
The final form of Tao’s inequality relating conditional expectation

and conditional mutual information

Rudolf Ahlswede∗

Department of Mathematics

University of Bielefeld

POB 100131, D-33501 Bielefeld, Germany

Email: ahlswede@math.uni-bielefeld.de

To Jack’s memory
crystalline and amorph views

keep always distinct!

Abstract

Recently Terence Tao approached Szemerédi’s Regularity Lemma from the perspectives of Prob-
ability Theory and of Information Theory instead of Graph Theory and found a stronger variant of
this lemma, which involves a new parameter.

To pass from an entropy formulation to an expectation formulation he found the following
Lemma. Let Y , and X, X ′ be discrete random variables taking values in Y and X , respectively,

where Y ⊂ [−1, 1], and with X ′ = f(X) for a (deterministic) function f .
Then we have

E
`

|E(Y |X ′) − E(Y |X)|
´

≤ 2I(X ∧ Y |X ′)
1

2 .

We show that the constant 2 can be improved to (2ℓn2)
1

2 and that this is the best possible
constant.

A word about notation

We have replaced Tao’s X,Y, Y ′ by Y,X,X ′, because we are used to have X as input alphabet and Y
as output alphabet of a channel. We find it also convenient to use PZ for the distribution of a random
variable (RV) Z and an analogous notation for conditional distributions of two RV’s.

From Pinsker’s inequality to Tao’s inequality

Beginning, as Tao did, with the special case X ′ = f(X) = constant, the inequality can actually readily
be derived from Pinsker’s inequality [2]. Indeed

E
(

|E(Y ) − E(Y |X)|
)

=
∑

x∈X

PX(x)|E(Y ) − E(Y |X = x)|

=
∑

x∈X

PX(x)

∣

∣

∣

∣

∑

y∈Y

y
(

PY (y) − PY |X(y|x)
)

∣

∣

∣

∣

≤
∑

x∈X

PX(x)
∑

y∈Y

|PY (y) − PY |X(y|x)|, (1)
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because Y ⊂ [−1, 1].

Since
∑

y∈Y

|PY (y) − PY |X(y|x)| = ‖PY − PY |X=x‖1

≤ (2ℓn2)
1

2 D(PY |X=x‖PY )
1

2 (2)

(Pinsker’s inequality) and the square-root function is concave, we finally get

E
(

|E(Y ) − E(Y |X)|
)

≤ (2ℓn2)
1

2

(

∑

x∈X

PX(x)D(PY |X=x‖PY )

)
1

2

= (2ℓn2)
1

2 I(X ∧ Y )
1

2 , (3)

by definition of mutual information.

Now we go to the general case X ′ = f(X)

E
(

|E(Y |X ′) − E(Y |X)|
)

=
∑

x′∈X

PX′(x′)E
(

|E(Y |X ′ = x′)

− E(Y |X;X ′ = x′)|
)

≤
∑

x′∈X

PX′(x′)(2ℓn2)
1

2 I(X ∧ Y |X ′ = x′)
1

2

(by (3)) and again by the concavity of the square-root function we get part (a) in the

Lemma (Relation between conditional expectations and conditional mutual information)1

Let Y,X,X ′ be discrete random variables with X ′ = f(X) and with Y taking values in the interval [−1, 1],
then

(a) E
(

|E(Y |X ′) − E(Y |X)|
)

≤ (2ℓn2)
1

2 I(X ∧ Y |X ′)
1

2

(b) The constant in the inequality is best.

Proof of (b):

We look at the case X ′ = constant and pairs of RV’s (Y,X) with distributions parametrized by δ
(

0 < δ ≤ 1
2

)

X = {x1, x2}, Y = {y1, y2} = {+1,−1}

PX =
(

1
2 , 1

2

)

, PY =
(

1
2 , 1

2

)

,

PY |X(yi|xj) =

{

1 − δ, if i = j

δ, if i 6= j
.

Then
E

(

|E(Y ) − E(Y |X)|
)

= 1 − 2δ

=
∑

x∈X

PX(x)
∑

y∈Y

|PY (y) − PY |X(y|x)|

1Actually the inequality more generally holds if the condition X′ = f(X) is weakened to Y, X, X′ satisfy a Markov
relation, but that is not needed by Tao
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and there is equality in (1).

Moreover,
∑

y∈Y

|PY (y) − PY |X(y|x1)|

=
∑

y∈Y

|PY (y) − PY |X(y|x2)|

= ‖PY − PY |X=x1
‖

1
= ‖PY − PY |X=x2

‖
1
.

Also
D(PY |X=x1

‖PY ) = D(PY |X=x2
‖PY ) = I(X ∧ Y ).

It suffices to show that

sup
0<δ< 1

2

(1 − 2δ)D

(

(1 − δ, δ)‖

(

1

2
,
1

2

))− 1

2

= (2ℓn2)
1

2 . (4)

Since D
(

(1 − δ, δ)‖
(

1
2 , 1

2

))

= (1 − δ) log 2(1 − δ) + δ log 2δ = 1 + (1 − δ) log(1 − δ) + δ log δ, we already
know that for c = 1

2ℓn2

g(δ) , 1 + (1 − δ) log(1 − δ) + δ log δ − c(1 − 2δ)2 ≥ 0 (5)

and that g
(

1
2

)

= 0.

It suffices now to show that the biggest value for c such that (5) holds for all δ < 1
2 is 1

2ℓn2 .

Since g is differentiable and g
(

1
2

)

= 0 it suffices to show that

dg(δ)

dδ
=

1

ℓn2
ℓn

(

δ

1 − δ

)

+ 4c(1 − 2δ) > 0

for all δ in a neighbourhood of 1
2 , if c = 1+ε

2ℓn2 , ε > 0.

For this sufficient is, using t − 1 − (t−1)2

2 as lower bound of ℓnt, that

δ

1 − δ
− 1 −

(

δ
1−δ

− 1
)2

2
+ 2(1 + ε)(1 − 2δ) > 0

for all δ in a neighbourhood of 1
2 .

Equivalently,

2δ − 1

1 − δ
−

1

2

(

2δ − 1

1 − δ

)2

+ 2(1 + ε)(1 − 2δ) > 0

or

−
1

1 − δ
+

1

2

2δ − 1

(1 − δ)2
+ 2(1 + ε) > 0

or
−2 + 2δ + 2δ − 1

2(1 − δ)2
+ 2(1 + ε) =

4δ − 3

2(1 − δ)2
+ 2(1 + ε) > 0

or

2(1 + ε) >
3 − 4δ

2(1 − δ)2
,

which is the case for δ = 1
2 and a neighbourhood of smaller δ’s.
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