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Abstract— The concept of oblivious transfer capacity has been
recently introduced by Nascimento and Winter. We give an upper
bound to this capacity, both for source and channel models, and
prove that it is tight for a class of channels. For other cases,
lower bounds are provided. The tools include known results on
secrecy capacity of simple source and channel models.

I. INTRODUCTION

Oblivious transfer (OT) is a fundamental concept in cryp-
tography, see for example [4]. The term has been used with
different meanings, including a simple transmission over a
binary erasure channel. In this paper, unless stated otherwise,
OT means “1-2 oblivious string transfer” [4]. Alice has two
length-k binary strings Ky and K; and Bob has a single bit
Z as inputs; an OT protocol should let Bob learn Kz while
Alice remains ignorant of Z and Bob of K, (Z = 1 — Z).
The Shannon-theoretic approach is used, thus ignorance means
negligible amount of information; formal definitions are given
in Section II.

Both source and channel models of OT are considered. In
a source (or noisy correlations) model, a discrete memory-
less multiple source (DMMS) with two component sources
is given, whose outputs X" = (Xy,...,X,) and Y™ =
(Y1,...,Y,) are available to Alice respectively Bob. In a
channel model, a discrete memoryless channel (DMC) is
given, Alice selects the inputs X" and Bob observes the
outputs Y. In both models, Alice and Bob may use a public
noiseless channel for unrestricted communication. The cost of
OT is measured by the number n of observed DMMS outputs
or of DMC transmissions; the public channel use is considered
free.

The OT capacity Cor of a DMMS of DMC is the limit as
n — oc of % times the largest k for which OT is possible with
“cost” n. This concept has been introduced by Nascimento
and Winter [7] who also proved Cor > 0 under general
conditions. For previous results, showing that a DMMS or
DMC makes OT possible for any k if n is sufficiently large
(but not that % may be bounded away from (O while the
conditions (1)-(3) below are satisfied) see the references in [7].
A related concept of commitment capacity has been introduced
and characterized in [8].

In the literature, much of the effort is devoted to designing
OT protocols that prevent a dishonest Alice from learning
about Bob’s bit Z, or a dishonest Bob from obtaining informa-
tion also about K z, if they violate the agreed upon protocol.
This issue is not addressed here, both Alice and Bob are
assumed to honestly follow the protocol. This simplification
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facilitates gaining basic insights, expected to be relevant also
in dealing with more practical but more difficult situations
where protection against cheating is also required. Of course,
upper bounds derived for the simpler case are even more valid
in those situations.

We derive a general upper bound to Cor and show the
tightness of this bound for a class of channels. For other cases,
we give lower bounds to C'or which do not coincide with the
upper bound. A necessary and sufficient condition for Cor >
0 is also given which is similar to but not the same as the
condition in [7]; the difference is due to our not dealing with
"distrustful cryptography”.

II. STATEMENT OF RESULTS

An (n, k) protocol for OT via a DMC is described as
follows. Let Ky, K1,Z, and M, N be independent random
variables (RVs), K and K uniformly distributed on {0, 1}#,
and 7Z on {0,1}, while M and N (serving for randomization
for Alice resp. Bob) are arbitrary. At times ¢t = 1,...,n Alice
transmits a RV X; over the DMC, Bob receiving Y;. Here X; is
chosen as a function of Ky, K1, M, and of the previous public
communication Ft~! = Fy...F,_; where F; denotes the
public communication in the time interval (7,7 + 1) that may
be interactive: F; is a sequence of messages sent alternatingly
by Alice and Bob, those by Alice are functions of Kg, K1, M,
and of the messages previously received by her, those by Bob
are functions of Z, IV, and of the messages previously received
by him, including V'# = Y7 ...Y;. Finally, Bob produces an
estimate kz of Kz where f(a and kl are functions of Y, N,
and of the total public communication F = F; ... F,.

An (n,k) protocol for OT via a DMMS is similar but
simpler: then X™ Y™ are the length-n outputs of the two
component sources, independent of Ky, K1, Z, M, N, and the
public communication takes place after Alice and Bob have
observed X" resp. Y, thus F = F,,.

A positive number R is an achievable OT rate for a DMMS
of DMC if, for n sufficiently large, there exist (n, k) protocols
with % — R letting Bob learn Kz, that is

PriK; #Kz} =0 (D

while Alice remains ignorant of Z:
IHKyKiMX"FAZ)—=0 2

and Bob learns nothing about K 5:

I(NY"FAKy| Z)— 0. 3)



The dependence on n of the RVs in (1)-(3) has been
suppressed, to keep the notation transparent.

The OT capacity Cor of a DMMS or DMC is the largest
achievable OT rate, or 0 if no R > 0 is achievable.

Remark. An alternative definition requires convergence
with exponential speed in (1)-(3). The results in this paper
hold also with that definition.

Theorem 1. The OT capacity of a DMMS with generic RVs
XY is bounded above by

min[[(X AY),H(X | Y)]. @

The OT capacity of a DMC is bounded above by the maximum
of (4) for RVs X,Y connected by this DMC.

Remark. This bound holds also for a weaker concept of
OT, requiring Bob to learn or remain ignorant about a single
length-k string of Alice according as Z equals 0 or 1, Alice
remaining ignorant of Z. Also, the strong secrecy” postulated
in (3), see [5], could be relaxed to “weak secrecy”, dividing
the mutual information by k, see Section III.

Theorem 2. For a binary erasure channel with erasure
probability p

COT = mln(l _p7p):

thus the bound in Theorem 1 is tight.

A DMC {W : X — Y} will be called a generalized
erasure channel (GEC) if the output alphabet ) can be
decomposed as Yp U Y* such that W{(y | =) does not depend
onz € X if y € Y*. For a GEC, we denote Wy(y | z) =
#W(y | z), z € X,y € Vo, where p* is the sum of
Wy | =) for y € Y* (not depending on z). The Shannon
capacity of the DMC {W; : X — Yy} is denoted by C(Wp).

Theorem 3. For a GEC, the bound in Theorem 1 is tight if
p* > 1/2, then Cor = (1 —p*)C(Wy). If 0 < p* < 1/2, a
lower bound is Cor > p*C(Wp).

Remark. The latter bound is not tight in general, see
Example 2 in Section IV.

Theorem 4. The OT capacity of a DMMS or DMC is
positive if and only if there exist x' and 7 in X such that the
joint probabilities Pxvy (x',y) and Pxvy(x”,y), respectively
the conditional probabilities Wy | ') and W (y | ), are
not equal for all y € Y, and are simultaneously positive for
some y € Y.

Remark. Theorem 4 says that the positivity of the upper
bound in Theorem 1, after merging identical rows (if any) of
the matrix of joint respectively conditional probabilities, is
necessary and sufficient for positive OT capacity, see Section
111

III. PROOF SKETCHES

Lemma 1.For arbitrary RVs U,V, Z with values in finite
sets U, V, Z, and any zg,z1 in Z with Pr{Z = z} = p >
0, Pr{iZ=z}=¢>0,

|[HU |V, Z=20) — HU |V, Z = z1)|

< c/IUV NZ)log, | U | +h (min [C\/m’ %D

where h(t) = —tlog, t— (1—1)log,(1—1t), and ¢ is a constant
depending on p and q.

The proof, whose details are omitted, uses the Pinsker in-
equality to bound the variation distance of the two conditional
distributions of UV, given Z = z respectively Z = z;. Then
the conditional entropy difference is bounded as in [2]. Though
the value of ¢ is not relevant here, by careful calculation
(including an improvement of the bound in [2]) we have shown

_ (pt+g)In2
thatec =3 o

used below, a suitable constant factor is ¢ = 3v/21n 2.

suffices. Thus, for the case p = ¢ = 1/2

Proof of Theorem 1. Concentrating on channel models, we
sketch the proof of the following stronger result: if there exist
(n, k) protocols with £ — R and

PriKo# Ko | Z=0} =0 (5)
I(KoX"FAZ) =0 (6)

1
SINY"FAKy | Z7=1) =0 (7

then R does not exceed the maximum of (4).
Now, (6) implies by Lemma 1 that

H(Ky | X"F,Z=0)— H(K, | X"F,Z =1) = o(k) (8)

H(Ky |F,Z=0)—H(K, |F,Z=1)=o(k). (9

From (9) and the consequence I{F A Ko | Z = 1) = o(k) of
(7), it follows due to H(K, | Z=0)=H(K, | Z=1)=k
that

I{(KgANF | Z=0)=o0(k). (10)

If (5) and (10) held without conditioning on Z = 0 then K,
would be a secret key for Alice and Bob, with (weak sense)
security from an eavesdropper observing the public commu-
nication F. The rate % of such secret key is asymptotically
bounded [5], [1] as

Eo1g
fSEZI(Xt/\YtH—En, en — 0.

n
t=1

(I

The actual (5) and (10) imply the analogue of (11) with
I(X; AY:) replaced by I(X; AY; | 7 = 0). This replacement,
however, has an asymptotically negligible effect since, due to
the consequence max; I(X; A Z) — 0 of (6), the conditional
distribution of X; on the condition Z = 0 differs negligibly
from the unconditional distribution. Thus, (5)-(7) imply (11).

It is not hard to show that Ky - X"F — NY"FZ is a
Markov chain. This, (5), and Fano’s inequality give

H(Ko | X"F, 7 =0) < H(Ko | NY"F, 7 = 0) = o(k).
(12)



Then
k=H(Ko|Z = ) ZH(K, | NY"F, Z = 1) + o)

<H(Ky | X™Y"F,Z=1)+H(X" | NY"F, Z = 1)+o(k)

(i) n

< H(X™ | Y™, Z = D4o(k) <> H(X, | Yy, Z = 1)+o(k)
t=1

where (i) follows from (7) and (ii) from (8) and (12). In the

last sum, the conditioning on Z = 1 has an asymptotically

negligible effect as before, thus we have

k

n

1 n
<) HXe|Yi) +en, €0, (13)

t=1

Finally the main term in (11) is < I(X7 A Y7) and the
main term in (13) is < H(Xp | Yr) where T is a RV
uniformly distributed on {1,...,n}, independent of the RVs
X;,Y;. Hence, the claim follows from (11), (13).

Proof of Theorem 2. Theorem 1 gives the upper bound
Cor < min(1 —p, p). The following protocol shows that each
R < min(1 — p, p) is an achievable OT rate.

(1) Alice transmits over the DMC n independent equiprobable
bits X™.

(il) Bob determines the set G C {1,...,n} of “good”
positions where no erasure occurred, and selects from G a
random subset of size k = nR, and similarly from the “bad”
set (¢. Denoting by Sy the set of positions selected from &
or (G¢ according as Z = 0 or Z = 1, and by 57 the other set,
Bob tells Alice Sy and S1, not leaking any information on Z.
(iii) Alice adds her strings K; to {X; : ¢t € S;}, i=0,1,
bitwise mod 2, and she reports the sums to Bob.

As Bob knows X; for ¢ € G, he can recover K , but
remains ignorant of K, not knowing X; for t € G°.

Proof of Theorem 3. Due to Theorem 1, it suffices to show
that Cor > min(1 — p*, p*}C(Wy), that is, that R = R'R” is
an achievable OT rate if R’ < min(1—p*,p*), B” < C(Wy).
To this, a DMMS secrecy result [5] [1] will be used: Suppose
Alice and Bob observe [ outputs of the component sources of
a DMMs whose generic RVs have mutual information larger
than R. Then, for I sufficiently large, Alice can securely
transmit k£ = [R bits to Bob via sending a public message,
with negligible probability of error and negligible leak of
information to an eavesdropper who sees the public message
alone.

Now, Alice transmits over the DMC n i.i.d. RVs X, that
achieve Shannon capacity (of both channels W and W,). Then
Bob selects I = nR positions at random from the good set G =
{t:Y: € Vy},as well as from the bad set G¢ = {t: Y; € Y*}.
Calling the resulting sets Sq and .S; as in the previous proof,
Bob tells Alice Sy and S7, leaking no information on 7.

Under the condition 7 = 0, the RVs {(X,Y;) : ¢t € Sp}
represent [ output pairs of a DMMS whose generic RVs have
mutual information C'(Wy), while under the condition Z = 1
these X; and Y; are independent. The joint distributions of
{(X},Y2) : t € S1} under the same conditions coincide with
those of {(X,;,Y;) : t € Sp} as above, reversing 7 = 0 and

7 = 1. Hence, by the cited result and the assumption R” <
C(Wo), there exists a function f on {0, 1}% x X!, where k =
IR’ = nR, with the following properties: If Alice sends the
public messages f(Ko,{X::t € Sp}), fF(K1,{X::t€ S1})
then, in case Z = 0 when Bob knows {Y; : ¢t € Sp}, Bob can
recover K but remains ignorant of K; regarding which he
observes, in effect, the public message only. Similarly, in case
Z =1 Bob can recover K; remaining ignorant of K.

Proof of Theorem 4. If some rows of the matrix of
joint or conditional probabilities are equal then merging
the corresponding elements of A does not change OT
capacity. The necessity part of the assertion follows applying
Theorem 1 after this merging. For sufficiency, concentrate
on channel models. Consider the two-block extension of
the given channel {W} and restrict its input alphabet A2
to X = {(z,2”),(z”,2")}, for z’,z” in the hypothesis. It
follows by that hypothesis and Theorem 3 that the so obtained

channel {W : X — Y?} which is a GEC, has positive OT
capacity. Hence so does also the channel {IW}.

IV. DISCUSSION, EXAMPLES

The OT capacity of discrete memoryless source and channel
models has been studied. A general upper bound, and a
lower bound for generalized erasure channels were given,
determining the OT capacity of binary erasure channels, and
of any GEC with erasure probability > 1/2. For the general
case, lower bounds were shown to follow from those for GECs.
While in proving the upper bound very complex protocols
were admitted, the achievability (lower bound) results use
simple protocols. It remains open whether OT capacity can be
achieved in general with protocols of comparable simplicity,
similarly, for example, to multiterminal secrecy capacities [3].

Protection against cheating has not been addressed. Still, it
is worth noting that while the protocols in Theorems 2 and 3
are vulnerable to cheating by Bob if the erasure probability
is less than 1/2 (when Bob, in addition to learning Kz, can
gain information about K 5 via dishonest choice of S3), such
cheating could be prevented by a modified protocol achieving
the same OT rate. To this, sets Sy and S; both of size
% are taken, with S; C G then, as S5 intersects G, a
stronger DMMS secrecy result has to be invoked in which
the eavesdropper knows more than the public message alone.

The approach in this paper easily extends to other versions
of OT, one mentioned in connection with Theorem 1. For
example, Alice may have m stings K1,..., K,, and Bob may
chose either of them (”1 of mx OT”) or any subset of them,
while Bob has to remain ignorant of the other stings, and
Alice of Bob’s choice. Our reason for stating Lemma 1 for a
not necessarily binary RV Z has been to make it suitable to
prove analogues of Theorem 1 for such OT problems, too.
We conclude by three examples.

Example 1. Consider a binary symmetric channel (BSC)
with crossover probability p, and define a channel {W :
X — Y?} by restricting the input alphabet of the two-block



extension of this BSC to X = {(0,1),(1,0)}.Then W is
a GEC with y* = {(0,0),(1,1)}, and the corresponding
Wo is a BSC with crossover probability p?/(1 — p*) where
p* = 2p(1 — p) < 1/2. Hence, Theorem 3 implies for the OT
capacity of a BSC

Cor > %p*C(WO) =p(1—p) (1 —h (1—2;19)(21—;n)>> .

Example 2. Consider the GEC with X = {0,1},Y =

{0,1, 4},
o A-p-¢) p(l—2) ¢
W‘( p1—¢) (1—p)-e) )

For its OT capacity, if 0 < & < 1/2, Theorem 3 gives
Cor > eC(Wy) where Wy is the BSC with crossover
probability p. Another lower bound in Cor > %p*C’(WO)
where {W : X — Y?} is the GEC defined similarly as
in Example 1, with Y* = {(0,0),(1,1), (%)} and p* =
2p(1 — p)(1 — £)? + £2. If € — 0, the latter bound approaches
that in Example 1, while the previous bound goes to 0. This
shows that the lower bound in Theorem 3 is not tight, in
general.

Example 3. Consider the additive DMC with X = Y =
{0,1,2,3}, Y = X + N (mod 4), N binary 1/2 — 1/2.
This is not a GEC but the bound in Theorem 1 is tight for
it, Cor = 1. Indeed, the following simple (1,1) protocol
achieves perfect OT. (i) Alice transmits over the channel a
uniformly distributed rv X. (ii) Bob receives ¥ = X + N
(mod4), and tells Alice ¢ = 0 or 1 according as Y + 7 is
even or odd. (iii) Alice reports the mod2 sums Koy + i4(X)
and K7 +41-4(X) were ig and ¢; are the indicator functions
of the sets {1, 2} and {2, 3}. This unambiguously tells Bob the
bit Kz, keeping him fully ignorant of K ;, because an even or
odd value of ¥ uniquely determines io(X ) respectively i1 (X)
but provides 0 information about 41 (X') respectively ¢o(X).
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