . . . , an, λ ∈ R+ let X ⊂ E(n) be the (0, 1)–solutions of the equation

n∑

i=1

aixi = λ. (7.1)

Clearly for any such equation (7.1) the set of solutions X corresponds to some antichain
(whereas the opposite is not true).

Recall now the well known LYM inequality (see e.g. [10]), which says that for any antichain
A ⊂ E(n) (in particular for X)

∑

vn∈A

1
(

n
‖vn‖

) ≤ 1 (LYM inequality), (7.2)

where ‖vn‖ denotes the number of 1’s in vn.

Equality in (7.2) holds iff A = E(n, i) for some i ∈ [n]. For the solutions of (7.1) this means
that a1 = a2 = · · · = an. What can we say in the case when not all ai’s are equal? Can we
improve (7.2) in this case?

Define αi , |{xn ∈ X : ‖xn‖ = i}|, that is αi = |X ∩ E(n, i)|.
Lemma 2.1. (LYM–type inequality for equations) Assume in (7.1) ai 6= aj for some
i, j ∈ [n], and

∑n
i=1 ai 6= λ. Then

∑

xn∈X

1
(

n
‖xn‖

) ≤ n − 1

n
(7.3)

or equivalently
n∑

i=1

αi
(

n
i

) ≤ n − 1

n
.

Proof. W.l.o.g. let a1 > a2. Let Cn be the set of maximal chains in E(n), and let C∗
n be the

set of maximal chains, which do not meet any member of X, that is the elements ( maximal
chains ) of Cn which do not contain a solution of (7.1).

We claim that
|C∗

n| ≥ (n − 1)! (7.4)

and proceed by induction on n ≥ 2.

Induction beginning: n = 2.

We have a1 6= a2 and a1 + a2 6= λ. Clearly there exists at most one solution of (7.1):
10 or 01, since 00 and 11 are not solutions. Hence |C∗

2 | ≥ 1 (since either {00, 10, 11} or
{00, 01, 11} ∈ C∗

2 .

Induction step: n → n + 1.

Partition Cn+1 into (n − 1)! “equivalent” classes S1, . . . ,S(n−1)!, with |Si| = n(n + 1); (i =
1, . . . , (n− 1)!) in the following way. Let A be a maximal chain in E(n+1), i.e. |A| = n+2.
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Denote by A0 the set of all vectors obtained from A by deletion of the first two coordinates.
Clearly |A0| = n; moreover A0 is a maximal chain in E(n − 1). We call A0 the kernel of A.
Consider now the set of all maximal chains in E(n+1), which have a given kernel. There are
n(n + 1) such maximal chains which we join into one class of maximal chains Si. There are
(n−1)! distinct kernels, so we get a partition of Cn+1 into (n−1)! classes S1, . . . ,S(n−1)!. We
call them equivalent because the property of a class we are going to prove does not depend
on the choice of a class. Note that to prove the claim (7.4) it suffices to show that each class
Si contains at least n “forbidden” chains, i.e. chains from C∗

n+1.

This was shown to be true for n = 2 where we have only one class S1 consisting of two
maximal chains and the kernel A0 = ∅. Thus we proceed assuming that this property holds
for the partition of Cn into (n − 2)! equivalent classes. For convenience here we represent
each maximal chain A = {vn

1 , . . . , vn
n+1} ⊂ E(n), with ‖vn

i ‖ = i− 1 (i = 1, . . . , n + 1), by the
(n + 1) × n array with the vector vn

i as its i–th row. W.l.o.g. let S1 be the class with the
following kernel

x3 x4 · · · xn+1

0 0 0 · · · 0 0
1 0 0 · · · 0 0
1 1 0 · · · 0 0
· · · · · · · ·
1 1 1 · · · 1 0
1 1 1 · · · 1 1







(n − 1)–chain.

Define the subclass S ′
1 ⊂ S1 by S ′

1 =
{
A ∈ S1 : xn+1 = 0 ∀(x1, . . . , xn+1) ∈ (A r {1n+1})

}
,

where 1n+1 is the all one vector. Note that |S ′
1| = n(n − 1). Clearly deleting the last row

and the last column in any member of S ′
1 we get a maximal chain from Cn.

We distinguish between two cases.

Case 1:
∑n

i=1 ai 6= λ, i.e. (11 . . . 10) /∈ X.

In this case we can apply the induction hypothesis to S ′
1 (more precisely to the restriction

of S ′
1 on coordinates x1, . . . , xn) considered as a subclass of Cn. By induction hypothesis S ′

1

contains at least n−1 elements from C∗
n+1. Let us show that S1 contains one more forbidden

chain B ∈ S1 r S ′
1 (B ∈ C∗

n+1).

Subcase a): for some 1 ≤ t ≤ n there exists

xn = (x1, x2, . . . , xt+1, . . . , xn) = (0 1 . . . 1
︸ ︷︷ ︸

t

0 . . . 0) ∈ X.

Since a1 > a2, it is not hard to see that the following chain B ∈ S1 r S ′
1,
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B =

x1 x2 x3 · · · xt · · · xn+1

0 0 0 0 · · · 0 0 · · · 0
0 0 1 0 · · · 0 0 · · · 0
· · · · · · · · · · · · ·
0 0 1 1 · · · 1 0 · · · 0
1 0 1 1 · · · 1 0 · · · 0
1 1 1 1 · · · 1 0 · · · 0
· · · · · · · · · · · · ·
1 1 1 1 · · · 1 1 · · · 1

is from C∗
n+1.

Subcase b): for every 1 ≤ t ≤ n

xn+1 = (x1, x2, . . . , xt+1, . . . , xn+1) = (0 1 . . . 1
︸ ︷︷ ︸

t

0 . . . 0) /∈ X.

Then the following chain B ∈ S1 r S ′
1,

B =

x1 x2 x3 · · · xn+1

0 0 0 0 · · · 0
0 1 0 0 · · · 0
0 1 1 0 · · · 0
· · · · · · ·
0 1 1 1 · · · 1
1 1 1 1 · · · 1

does the work, i.e. B ∈ C∗
n+1.

Case 2:
∑n

i=1 ai = λ, i.e. (11 . . . 10) ∈ X.

In this case we cannot use the induction hypothesis, but now we will describe a direct
construction of at least n forbidden maximal chains.

Consider the following chain
x1 x2 · · · xn+1

0 0 1 · · · 1
0 1 1 · · · 1
1 0 1 · · · 1 .

(7.5)

Clearly we can have at most one vector out of these three as a solution of our equation (7.1),
since a1 6= a2.

Subcase a): none of the vectors from (7.5) is in X.

Consider then the maximal chains A1, . . . , An ∈ S1 r S ′
1 shown below. Note that in each Ai

(i = 1, . . . , n) the first coordinate x1 gets the value x1 = 1 first time in the (n + 2 − i)–th
member (row) of Ai.
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A1 =

0 0 0 0 · · · 0
0 0 1 0 · · · 0
· · · · · · · ·
0 0 1 1 · · · 1
1 0 1 1 · · · 1
1 1 1 1 · · · 1

A2 =

0 0 0 0 · · · 0
0 0 1 0 · · · 0
· · · · · · · ·
0 0 1 1 · · · 1 0
1 0 1 1 · · · 1 0
1 0 1 1 · · · 1 1
1 1 1 1 · · · 1 1

· · · An =

0 0 0 0 · · · 0
1 0 0 0 · · · 0
1 0 1 0 · · · 0
· · · · · · · ·
1 0 1 1 · · · 1 0
1 0 1 1 · · · 1 1
1 1 1 1 · · · 1 1

Consider also the maximal chains B1, . . . , Bn ∈ S1 r S ′
1, where Bi (i = 1, . . . , n) is obtained

from Ai by transposition of the first two coordinates.

B1 =

0 0 0 0 · · · 0
0 0 1 0 · · · 0
· · · · · · · ·
0 0 1 1 · · · 1
0 1 1 1 · · · 1
1 1 1 1 · · · 1

B2 =

0 0 0 0 · · · 0
0 0 1 0 · · · 0
· · · · · · · ·
0 0 1 1 · · · 1 0
0 1 1 1 · · · 1 0
0 1 1 1 · · · 1 1
1 1 1 1 · · · 1 1

· · · Bn =

0 0 0 0 · · · 0
0 1 0 0 · · · 0
0 1 1 0 · · · 0
· · · · · · · ·
0 1 1 1 · · · 1 0
0 1 1 1 · · · 1 1
1 1 1 1 · · · 1 1

Observe now that all 2n maximal chains defined above are from C∗
n+1. This is clear since all

vectors contained in A1, . . . , An, B1, . . . , Bn, except of those which are from chain (7.5), are
“covered” by the vector (1 . . . 10).

Subcase b): (101 . . . 1) ∈ X.

Then the chains A1, . . . , An are forbidden.

Symmetrically if (011 . . . 1) ∈ X, then B1, . . . , Bn are forbidden.

Subcase c): (001 . . . 1) ∈ X.

Then except for the A1 and B1 all 2(n − 1) remaining maximal chains are forbidden.

Thus we have proved that in S1 there are at least n maximal chains from C∗
n+1. Note also

that all our arguments in this proof did not depend on the choice of an equivalent class Si,
i = 1, . . . , (n − 1)!.

This means that for given n the total number of forbidden chains |C∗
n| ≥ (n − 1)(n − 2)!,

completing the proof of the claim (7.4).

Since |Cn| = n!, the number of maximal chains containing elements from X (solutions of
equation (7.1))

|Cn| − |C∗
n| ≤ n! − (n − 1)! = (n − 1)(n − 1)!

On the other hand there are exactly i!(n − i)! maximal chains containing a given vector xn

with ‖xn‖ = i, and each maximal chain contains at most one element from X. Therefore we
have

n∑

i=1

αi · i(n − i)! ≤ (n − 1)(n − 1)!,
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or equivalently
n∑

i=1

αi
(

n
i

) ≤ n − 1

n
.

¤

Clearly Lemma 2.1 implies

Corollary 2.1. Under the hypothesis of Lemma 1

|X| ≤
(

n
⌊

n
2

⌋

)
n − 1

n
. (7.6)

A refined version of Corollary 2.1 is the following.

Lemma 2.1*. Assume w.l.o.g. that a1 ≥ a2 ≥ · · · ≥ an = 1, and let N(n) be the maximum
number of (0, 1)–solutions of the equation

a1x1 + · · · + anxn = λ (7.7)

among all choices of a1, . . . , an, λ ∈ R+ with ai 6= aj for some i, j ∈ [n]. Then

(i)

N(n) =

{(
n

n−2

2

)
, if 2 | n

2
(

n−1
n−3

2

)
, if 2 ∤ n, n ≥ 3.

(7.8)

(ii) The bound (7.8) is attained if and only if

a1 = 2, a2 = · · · = an = 1; λ =

{
n
2

or n+2
2

, if 2 | n
n+1

2
, if 2 ∤ n,

.

or

n ∈ {3, 4}, a1 = a2 > 1, a3 = an = 1, λ = a + 1.

Proof. Taking a1 = 2, a2 = · · · = an = 1, λ =
⌈

n+1
2

⌉
we see that the RHS of (7.8) is a lower

bound for N(n).

Let X ⊂ E(n) be the set of solutions of (7.7), so |X| = N(n).

Case 2 | n. Setting n = 2ℓ, by Lemma 2.1 we have

2ℓ∑

i=0

αi
(
2ℓ
i

) ≤ 2ℓ − 1

2ℓ
. (7.9)

Let us first estimate αℓ, that is the size of the set of solutions X ′ ⊂ X of equations

n∑

i=1

aixi = λ

n∑

i=1

xi = ℓ. (7.10)
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Claim. αℓ ≤
(
2ℓ−1
ℓ−1

)
, for ℓ > 1.

Proof. Since a1 ≥ a2 ≥ · · · ≥ an = 1, equations (7.10) can be transformed to the following

b1x1 + · · · + bmxm = λ′

x1 + · · · + xn = ℓ, (7.11)

where bi = ai − 1, i = 1, . . . ,m, λ′ = λ − ℓ, 1 ≤ m ≤ n − 1. Suppose first, there are two
distinct elements among {b1, . . . , bm}. Then by Corollary 2.2 the number of solutions of the
first equation of (7.11) is upper bounded by

(
m

⌊m
2 ⌋

)
m−1

m
. This clearly implies that

|X ′| ≤ m − 1

m

(
m

⌊
m
2

⌋

)(
n − m
⌊

n−m
2

⌋

)

.

It can be verified that

m−1
m

(
m

⌊m
2 ⌋

)( n−m

⌊n−m
2 ⌋

)
≤ max

1≤m≤n−1

m−1
m

(
m

⌊m
2 ⌋

)( n−m

⌊n−m
2 ⌋

)
= 2ℓ−3

2ℓ−2

(
2ℓ−2
ℓ−1

)(
2
1

)
<

(
2ℓ−1
ℓ−1

)
.

Let now b1 = · · · = bm, which means that a1 = · · · = am , a > 1, am+1 = · · · = an = 1.

To complete the proof of the claim we need the following simple facts.

Fact 1. Given integers 1 ≤ m ≤ n − 1 we have

a)
(

m
⌊

m
2

⌋

)(
n − m
⌊

n−m
2

⌋

)

>

(
n − 1
⌊

n−1
2

⌋

)

(7.12)

if and only if 2 | n, m = 2 (m = n − 2), or n = 2m = 8.

b)
(

m
⌊

n
2

⌋

)(
n − m
⌊

n−m
2

⌋

)

=

(
n − 1
⌊

n−1
2

⌋

)

(7.13)

if and only if 2 ∤ n, m = 2 (m = n − 2), or m = 1 (m = n − 1).

Fact 2. Given integer ℓ ≥ 2 we have

2

(
2ℓ − 2

ℓ − 1

)

+ 2

(
2ℓ − 2

ℓ − 3

) {

<
(

2ℓ
ℓ−1

)
, if ℓ > 2

=
(

2ℓ
ℓ−1

)
, if ℓ = 2.

Clearly (7.12) and (7.13) imply that to prove the claim it suffices to consider the cases m = 2,
m = n − 2 and n = 2m = 8.

Suppose m = 2. Then (7.11) can be written as

(a − 1)x1 + (a − 1)x2 = λ − ℓ

x1 + · · · + xn = ℓ. (7.14)
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Note that in order that |X ′| = αℓ >
(
2ℓ−1
ℓ−1

)
holds, the first equation of (7.14) must have two

solutions (otherwise |X ′| ≤
(
2ℓ−2
ℓ−1

)
).

Hence if |X ′| >
(
2ℓ−1
ℓ−1

)
, then we must have λ− ℓ = a− 1. This means that the equation (7.7)

is of the form
ax1 + ax2 + x3 + · · · + xn = ℓ + a − 1.

Now an easy calculation shows that

|X| ≤2

(
2ℓ − 2

ℓ − 1

)

+

(
2ℓ − 2

ℓ − 1 + a

)

+

(
2ℓ − 2

ℓ − 1 − a

)

=

2

{(
2ℓ − 2

ℓ − 1

)

+

(
2ℓ − 2

ℓ − 1 − a

)}

≤ 2

{(
2ℓ − 2

ℓ − 1

)

+

(
2ℓ − 2

ℓ − 3

)}

.

In view of Fact 2 we now conclude that for ℓ > 2

|X| <

(
2ℓ

ℓ − 1

)

≤ N(n),

a contradiction with the assumption |X| = N(n).

In the case ℓ = 2 we have |X| =
(

2ℓ
ℓ−1

)
= 4, moreover this can be achieved for any positive

a 6= 1 and λ = a + 1. Similarly observe that for the case m = n − 2 we have

|X| ≤ 2

(
2ℓ − 2

ℓ − 1

)

<

(
2ℓ

ℓ − 1

)

, if ℓ > 2.

The same can be shown for n = 2m = 8. This completes the proof of the claim. ¤

Let us rewrite (7.9) as
ℓ−1∑

i=1

αi
(
2ℓ
i

) +
2ℓ∑

j=ℓ+1

αj
(
2ℓ
j

) ≤ 2ℓ − 1

2ℓ
− αℓ

(
2ℓ
ℓ

) .

This clearly implies

ℓ−1∑

i=1

αi +
2ℓ∑

j=ℓ+1

αj ≤
2ℓ − 1

2ℓ

(
2ℓ

ℓ − 1

)

− αℓ

(
2ℓ

ℓ−1

)

(
2ℓ
ℓ

) .

Hence
2ℓ∑

i=1

αi ≤
2ℓ − 1

2ℓ

(
2ℓ

ℓ − 1

)

+ αℓ − αℓ

(
2ℓ

ℓ−1

)

(
2ℓ
ℓ

) =
2ℓ − 1

2ℓ

(
2ℓ

ℓ − 1

)

+
1

ℓ + 1
αℓ.

Since αℓ ≤
(
2ℓ−1
ℓ−1

)
(for ℓ > 2) we get

2ℓ∑

i=1

αi ≤
2ℓ − 1

2ℓ

(
2ℓ

ℓ − 1

)

+
1

ℓ + 1

(
2ℓ − 1

ℓ − 1

)

=

(
2ℓ

ℓ − 1

)

=

(
n

n−2
2

)

. (7.15)
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Note that (7.15) implies that |X| <
(

2ℓ
ℓ−1

)
if αℓ <

(
2ℓ−1
ℓ−1

)
. The latter, in view of the claim,

means that except for the case ℓ = 2 one has |X| =
(

2ℓ
ℓ−1

)
only if αℓ =

(
2ℓ−1
ℓ−1

)
. The observation

in the proof of the claim shows that αℓ =
(
2ℓ−1
ℓ−1

)
if and only if m = 1; a1 > 1, a2 = · · · =

an = 1, or m = n − 1; a1 = · · · = an−1 > 1, an = 1.

Observe further that the case m = n − 1 is excluded, since otherwise |X| ≤
(
2ℓ−1
ℓ−1

)
, a

contradiction.

Finally observe that the equation ax1 + x2 + · · · + xn = λ has
(

2ℓ
ℓ−1

)
solutions from E(n) if

and only if a = 2, λ = ℓ + 1. This completes the proof of the case 2 | n.

Case 2 ∤ n. The upper bound (7.8) directly follows from (7.6).

The part (ii) for this case can be easily derived, proceeding along the same lines as for the
even case. ¤

Remark 2.1. In fact the equality (7.8) gives the second biggest size for the (0, 1)–solutions
of the equation (7.1). We emphasize that this is not true for antichains in general, i.e. the
second biggest size of an antichain can exceed the RHS of (7.8).

8 Further preparations

Consider a system of n − k independent equations

〈vn
i , xn〉 = 0; i = 1, . . . , n − k (8.1)

where vn
1 , . . . , vn

n−k ∈ Rn (〈·, ·〉 means the standard inner product).

Consider only the solutions of (8.1) which are in E(n, ω). That is consider the set X of all
solutions of the system {

〈vn
i , xn〉 = 0; i = 1, . . . , n − k

〈1n, xn〉 = ω.
(8.2)

where xn ∈ {0, 1}n and 1n is the all-one vector.

In view of Lemma 1.1, the system (8.2) can be brought to a form

〈un
i , x

n〉 = ci; i = 1, . . . , n − k + 1, (8.3)

where the matrix of coefficients has a positive step form with the step sizes ℓ1 ≥ · · · ≥
ℓn−k+1 ≥ 1.

Lemma 2.2 [7]. For the set X of solutions of (8.2) we have

|X| ≤ max
Σωi=ω

n−k+1∏

i=1

(
ℓi

ωi

)

≤ M(n, k, ω). (8.4)
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Lemma 2.3. Let 2 ≤ ℓ1 ≤ 2k−2ω−2 and ω < k < 2ω ≤ n. Then for the set X of solutions
of (8.2) we have

|X| ≤







(
2k−2ω−2
k−ω−2

)
22ω−k+2, if k > ω + 3

(
4
2

)2
2ω−4, if k = ω + 3

2ω, if k = ω + 2

(8.5)

and equality holds if and only if ℓ1 = 2k − 2ω − 2 or ℓ1 = 2k − 2ω − 3.

Proof. The proof is rather elementary although somewhat tedious and requires a step by
step verification of several inequalities.

First we proof that the maximum is attained when ℓ1 = 2k − 2ω − 2 or 2k − 2ω − 3. The
proof is based on the following inequalities which can be easily verified.

(i) For ℓ > 2ω; ω ≥ 1, r > 1
(

ℓ

ω

)(
2r

r

)

<

(
ℓ + 2r − 1

ω + r

)

. (8.6)

(ii) For ℓ ≥ s ≥ 2
(

ℓ
⌊

ℓ
2

⌋

)(
s

⌊
s
2

⌋

)

<

(
ℓ + 2

⌊
ℓ
2

⌋
+ 1

)(
s − 2

⌊
s
2

⌋
− 1

)

. (8.7)

(iii) For ℓ > 2ω + 1
(

ℓ

ω

)

2 <

(
ℓ + 1

ω + 1

)

. (8.8)

In view of Lemma 2.2 for given ℓ1

|X| ≤
(

ℓ1

ω1

)

M(n − ℓ1, k − ℓ1 + 1, ω − ω1) for some 1 ≤ ω1 ≤
ℓ1

2
.

Now notice that the expression for M(n, k, ω) in Theorem AAK is always of the form
(
2r
r

)
2t

for suitable parameters. Therefore we can write now

|X| ≤
(

ℓ1

ω1

)(
2r

r

)

2t, (8.9)

where ℓ1 + 2r + t − 1 = k and ω1 + r + t ≤ ω.

Suppose now X has maximum cardinality, then in view of (8.6) we have ℓ1 + 2r ≥ 2k − 2ω.

Suppose then that ℓ1 < 2k − 2ω − 3. Then we can see from Theorem AAK that t ≥ 1. This
and (8.8) yield ω1 =

⌊
ℓ
2

⌋
.

But in this case we get a contradiction with (8.7) and the assumption that X is a maximal
set. Thus ℓ1 = 2k − 2ω − 2 or ℓ1 = 2k − 2ω − 3. Denote the RHS of (8.9) by f(ℓ1). Note
further that if ℓ1 = 2k − 2ω − 3 then necessarily ω1 = k − ω − 1 by maximality of X and
(8.8) and therefore f(2k − 2ω − 3) ≤ f(2k − 2ω − 2). Thus we have

|X| =

(
2k − 2ω − 2

ω1

)

M(n′, k′, ω′),
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where n′ = n − 2k + 2ω + 2, k′ = 2ω − k + 3, ω′ = ω − ω1.

Observe also that n′ ≥ 2ω′ and k′ ≤ 2ω′. Moreover since ω1 ≤ k − ω − 1 we have ω′ ≥
2ω − k + 1. We can apply now Theorem AAK to determine M(n′, k′, ω′).

We distinguish between two cases:

a) ω′ = 2ω − k + 1.

Then M(n′, k′, ω′) =
(
4
2

)
22ω−k−1. Furthermore clearly ω1 = k − ω − 1 and hence

|X| =

(
2k − 2ω − 2

k − ω − 1

)(
4

2

)

22ω−k−1. (8.10)

b) ω′ ≥ 2ω − k + 2 ≥ k′ − 1.

Then M(n′, k′, ω′) = 22ω−k+2, which implies that ω1 = k − ω − 2 and hence

|X| =

(
2k − 2ω − 2

k − ω − 2

)

22ω−k+2. (8.11)

Comparing now the RHS of (8.10) with the RHS of (8.11) we get:

1. For k > ω + 4 RHS (8.10) < RHS (8.11)
2. For ω < k < ω + 4 RHS (8.10) > RHS (8.11)
3. For k = ω + 4 RHS (8.10) = RHS (8.11)

This completes the proof of Lemma 2.3. ¤

Lemma 2.4. Let ℓ1 ≥ 2k − 2ω + 1.

Then for the set X of solutions of (8.2) we have

|X| ≤
(

2k − 2ω + 2

k − ω + 1

)

22ω−k−2 (8.12)

and equality holds iff ℓ1 = 2k − 2ω + 1 or 2k − 2ω + 2.

Proof. For ℓ1 ≥ 2k − 2ω + 2 clearly we have

|X| ≤ max
0≤ω1≤ ℓ1

2

(
ℓ1

ω1

)

M(n − ℓ1, k − ℓ1 + 1, ω − ω1).

Since M(n − ℓ1, k − ℓ1 + 1, ω − ω1) ≤ 2k−ℓ1 , we get

|X| ≤ max
0≤ω1≤ ℓ1

2

(
ℓ1

ω1

)

2k−ℓ1 =

(
ℓ1

⌊
ℓ1
2

⌋

)

2k−ℓ1 .

Suppose 2 | ℓ1, then we have

|X| ≤ max
1≤i≤ω−k

(
2k − 2ω + 2i

k − ω + i

)

22ω−k−2i. (8.13)
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But the function in RHS of (8.13) is strictly decreasing with respect to i. This simple fact

together with the identity
(ℓ1

ℓ1
2

)
2k−ℓ1 =

(ℓ1−1
ℓ1
2
−1

)
2k−ℓ1+1 implies that |X| is bounded from above

by the RHS of (8.12). On the other hand one can observe that this bound is attainable if
(and by the statement above only if) ℓ1 = 2k − 2ω + 1 or 2k − 2ω + 2. This completes the
proof. ¤

Our next lemma combines the two previous ones.

Lemma 2.5. Let ω < k < 2ω ≤ n and let ℓ1 6= 2k − 2ω, 2k − 2ω − 1. Then we have

(i) |X| ≤
(
4
2

)2
2ω−4 if k = ω + 3; ω ≥ 4

and equality holds iff ℓ1 = 4 or 3

(ii) |X| ≤
(
2k−2ω+2
k−ω+1

)
22ω−k−2

and equality holds iff ℓ1 = 2k − 2ω + 1 or 2k − 2ω + 2.

Proof. One has only to compare the bounds in Lemmas 2.3 and 2.4. ¤

For our purposes we also need the following sharpening of Lemma 2.2 [7] in a special case.

Lemma 2.6. Let X ⊂ E(n) be the set of solutions of the equation (8.3) given in a positive
step form with step sizes ℓ1, . . . , ℓn−k+1 ≥ 1. Let also the r–th step have two distinct entries.
Then

|X| ≤ ℓr − 1

ℓr

max
Σωi=ω

n−k+1∏

i=1

(
ℓi

ωi

)

≤ ℓr − 1

ℓr

M(n, k, ω). (8.14)

Consider the partition of the coordinate set [n] = N1∪· · ·∪Nn−k+1, with Ni =
[
∑i−1

j=1 ℓj + 1, ℓi

]

,

and let us write each vector xn ∈ X as xn = (xℓ1 , xℓ2 , . . . , xℓn−k+1), where xℓi ∈ E(ℓi) is the
restriction of xn on coordinate subset Ni ⊂ [n] , i = 1, . . . , n − k + 1.

To prove Lemma 2.6 we use the following (more general) version of Lemma 2.2.

Lemma 2.2’ [7]. For the set X of solutions of (8.3) we have

∑

(xℓ1 ,...,xℓn−k+1 )∈X

1
n−k+1∏

i=1

(
ℓi

‖xℓi‖
)
≤ 1. (8.15)

Proof of Lemma 2.6. Define Xi1,...,is to be the restriction of the vectors of X on the subset
Ni1 ∪ · · · ∪ Nis of the coordinate set [n].

For (aℓ1 , . . . , aℓs) ∈ X1,...,s define also

X(aℓ1 , . . . , aℓs) =
{
xn = (xℓ1 , . . . , xℓn−k+1) : xℓi = aℓi , i = 1, . . . , s

}
.

Let us first consider the case r = 1, that is suppose the first step has two distinct entries.
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By Lemma 2.1, for the first equation of (8.3) we can write

∑

xℓ1∈X1

1
(

ℓ1
‖xℓ1‖

) ≤ ℓ1 − 1

ℓ1

. (8.16)

Also in view of (8.15), for each aℓ1 ∈ X1 we have

∑

(xℓ1 ,...,xℓn−k+1 )∈X(aℓ1 )

1
n−k+1∏

i=2

(
ℓi

‖xℓi‖
)
≤ 1. (8.17)

Combining (8.16) and (8.17) (namely multiplying each summand in LHS (8.16) by its cor-
responding sum written in LHS (8.17)) we get

ℓ1 − 1

ℓ1

≥
∑

xℓ1∈X1

∑

(xℓ1 ,...,xℓn−k+1 )∈X(xℓ1 )

1
(

ℓ1
‖xℓ1‖

) · 1
n−k+1∏

i=2

(
ℓi

‖xℓi‖
)

=
∑

xn∈X

1
n−k+1∏

i=1

(
ℓi

‖xℓi‖
)
. (8.18)

Suppose now r ≥ 2. Then in view of (8.18), for each b ∈ X1,...,r−1 we have

∑

(xℓ1 ,...,xℓn−k+1 )∈X(b)

1
n−k+1∏

i=r

(
ℓi

‖xℓi‖
)
≤ ℓr − 1

ℓr

. (8.19)

For the first r − 1 equations we also have (by Lemma 2.2’)

∑

(xℓ1 ,...,xℓr−1 )∈X1,...,r−1

1
r−1∏

j=1

( ℓj

‖xℓj ‖

)
≤ 1. (8.20)

Finally (8.19) and (8.20) imply

ℓr − 1

ℓr

≥
∑

(xℓ1 ,...,xℓr−1 )∈X1,...,r−1

∑

xn∈X(xℓ1 ,...,xℓr−1 )

1
r−1∏

i=1

(
ℓi

‖xℓi‖
)
· 1

n−k+1∏

j=r

( ℓj

‖xℓj ‖

)
=

∑

xn∈X

1
n−k+1∏

i=1

(
ℓi

‖xℓi‖
)
≥ |X|

max
xn∈X

n−k+1∏

i=1

(
ℓi

‖xℓi‖
)
. (8.21)

In particular for X ⊂ E(n, ω) (8.21) implies

ℓr − 1

ℓr

≥ |X|

max
Σωi=ω

n−k+1∏

i=1

(
ℓi

ωi

)
≥ |X|

M(n, k, ω)
.

¤
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9 Proof of Theorem 2.1.

Case (iii): ω > n
2

This case is trivial, because E(n, ω) is intersecting.

Case (ii): k ≤ ω ≤ n
2

This case is also evident since J(n, k, ω) ≤ M(n, k, ω) and (by Theorem AAK) M(n, k, ω) =
M(n − 1, k, ω − 1) = 2k−1. Moreover the family S3 (with |S3| = M(n, k, ω)) in Theorem
AAK is (ω − k + 1)–intersecting.

Thus it remains to prove

Case (i): k < 2ω ≤ 2(k − 1)

Let A ⊂ E(n, ω) be an optimal intersecting family, that is |A| = J(n, k, ω).

The proof consists of two parts.

1. First we show that

|A| ≥ m , 22ω−k−2

(
2k − 2ω + 2

k − ω + 1

)

. (9.1)

Consider the following three sets

A1 = E(2k − 2ω + 2, k − ω + 1) × {01, 10}2ω−k−2 × {1} × {0n−2ω+1},
A2 = E(2k − 2ω + 1, k − ω) × {01, 10}2ω−k−1 × {1} × {0n−2ω},
A3 = E(2k − 2ω + 1, k − ω + 1) × {01, 10}2ω−k−1 × {0n−2ω+1}.

Observe now that

a) dim(A1) = dim(A2) = dim(A3) = k

b) |A1| = |A2| = |A3| = m

c) A1, A2 and A3 are intersecting.

This clearly implies (9.1).

2. Let us show now that |A| ≤ m.

As we mentioned above, A can be viewed to be a subset of X, the set of solutions of a system
of equations (8.3). Rewrite now the system (8.3) in the matrix form

H(x1, . . . , xn)T = (c1, . . . , cn−k+1)
T , (9.2)

so that H has a positive step form with step sizes ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓn−k+1.

Our aim is now to show that ℓ1 = 2k − 2ω + 1 or 2k − 2ω + 2.

The proof consists of several observations on the structure of matrix H.

Claim 1. Each step of H consists of equal elements.
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Proof. Suppose the j–th step has two distinct elements. Then by Lemma 2.6 we get

|X| ≤ max
Σωi=ω

n−k+1∏

i=1

(
ℓi

ωi

)
ℓj − 1

ℓj

≤ M(n, k, ω)
ℓj − 1

ℓj

< M(n, k, ω)
2k − 2ω + 1

2k − 2ω + 2

= 22ω−k

(
2k − 2ω

k − ω

)
2k − 2ω + 1

2k − 2ω + 2
= m,

a contradiction with |A| ≥ m. ¤

Thus w.l.o.g. we can assume that the entries of all “steps” consist of only ones.
Suppose now, for a contradiction, |A| > m.

Then Lemma 2.5 implies that the only possible values for ℓ1 are 3 or 4, if k = ω + 3 and
2k − 2ω or 2k − 2ω − 1, if k 6= ω + 3. Let us consider the case k 6= ω + 3, ℓ1 = 2k − 2ω.

In view of Claim 1 the set X of all solutions of the system (8.3) is a subset of a direct product

E(ℓ1, ω1) × E(n − ℓ1, ω − ω1),

for some 0 ≤ ω1 = c1 ≤ ω determined from the first equation of (8.3) : x1 + · · · + xℓ1 = c1.

This with Theorem AAK implies

|X| ≤
(

2k − 2ω

ω1

)

M(n − 2k + 2ω, 2ω − k + 1, ω − ω1) =

(
2k − 2ω

ω1

)

22ω−k.

Simple calculations show that for ω1 6= k − ω we have

(
2k − 2ω

ω1

)

22ω−k <

(
2k − 2ω + 2

k − ω + 1

)

22ω−k−2 = m.

Thus we conclude that ω1 = k − ω. Similarly one can show that ω1 =
⌊

ℓ1
2

⌋
for other cases.

Next let us show that providing |X| ≥ m we must have ℓ2 = · · · = ℓ2ω−k+1 = 2, ℓ2ω−k+2 =
· · · = ℓn−k+1 = 1. Suppose ℓ2 ≥ 3. Then using Lemma 2.2 (with some direct calculations)
we can verify that

|X| ≤
(

2k − 2ω

k − ω

)

max
Σωi=2ω−k

n−k+1∏

i=2

(
ℓi

ωi

)

≤
(

2k − 2ω

k − ω

)(
ℓ2

⌊
ℓ2
2

⌋

)

22ω−k−⌊ ℓ2
2 ⌋ <

(
2k − 2ω + 2

k − ω + 1

)

22ω−k−2 = m,

a contradiction.

The same fact can be shown for the case ℓ1 = 2k − 2ω − 1.
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Let H ′ be the submatrix of H formed by the first 2ω − k + 1 rows and the first 2ω columns
of H. By our observations above H ′ has a positive step form with ℓ1 = 2k − 2ω, ℓ2 = · · · =
ℓ2ω−k+1 = 2, moreover the entries of all steps are ones.

Our last discovery is

Claim 2. The columns of H ′ corresponding to each step are equal. In other words H ′ can
be transformed to the positive step form (with ℓ1 = 2k − 2ω, ℓ2 = · · · = ℓ2ω−k+1 = 2) where
all steps consist of ones and all other entries of H consist of zeros.

Proof. First we prove the claim for the steps of size two. Let r1, . . . , r2ω−k+1 be the rows of

H ′ and let h1, . . . , h2ω be the columns of H ′. Let also

(
1 1 0 0
a b 1 1

)

be the submatrix formed

by the rows r2, r3 and the columns h2k−2ω+1, . . . , h2k−2ω+4 (i.e. columns corresponding to the
second and third steps).

If a < b then the latter submatrix can be transformed (by linear combinations of rows r2

and r3) to

(
1 1 0 0
0 b − a 1 1

)

.

Exchanging now the second and third rows (of the transformed matrix) we get a contradiction
with the assertion that the size of each step, except possibly for the first one, must have size
not greater than two. This clearly implies that a = b and the same fact holds for all other
steps of size two.

Let now T =

(
1 . . . 1 0 0
a1 . . . a2k−2ω 1 1

)

be the submatrix formed by the first two rows and

the first two steps. W.l.o.g. we may assume that 0 = a1 ≤ · · · ≤ a2k−2ω.

Let also ℓ′1 be the number of nonzero entries in the second row of T . Then exchanging the
first two rows of H we obtain a new matrix of positive step form with the first two steps of
sizes ℓ′1 and ℓ′2 = 2k − 2ω + 2 − ℓ′1, respectively.

In view of Claim 1 the first step must consist of ones. Suppose now ℓ′1 /∈ {2, 2k− 2ω}. Then
by (7.12) and (7.13)

|X| ≤
(

ℓ′1
⌊

ℓ1
2

⌋

)(
ℓ′2

⌊
ℓ2
2

⌋

)

22ω−k−1 ≤
(

2k − 2ω + 2

k − ω + 1

)

22ω−k−2,

a contradiction with |X| > m.

Next observe the case ℓ′1 = 2k − 2ω, that is a1 = a2 = 0, a3 = · · · = a2k−2ω = 1. Consider
the first two equations of our system (8.3). In view of our observations above it has the form

x1 + · · · + x2k−2ω = c1

x3 + · · · + x2k−2ω+2 = c2. (9.3)

We observed before that |X| > m holds only if c1 = k − ω. Therefore by symmetry (ex-
changing the first two rows) c2 = k − ω as well. Let Y ⊂ E(n) be the set of solutions of
(9.2). Observe that

|Y | = 4

(
2k − 2ω − 2

k − ω − 1

)

+ 2

(
2k − 2ω − 2

k − ω

)

=

(
2k − 2ω

k − ω

)

+ 2

(
2k − 2ω − 2

k − ω − 1

)

.
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Hence

|X| ≤ |Y | · 22ω−k−1 =

{(
2k − 2ω

k − ω

)

+ 2

(
2k − 2ω − 2

k − ω − 1

)}

22ω−k−1. (9.4)

It is not hard to verify now that the

RHS (9.3) <

(
2k − 2ω + 2

k − ω + 1

)

22ω−k−2 = m,

a contradiction.

Hence we conclude that ℓ′1 = 2, that is a1 = · · · = a2k−2ω = 0.

Clearly the same can be shown for all other rows of H ′.
This completes the proof of Claim 2. ¤

Observe now that Claim 2 implies that |X| > m only if equation (9.1) has the form

H(x1, . . . , xn)T = (k − ω, 1, . . . , 1)T . (9.5)

The latter clearly means that for ℓ1 = 2k − 2ω one has |X| > m only if

X ⊂ E(2k − 2ω, k − ω) × E(2, 1)2ω−k × {0n−2ω}. (9.6)

In fact we can show (by a counting argument) that we have equality in (9.6), however this
is not necessary here.

Similarly (repeating all the steps) one can easily show that for ℓ1 = 2k − 2ω − 1, one has
|X| > m only if

X ⊂ E(2k − 2ω − 1, k − ω − 1) × E(2, 1)2ω−k+1 × {0n−2ω−1},

and for the other possible cases , ℓ1 = 4 or 3 (with k = ω + 3), one has |X| ≥ m only if X
is in one of the following configurations:

E(4, 2)2 × E(2, 1)ω−4 × {0n−2ω}, or

E(4, 2) × E(3, 1) × E(2, 1)ω−3 × {0n−2ω−1}, or

E(3, 1)2 × E(2, 1)ω−2 × {0n−2ω−2}.

In other words we have proved that |X| ≥ m only if X is a direct product with the specified
parameters. It is easy to show that for an intersecting system A in a direct product X =
E(ℓ1, ω1) × · · · × E(ℓr, ωr) with 2ωi ≤ ℓi(i = 1, . . . , r) we have

|A| ≤ 1

2
|X|. (9.7)

This is also a special case of a result in Frankl [13], where the maximum size of an intersecting
family A is determined for direct products (for the complete solution of the t–intersection
problem for direct products see [6]).
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We now turn to our intersecting system A ⊂ X. One can easily verify that for all possible
configurations X (with |X| ≥ m) described above we have 1

2
|X| < m.

Hence by (9.7) for a corresponding intersecting system A we have

|A| < m =

(
2k − 2ω + 2

k − ω + 1

)

22ω−k−2,

a contradiction. Thus the only configuration which can achieve this bound must have ℓ1 =
2k − 2ω + 1 or ℓ1 = 2k − 2ω + 2. This completes the proof of Theorem 2.1. ¤

Remark 2.2. Using the same approach as in the proof of Theorem 2.1 it is not difficult to
show that there are no other optimal intersecting systems except for the systems A1, A2, A3

described above.

10 Proof of Theorem 2.2.

We need some new definitions and notation. A t–intersecting family F ⊂
(
[n]
ω

)
is called

nontrivial if
∣
∣
⋂

F∈F
F

∣
∣ < t.

Define the following set systems

νt(n, ω) =

{

F ∈
(

[n]

ω

)

: |[1, t + 2] ∩ F | ≥ t + 1

}

µt(n, ω) =

{

F ∈
(

[n]

ω

)

: [1, t] ⊂ F, F ∩ [1 + t, ω + 1] 6= ∅

}

∪
{
[1, ω + 1] r {i} : i ∈ [1, t]

}
.

Denote also by Jt(n, ω) the maximum possible size of a nontrivial t–intersecting family
F ⊂

(
[n]
ω

)
. Hilton and Milner [15] determined J1(n, ω), Frankl [12] extended the result to

Jt(n, ω) when n is big enough and finally a solution for all n was given in [3]. We use here

Theorem F [12]. For 1 ≤ t ≤ ω ≤ n, n > n1(ω, t) (suitable) we have

(a) for t + 1 ≤ ω ≤ 2t + 1
Jt(n, ω) = |νt(n, ω)|,

(b) for ω > 2t + 1
Jt(n, ω) = |µt(n, ω)|.

Let us turn now to the language of (0,1)–vectors.

Let A ⊂ E(n, ω) be an optimal t–intersecting system with dim(A) = k. Consider first the
case k ≤ n− t. Note that if A is a t–star then |A| = M(n− t, k, ω− t). Therefore let A be an
optimal nontrivial t–intersecting system. Observe now that n ≤ kω. This is clear, because
otherwise dim(A) > k.
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We have

|νt(n, ω)| =

(
t + 2

t + 1

)(
n − t − 2

ω − t − 1

)

+

(
n − t − 2

ω − t − 2

)

|µt(n, ω)| =

(
n − t

ω − t

)

−
(

n − ω − 1

ω − t

)

+ t. (10.1)

Then given ω and t clearly |νt(n, ω)| and |µt(n, ω)| = O(nω−t−1). Consequently |νt(n, ω)| and
|µt(n, ω)| = O(kω−t−1), since n ≤ kω. Thus by the assumption |A| = O(kω−t−1). However
M(n− t, k, ω− t) =

(
k

ω−t

)
∼ ckω−t (for some constant c), a contradiction with the optimality

of A. This means that for k large an optimal t–intersecting system A ⊂ E(n, ω) with
dim(A) = k forms a t–star. Hence for k ≥ ko(ω, t) and k ≤ n − t we have

Jt(n, k, ω) = M(n − t, k, ω − t) =

(
k

ω − t

)

.

The case k > n − t directly follows from Theorem EKR. ¤
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