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Shannon Lecture at ISIT in Seattle 13th July 2006:
Towards a General Theory of Information Transfer

http://www.math.uni-bieleteld.de/ahlswede/it.html

“More than restoring
strings of symbols transmitted
means transfer today.”

Introduction

We all know that C.E. Shannon in his paper [97] presented a
theory of Transmission over Noisy Channels based on the con-
cept of codes. He considered crucial performance criteria like
rates and error probabilities, predicted there connections and
outlined proofs for them. (For a unification in terminology we
refer to [11]). Subsequently he was involved in refining esti-
mates and in inspiring others to do so. As highlights we point
at the two papers [100] and [101]. Another aspect, complexity
of coding, gave a strong impetus to several theoretical and
practical inventions of concepts and methods, which kept a
large community of scientists busy for more than fifty years
now. It is not our aim to describe or comment on these devel-
opments. That has been done in many books and articles.
Recently two of them, [56] and [71], came in our hands and we
can recommend them. A similar situation can be encountered in
Data Compression—lossless and lossy meeting fidelity crite-
ria—Shannon’s other favorite research area within Information
Theory. Also here most optimality results (Source Coding
Theorems) are—very similar to the situation in Statistics—of an
asymptotic nature. A reminder for going to more practicability
came from Ziv’s lecture [117].

After these preliminary remarks we come to start to justify our
(ambitious) title. Perhaps the most direct and easy way is to draw
attention to two statements of Shannon from his paper [97] con-
cerning communication and filtering (also called denoising),
respectively.

“The fundamental problem of communication is that of reproduc-
ing at one point either exactly or approximately a message selected
at another point.”

“If the source already has a certain redundancy and no attempt is
made to eliminate it ... a sizable fraction of the letters can be

received incorrectly and still reconstructed by the context.”

Both times the goal of reproducing transmitted data is clearly
expressed.

However transmission is not the only goal of communication for
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human beings (and animals?!). A step beyond this goal of
Shannon’s celebrated theory of communication was made with
our creation of a theory of identification in the presence of noise.
The mathematical foundations were laid together with G. Dueck
and carried on by Verboven, van der Meulen, Zhang, Cai, Csiszar,
Han, Verdu, Steinberg, Anantharam, Venkataram, Wei, Csibi,
Yeong, Yang, Shamai, Merhav, Burnashev, Bassalygo, Narayan and
many others.

To fix ideas, transmission (classical) concerns the question “How
many messages can we transmit over a noisy channel?” One tries
to give an answer to the question “What is the actual message from
M={1,...,M}?”

On the other hand in identification it is asked “How many possible
messages can the receiver of a noisy channel identify?” One tries to
give an answer to the question “Is the actual message i?”

Here i can be any member of the set of possible messages
N ={1,2,...,N}.

This theory initiated other research areas like Common
Randomness, Authentication in Cryptology, Alarm Systems. It also
led to the discovery of new methods which become fruitful also for
the classical theory of transmission, for instance in studies of
robustness like arbitrarily varying channels, optimal coding proce-
dures in case of complete feedback, novel approximation problems
for output statistics and generation of common randomness, the
key issue in Cryptology.

Moreover our work on identification has led us to reconsider the
basic assumptions of Shannon’s Theory. It deals with “mes-
sages”, which are elements of a prescribed set of objects, known to
the communicators. The receiver wants to know the true mes-
sage. It has been emphasized with the two citations from
Shannon 1948 above! However, this basic model occurring in all
engineering work on communication channels and networks
addresses a very special communication situation. More general-
ly they are characterized by

(I) The questions of the receivers concerning the given “ensem-
ble”, to be answered by the sender(s)

(IT) The prior knowledge of the receivers

(III) The senders prior knowledge.
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It seems that the whole body of present day Information Theory
will undergo serious revisions and some dramatic expansions. A
general theory of information transfer abbreviated as GTIT, was
developed and to some degree analyzed in [13]. It extends the
frontiers of Information Theory in several directions.

The main contributions concern information transfer by channels.
There are also new questions and some answers in new models of
source coding. While many of our investigations are in an explo-
rative state, there are also hard cores of mathematical theories
[13]. In particular we present a unified theory of information transfer,
which naturally incorporates Shannon’s theory of information trans-
mission and the theory of identification in the presence of noise as
extremal cases. It provides several novel coding theorems based on ran-
domized encoding. Quite surprisingly whereas Shannon’s coding
theorem for transmission shows that sizes of maximal message
sets grow exponentially in the block length of optimal codes used
for fixed guaranteed error probability, now, for instance already
for identification typically there is a double exponentially growth
and we determine again the best exponent, called now second
order capacities, exactly (see [16], [34], [35], [41], [44], [47],[77], (78],
[85], [107]).

On the source coding side we introduced data compression for
identification and discovered the identification entropy.

Finally we mention as a new and perhaps most promising direc-
tion the study of probabilistic algorithms with identification as
concept of solution in mathematics. (For example: for any i, is there
a root of a polynomial in interval i or not?)

The algorithm should be fast and have small error probabilities.
Every algorithmic problem can be thus considered. This goes far
beyond Information Theory. Of course, like in general informa-
tion transfer also here a more general set of questions can be con-
sidered. As usual in Complexity Theory one may try to classify
problems. What rich treasures do we have in the much wider
areas of information transfer?!

A General Communication Model

The goal in the classical Shannon communication theory is to
transmit many messages reliably over the channel W. This is done
by coding. An (n,M,A)—code is a system of pairs
{(u;, Dy) : 1 < i< M} withu; Cc X", D; C Y" and

D;ND; = @ for i, i#1,..., M,
WHDf|lu) < & for i=1,..., M.

A

Given a set of messages M = {1, ..., M}, by assigning i to code-
word 1; we can transmit a message from M in blocklength 1 over
the channel with a maximal error probability less than 1. Notice
that the underlying assumption in this classical transmission
problem is that both, sender and receiver, know that the message
is from a specified set M. They also know the code. The receiv-
er’s goal is to get to know the message sent.
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One can conceive of many situations in which the receiver has (or
many receivers have) different goals.

A nice class of such situations can, abstractly, be described by a
family I1(M) of partitions of M. Decoder = € IT(M) wants to
know only which member of the partition 7 = (A;. ..., A;) con-
tains m, the true message, which is known to the encoder.

We describe now some seemingly natural families of partitions.

Model 1: T = {ry,}, wg, = {{m} : m € M}. This describes Shannon’s
classical transmission problem stated above.

Model 2: T1; = {ry, : m € M} with 7, = {{m}, M\ {m}}. Here
decoder m;;, wants to know whether m occured or not. This is the
identification problem.

Model 3: g = {75 :|S| = K, S ¢ M} with g = {S, M\ S}. This
is an interesting generalisation of the identification problem. We
call it K-identification (relation to superimposed codes,
Kautz/Singleton Codes).

This case also arises in several situations. For instance every per-
son g may have a set S of K closest friends and the sender knows
that one person m e M is sick. All persons ws want to know
whether one of their friends is sick.

Model 4:TIg = {7y, = {{1,..., 1}, {r+ 1, ..., M}}}. Here decoder
7, wants to know whether the true message exceeds r or not. We
speak of the ranking problem.

Model 5: Ty = {{A, M\ A} : A C M}. Here my = {A, M\ A}
wants to know the answer to the binary question “Is m in A?”.

Model 6: M = {0, 1}¢, TIc = {m;: 1 < t < £} with ; =

{{x1, ..., xp) e M xp =1} {(x1, ..., x¢) € M : x; = 0}}. Decoder
¢ wants to know the f-th component of the vector valued mes-
sage (x1,...,Xx¢).

In all these models we can consider the first (or second) order
capacities. They are known for models 1, 2. It is shown in [13] that
for models 4 and 5 the capacities equal Shannon’s transmission
capacity.

The most challenging problem is the general K-identification
problem of model 3. Here an (1, N, K, A)—code is a family of
pairs {(Q(-|i),Ds):1<i<N,x € IIg}, where the Q(:]i)’s are
PD’s on X",D, cY", and where for all 7 ={S, M\ S}
Se (XD

> Q@"HW™ (D5 1x") < forall i€,

X"

D Q@'iHW" (Drlx") <1 forall igS.

X"

Example 1 In a certain lottery a player can choose ¢ of the num-
bers 1,...,L, say, {a1,...,a¢}. A set {by, ..., be} of £ numbers is
choosen at random.
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Suppose that T players have chosen {a%, e, a%}, e {alT, e, aET},
resp. Every player wants to know whether he won, that shall
mean, whether he has at least £ — 1 correct numbers: For the tth

player
Ha{,...,a@]m{bl,...,bg} >0—1.

How many bits have to be transmitted in a randomized encoding,
so that every player knows with high probability, whether he
won.

Example 2 Lets view the elements of {1,..., a}" as sequences of
events. Historians (or observers of stockmarkets) have a subse-
quence of events, say,

1 1 14 4
(t,...,tsl),...,(tl,...,tSe).

The ¢ persons are to be informed with high probability correctly
about the correct sequence of events.

Example 3 In some countries 40% of the healthy men of a year are
drafted by random selection. Every candidate wants to know
with high probability correctly whether he is among them. This
falls under model 6.

There are of course several other situations described by a family
[1(M) of partitions of M. There are others, which do not fall exact-
ly in this setting. One of them is that of L-identification introduced
by Christian Heup in [82] for source coding. For a one-way chan-
nel, which we assume to be a discrete memoryless channel, abbre-
viated as DMC, L-identification refers to the situation where an
L-subset of M is given to the encoder. For example, the encoder
knows L persons my, ..., my, € M, who have won a lottery. On the
receiver’s side, a member of M, wants to know whether or not he
or she is among the winners. However, the information in which a
participant is interested can no longer be represented by a parti-
tion of M. We have to partition () and get

Mp set = {mmm : me My,

where 7, = {Si, (/\L/[)\Sm} and S, ={S e (/\L/[) :
this model L-identification for sets.

m € S}. We call

One could also think of situations where the L objects, which are
known to the encoder, need not be pairwise different. We call this
L-identification for vectors. The model for this is

Iy ={mm : me M},

where 7, = {Ap, ME\A,,} and
Am = {A € M : Ahas at least one component equal to 1}.

Encoding and decoding have to be devised so that every partici-
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pant, a member of M can make his decision with small probabil-
ity of error.

The theory of identification led us to the discovery of the concept
of common randomness. The interplay between second order
identification capacity and first order common randomness
capacity is discussed in the Introduction of the book [19] on pages
6-16 and in our Shannon Lecture (http://media.itsoc.
org/isit2006/ahlswede/).

For further important work on common randomness we refer to
the papers [31], [32], [65], [84], [91], [92], [95], and [112].

Whereas Shannon is usually credited as the founder of Information
Theory in a probabilistic setting, Hamming is often mentioned as
the originator of combinatorial models for communication.

In our report of results we follow this devision, also com-
ment on combi-probabilistic models, and finally give further
perspectives.

It has been reported that Shannon devoted a great part of his lec-
ture at the 1973 ISIT in Ashkelon to feedback. Still it is recorded
that in 1998 at a workshop of the Netherlands Academy of
Sciences a well-known member of the Information Theory Society
articulated his position that feedback problems don’t belong to
channel coding theory, especially for AVC-channels. In his lecture
“Information Theory after Shannon” in Bielefeld, August 12, 2003
Massey mentioned that “Shannon never treated feedback with
the same sweeping generality that he did with almost everything
else he founded.” and added that in his opinion “Shannon was
trying to encourage his “followers” to take up this subject.” In his
1990 paper [90] he gave his support to Marko’s ([89]) concept of
directional information for channels with feedback. Those are
views, which we share, and this is documented in chapter 2 of
[42].

We emphasize that GTIT can also be studied in the presence of
feedback.

In the late 70-ties we wrote with I. Wegener the first book on
search [42]. Its title “Search Problems” indicates the explorative
state of the subject at that time. Contributions (often the same sev-
eral times) came from Statistics, Economy, Computer Science or
even entertainment games. We started viewing the subject as part
of Information Theory.

In general a search problem can be formulated as a coding
problem for channels with passive noiseless feedback.
Furthermore noiseless source coding can be described as a
search problem with probabilities on the search space. It is
remarkable that very different kinds of problems could be clas-
sified as search problems and that researchers from various
fields often know little about results achieved in areas in which
they don’t work.

The significance of the feedback scheme in [2] (see also [3] and
[25] for robust versions), which is based on iterative list reduc-
tions, has been recognized after many years and the construction
has been made the basis of the book [96].
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Again there are probabilistic and combinatorial models.

In order to convey the flavor of the later subject to a broader sci-
entific community we present below the solution of a seemingly
basic classical problem.

The Rényi-Berlekamp-Ulam search game with f lies has an equiv-
alent formulation in terms of transmission of messages over a
noisy binary channel with t errors in the presence of feedback. For
block length n and error fraction © = ﬁt the optimal rate for all
large n we call capacity-error function Co(t).

In his 1964 MIT thesis Berlekamp found a coding strategy achiev-
ing equality of C, with the Hamming bound H, for infinitely
many 7. He also showed that C; coincides with the tangent at Hp
through the point ( %, 0).

In joint work with C. Deppe and V. Lebedev we discovered a cod-
ing scheme which gives such results for all alphabet sizes g.
Surprisingly the corresponding tangent at H;, the g-ary Hamming
bound, starts for every g > 3 at (%, 0)!

There is a great variety of search problems caused by different
error concepts, types of questions, and the structure of objects

searched for (the most prominent example being group testing).
The flavor can be gained from [66].

A. Probabilistic Models

I Transmission via DMC (Shannon Theory)

How many possible messages can we transmit over a noisy chan-
nel? Transmission means there is an answer to the question:
“What is the actual message?”

Define M(n, A) = max{M : 3(n, M, A)-code}.
Shannon 48: lim;,_ % logM(n, 1) = C, where the capacity
C =maxx I(XAY) and the mutual information I(X A'Y) equals

H(X) — H(X]Y), that is, the difference of the entropy H(X) and the
conditional entropy H(X|Y).

II Identification via DMC (Including Feedback)

How many possible messages can the receiver of a noisy channel
identify? Identification means there is an answer to the question
“Is the actual message i?”, where i can be any member of the set
of possible messages {1, 2, ..., N}. Here randomisation helps!!!

{(QCli),Dy) :1<i<N} is an (n,N,e1,e) ID-code of

Q(i) € P(X™) = set of all PD on X", D; ¢ V", and

(1) Y ean QUHWHDSX") < e1(1 <i< N) (Error of Ist
kind: i rejected, but present)

2) Yy Q| HYW™(Djlx™) < e2Vi# j (Error of 2nd kind: i
accepted, but some j # i present).

Define N(n, ¢) = max{N : 3(n, N, ¢, ¢) ID—code}.
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Theorem AD; (Double exponent.—Coding Theorem and soft
converse)

(1) lim,,_, .. L loglog N(n, ¢) > C Ve €[0,1]

n—oon
(2) limy— o & log log N(n, 27") < C ¥8 > 0.
(Han/Verdu limy,—, o %loglog N(n,s) =C Ve € (0, %))

C = second order identification capacity = Shannon’s (first
order) transmission capacity.

Theorem AD; In case of feedback the 2—order ID—capacities are, if
C=>0,

without randomisation Cs(W) = maxyex HW(:|x)) and

with randomisation Cr(W) = maxp HPW) > C.

Phenomena:
1. Feedback increases the optimal rate for identification.

2. Noise can increase the identification capacity of a DMC in
case of feedback (think about probabilistic algorithms, here
noise creates the randomisation, which is not the case for
Shannon’s theory of transmission)

3. Idea: Produce a “big” (large entropy) random experiment
with a result known to sender and receiver and use the
Transformer Lemma below.

“Principle”: Entropy of a large common random experiment =
ID—capacity of 2-order (region).

Remark ID-theory led to the foundation of new areas and stimu-
lated further research.

Approximation of output distributions

It originated from converse proofs in Theorem AD;. How can we
count? For P € P(X") find minimal &/ ¢ X" wit”h uniform distri-
bution Py such that Py W ~ PW. Then N < (ll)lifll)‘

Information measures
How do we measure information, by the Cn bits in Shannon’s

fundamental theorem or by the logCn bits in our Theory of
Identification?

IIT Discovery of Mystery Numbers =

Common Randomness Capacity

It was observed in [35] that in Identification the second order rate
is essentially determined by the first order rate of a random
experiment set up by the communicators and whose outcome is
known to both, sender and receiver, with high probability. In
other words instead of the requirement for the receiver to recover
the message sent by the sender with high probability it is required
for the communicators to know the value of the same random
variable with high probability. Thus a new concept, different from
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both, transmission and identification, but with interesting con-
nections to them was introduced. It is now called common ran-
domness. A systematic presentation can be found in [31], [32].
Many interesting and important results and applications of com-
mon randomness have been obtained so far. When we speak of
GTIT today we mean it to include at its core the theory of infor-
mation transmission, common randomness, identification and
its generalizations and applications, but it goes far beyond it
even outside communication theory when we think about prob-
abilistic algorithms with identification (or more general tasks)
as concepts of solution!

Actually, the origin of the concepts common randomness and
common randomness capacity took a fascinating path.
Immediately after [34] the results of [35] were discovered—the
papers appeared face by face in the same volume. An output
process Yi.....Y, produced by a DMC from an input process
X1. ..., X, is not only known to the receiver of the channel W, but
also to its sender, if there is a noiseless (passive) feedback channel.
This common knowledge of the random process was used in [35]
for the randomization in a randomized identification procedure,
which devotes a blocklength 7 to creating Yq,...,Y; and does
then the identification in blocklength /n (also called /n-trick).
The size of the identification code obtained is of order ¢ !
Making a best choice of X one gets the second order rate
Cr = maxx H(Y), and the identification works if Shannon’s trans-
mission capacity Cg, = maxx(H(Y) — H(Y|X)) is positive.

Now the second idea was to wonder whether there is also or can
be constructed also a random experiment (or process) in the orig-
inal case of no feedback in [34], where the second order identifi-
cation capacity equals Cgj,. Well, just choose a transmission A-code
{(uj, Dj) : 1 < i < exp{(Cgy, — 8)n}} and define X" as the RV taking
codewords as values with equal probabilities.

Thus of course the sender knows X", but the receiver knows it
almost, namely with an error probability not exceeding %, if he
uses the decoding sets D;. This slight deviation from exact knowl-
edge was not essential, the described experiment in conjunction
with the Transformator Lemma below gave a second proof of the
direct part of the coding theorem in [34].

This discovery was followed up by [41] and led to solutions of
identification problems for multi-way channels with noiseless
feedback. The paper contains a novel method to prove weak
converses by exploiting Schur concavity of the entropy func-
tion. In addition it has two new features, firstly it settles a
rather rich class of channel models unheard of in multi-user
theory for transmission, where it can be said—”cum grano
salis”—that after struggles of more than 30 years the frontiers
could not be moved very far beyond [4], secondly the identifi-
cation schemes are all constructive modulo the production of
rich random experiments. This richness is measured by what
was called Mystery Numbers or Regions of k-tuples of
Mystery Numbers in [41].

The constructions are based on Freivald’s Lemma for hashing. As
byproduct it gives also a constructive scheme for deterministic

channels because they automatically have feedback. Shortly

IEEE Information Theory Society Newsletter

thereafter another construction was given for these special chan-
nels in [108].

In dealing with different kinds of feedback strategies it is conven-
ient to have the following concept. Let F;(n = 1,2, ...) be a sub-
set of the set of all randomized feedback strategies F;; of a DMC

W with blocklength 1 and let it contain the set .7-",‘11 of all deter-
ministic strategies.

We call (F)52, a smooth class of strategies if for all 11,12 € N
and n=mny +np

Fn D Fuy X Fuy (1)

where the product means concatenation of strategies.

For f" € F; the channel induces an output sequence Y"( f"). For
any smooth class we define numbers

w(Fn) = pax HY"(f")

By (1) and the memoryless character of the channel

w(Fn) = w(Fu) + 1(Fuy)s

and therefore

1 .
p=pu((Fu)yly) = lim —u(Fy) exists.
n—-oo n

It was called mystery number in [41] and has subsequently been
called by us in lectures and papers, in particular also in [13], com-
mon randomness capacity.

The common randomness capacity Ccr is the maximal number v
such, that for a constant ¢ > 0 and foralle > 0,8 > 0 and for all n
sufficiently large there exists a permissible pair (K, L) of random
variables of length 1 on a set IC with || < e with

H(K)
—— >v—34.
n

Pr{K#L} <e and

From common randomness (also called shared
randomness in physics) to identification: The

/n-trick

Let [M]={1,2,....M}, [M1=1{1,2,....,M'} and let
7 ={T;:i=1,...,N} be a family of maps T;: [M] — [M'] and
consider fori=1, 2, ..., N the sets

Ki = {(m, Ti(m)) : m € [M]}

and on [M] x [M'] the PD’s
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Qi((m, m")) = I\l/I forall (m, m’) € K;.

Transformator Lemma Given M, M’ = exp{,/logM} and € >0
there exists a  family T =T, M) such that
|7| =N > exp{M — c(e),/logM}, Qi(K)) =1 for i=1,...,N, and
Qi(K) < eVi# |

Note In typical applications the common random experiment has
range M = exp{Crn} and uses for its realization the blocklength 7,
while for the extension to the T; the blocklength /1 suffices.

A further enlightening development concerned what we formu-
lated as a PRINCIPLE:

Second order identification capacity equals (first order) com-
mon randomness capacity

After [34], [35], and [41] a lot spoke for it and it became a driving
dream leading to many results like [47], where the remarkable
fact, that a wire-tapper cannot reduce identification capacity, if he
cannot prohibit identification for 2 alternatives, and otherwise the
identification capacity equals zero, was discovered and proved by
arguments, which are by no means simple.

The same paper also started the investigation of identification in
the presence of noisy (passive) feedback channels. This is dis-
cussed in [13].

Continuing the line of children of the principle there are [30] and
striking work on the AVC in [22] and on the arbitrarily varying
MAC in [23], [24], and above all for the maximal error concept for
the AVC with complete feedback in [25] a determination of the
capacity formula, which has a trichotomy.

Let’s recall that the Ahlswede-dichotomy was for average error
and no feedback [6].

What was called “correlation in random codes”, originally intro-
duced in the pioneering paper [57], can now be understood as
common randomness.

Also its elimination in [6] is an early version of what now
Computer Scientists call derandomization.

Finally, we report on the removal of another heavy stone. Having
understood how correlation in random codes, a form of common
randomness, helps the communicators for AVC a next question is
how a Slepian/Wolf type correlated source (U", V") [102] helps
the identification for a DMC W, when the sender knows U" and
the receiver knows V. Well, the principle says that it should be
equivalent to asking how much common randomness can the
communicators extract from (U", V"), if they are assisted by the
DMC W with capacity Cgy,(W).

Now just notice that the case Cg,(W) = 0 leads to the problem of
finding what I. Csiszar asked for, and according to [115] also D.
Slepian, and named Common Information. It was determined by
P. Gacs and J. Korner [73]. As expressed in their title the question
was to know how this common information relates to Shannon’s
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mutual information, in particular whether they are equal.

As we know the quantities are far apart, and under natural con-
ditions, Cgk (U, V) equals zero and it only depends on the posi-
tions of positivity of the joint distribution Pyyy .

This got A. Wyner started, who believed that the quantity
Cw(U,V) he introduced was the right notion of common infor-
mation. For one thing it does depend on the actual values of Pxy.
On the other hand it satisfies C(U,V) > I(U AV) and is there-
fore rather big. The authors of [40] gave a critical analysis about
the problems at hand.

By the foregoing it is clear that the common randomness capacity
of R. Ahlswede and V. Balakirsky, say CZ‘VB(U,V), equals
Cor(U, V), if Cg,(W) = 0. However, if Cg,(W) > 0 C}Z‘VB(U, V) nice-
ly depends on the actual value of Pyy. Furthermore, Cox (UL V),
which was always considered to be somewhat outside
Information Theory proper, turns out to be a common random-
ness capacity. The proof of the characterization of C%VB(U, V)isa
natural extension of the one in case Cg,(W) = 0 given in [40].

More importantly we feel that the analysis and discussion in [40]
are still of interest today.

The first systematic investigation of common randomness started
in [31] and was continued after ideas had matured with [32], in
particular, with a revival of another old friend: balanced coloring
for hypergraphs ([7], [8]).

Very remarkable work has been done since then by Csiszar and
Narayan ([64], [65]), and we are particular intrigued by the work
of Venkatesan and Anantharam [105], [106].

In conclusion of the subject, we mention that common random-
ness and entanglement go into the center of Quantum Information
Theory. But there according to [111] already for simple channels
identification and common randomness can be far apart.

The exploration of new concepts, ideas and models does not end
at the discovery of identification. It actually was a starting point
for them. We mentioned already that in [13] more general com-
munication systems were introduced and studied.

We have explained the role of common randomness for identifi-
cation (The Principle!).

In the absence of feedback, one possibility to achieve the maximal
possible rate of such a common random experiment is that the
sender performs a uniform random experiment and transmits the
result to the receiver using an ordinary transmission code. If
noiseless feedback is available, the sender sends letters in such a
way, that the entropy of the channel output (which he gets to
know by the feedback channel) is maximized, where he can either
use a deterministic or randomized input strategy, depending on
the kind of code he may use. This interpretation proved to be the
right one also for other kind of channels like the multiple access
channel (see [41]).
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State of knowledge about Capacity Regions

For identification the letter D indicates a deterministic encoding and
its absence refers to randomized encoding. (For a refined analysis
with maximal versus average error probability we refer to [6].)

Transmission Identification
DMC X X [34]
MAC X X [13], [103]
BC ? X [13]
TWC ? ?

With Feedback

Transmission Identification
DMC X X [35]
MAC ? XD [41]
MAC ? ?
BC ? ?D
BC ? X [41]
TWC ? XD [41]

There are amazing dualities between transmission and identifica-
tion. For instance concerning feedback there is a rather unified
theory of Multi-user identification with feedback—with con-
structive solutions, whereas for transmission with feedback most
capacity regions are unknown. Furthermore using randomness
mystery numbers regions are known for the BC, but not for the
MAC, whereas, as is well known, for transmission capacity
regions the situation is reversed.

Actually common randomness corresponds to the key space in
cyptography (see [53]). There are many open entropy characteri-
sation problems: for instance to calculate the maximal output
entropy sup, max %H(Z”) of a MAC, if X4 = fur1(Z"),
Y41 = gut1(Z") define the encoding processes.

Comparison of identification rate and
common randomness capacity: Identification
rate can exceed common randomness
capacity and vice versa

One of the observations was that random experiments, to whom
the communicators have access, essentially influence the value of
the identification capacity C;. Actually, if sender and receiver
have a common random capacity Cr then by the Transformator
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Lemma always
C;>Cgr if C;>0.

For many channels, in particular for channels with feedback,
equality has been proved.

It seemed therefore plausible, that this is always the case, and that
the theory of identification is basically understood, when com-

mon random capacities are known.

We report here a result, which shows that this expected unifica-
tion is not valid in general—there remain two theories.

Example 4 C; = 1, Cr = 0. (Fundamental)

We suse a Gilbert type construction of error correcting codes with
constant weight words. This was done for certain parameters. The
same arguments give for parameters needed here the following
auxiliary result.

Proposition. Let Z be a finite set and let A € (0,1/2) be given. For

e < (22/* 1)1 a family Ay, ..., AN of subsets of Z exists with the
properties

|Ail = el Z. 1A4; N Ajl < Ael Z] (i # )

and

N> |z|712lel2l g,

Notice that Alog(% —1) > 2 and that for € with 2=% = ¢ necessarily
> %

Choose now Z = {0, 1}, ¢ = 2~¢ and A;’s as in the Proposition.
Thus |A;] = 2", N(n,2) =27" 22" —Tand |A;N Aj| < 22"C.

Consider now a discrete channel (W")*, where the input alpha-
bets X} = {1,2,...,N(t 1)} are increasing, X" =[]}, X; are the
input words of length n, Y" = {0, 1}"* are the output words and
W X"~ V" is defined by
W"('Iiliz o) = Wn('“n)
and W™ . (:|7) is the uniform distribution on A; for 1 <i < N(n, A).
By the Proposition and 3/A > £ > 2/
N(n, 1) > 272"

and

. 1
lim —loglog N(n, 1) > 1.
n

——n—00
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However, for transmission every decoding set is contained in
some A; and for error probability A must have cardinality
(1= VIA] = 1 —n2n.

Therefore M(n, 1) < ﬂ—fﬁ <20+l if A <172, and %logM
(n,A) < e,—";l < # — 0(n — 00). The transmission capacity is
0. Consequently also Cg = 0.

In [86] Kleinewéchter presents a counterexample for the other
direction. For given real numbers Ci;p and Ccr with
0 < Cip < Ccr, he constructed a discrete channel with memory
and noiseless passive feedback with identification capacity Cip
and common randomness capacity Ccr. This channel is con-
structed in such a way that it can be used in two ways. In one
respect, the channel is good for the generation of common ran-
domness, in the other it is suitable for identification.

IV “Consequences” for Secrecy Systems

Characterisation of the capacity region for the
BC for identification

We need the direct part of the ABC Coding Theorem for trans-
mission ([59], [109], [87]).

Here, there are separate messages for decoder ) (resp. Z)and
common messages for both decoders.

Achievable are (with maximal errors)

Ty ={(Ry,Ro):Rg < I(UAZ),Ro+ Ry
<min[I[(XAY), (XA Y|U) + U A Z)],
UeXeYz, |U|=<I|X]+2}

resp.

Tz ={(Rp,Rz) : Ro < I(UAY),Ryp+ Rz
<min[I(X A Z), (X A ZIU) + IU A V)],
UeXoYZ |U|<|X|+2).

This is our surprising result.

Theorem For the (general) BC the set of achievable pairs of second order
rates for identification is given by
B =Ty UTz, where Ty, = {(R}), R%):3(Ry, Ro) € Ty
with Rﬁ; = Ry + Ro, R/Z = Ry} and
Tz ={(R},R%):3(Ro, Rz) € Tz
with Rﬁ; =Ry, Rz =Ry + Rz}.

Remark B gives also the achievable pairs of first order rates for
common randomness. Proof goes via identification!
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Remark The theorem has an important consequence. Whereas for
one-way channels the common randomness capacity equals the
transmission capacity and the transmission capacity region is still
unknown for general broadcast channels we know now its com-
mon randomness capacity region, where common random
experiments for X-encoder and Y-decoder and, simultaneously,
for X-encoder and Z-decoder are generated. Indeed it equals the
second order identification capacity region!

That the latter includes the former is clear from our proof of the
direct part. The reverse implication follows indirectly by the same
argument.

Interesting here is that the outer bound for the common random-
ness capacity region is proved via identification.

The situation changes, if constraints like independency or securi-
ty are imposed on the two common random experiments.

A transmission code with rates (Ry, Rz) can be used for inde-
pendent common random experiments and thus the transmission
capacity region for the general broadcast channel is contained in
the identification capacity region.

Furthermore, the identification capacity region T’y UT is con-
vex, because it equals the common randomness capacity region
for which time sharing applies and thus convexity is given.

Transmission, identification and common
randomness capacities for wire-tape channels
with secure feedback from the decoder

Recall that wire-tap channels were introduced by A. D. Wyner
[114] and were generalized by I. Csiszdr and ]. Korner [62]. Its
identification capacity was determined by R. Ahlswede and
Z. Zhang in [47].

Now by secure feedback we mean that the feedback is noiseless
and that the wire-tapper has no knowledge about the content of
the feedback except via his own output.

Lower and upper bounds to the transmission capacity are
derived. The two bounds are shown to coincide for two families
of degraded wire-tap channels, including Wyner’s original ver-
sion of the wire-tap channel.

The identification and common randomness capacities for the
channels are completely determined.

Also here again identification capacity is much bigger than
common randomness capacity, because the common random-
ness used for the (secured) identification needs not to be secured!

V Analysis of a specific model:
K-identification

A relation to standard identification

For reasons, which become apparent soon, we assume K to grow
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exponentially in the blocklength 7, that is,
K =2¢"

where « is a first order rate.

As for the standard identification problem (K =1,x = 0)N can
grow double exponentially, that is,

_ 2Rn
N=2° R>0

where R is a second order rate.

The pair (R, k) is acl}}igvable, if for any » > 0,8 > 0 and all suffi-
ciently large n (n, 2257 e=dn 3y _codes exist.

Theorem For every DMC the set IC of all achievable rate pairs satisfies
() {(R,k):0<R,k,R+2k <Cgq} CK
(i) {(R,k): 0 <R, k,R4+k <Cg¢} DK
(iii) For a noiseless DMC there is equality in (i).
In general?
There is a very important connection to r—cover—free families.
A family of sets F is called r — cover — free if Ag ¢ Ay UAU---UA,;
holds for all distinct Ag, A1, ..., Ay € F. Let M(n, ) denote the
maximum cardinality of such an F over an n—element underlying

set. This notion was introduced in terms of superimposed codes
by Kautz/Singleton.

VI Extensions to Classical/Quantum Channels

There has been great progress in recent years with fruitful
exchanges between Information Theory and Physics.

Since most readers are not familiar with this we just give classical
methods which extend or have analoga.

We prove in [20] that the average error capacity C; of a quantum
arbitrarily varying channel (QAVC) equals 0 or else the random
code capacity C (Ahlswede’s dichotomy). We also establish a nec-
essary and sufficient condition for C; > 0.

It is interesting to note, that in our proof of this we essentially use
the elimination technique (an early candidate of what is now
called derandomization in Computer Sciences) from [18]. There a
necessary and sufficient condition for positivity of the capacity
was given, if the set of transmission matrices is row-convex
closed—that is under a practically satisfactory assumption of
robustness. The mathematical problem of characterizing positivi-
ty without this assumption in terms of symmetrizability was
started in [69] and completely solved in [63] with a non-standard
decoding rule and without use of the elimination technique.

On the other hand in the present quantum case we have not
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found a suitable decoding rule and follow the elemination tech-
nique. Analogously the positivity problem for the QAVC can be
settled by reducing it to a related classical AVC to which then the
result of [63] can be applied.

We emphasize that the very hard maximal error capacity problem
for AVC (including Shannon’s zero error capacity problem as spe-
cial case) is based on a more realistic communication model. Tt
was solved for a nice class of channels in [9], where for the first
time in the area of AVC a non-standard decoding rule was used.
Extension to QAVC constitute a challenging problem!

A hypergraph covering lemma useful
for deriving capacity results

— in the theory of identification
— in the theory of common randomness

Lemma Let I' = (V, ) be a hypergraph, with a measure Qg on each
edge E, such that Qp(v) < n for all E, v € E. For a probability distribu-
tion P on & define

Q=) P(E)XQE,
Ee&

and fix €,t > 0. Then there exist vertices Vo CV and edges
E1,...Er € € such that with

=

Q_:

L
2.Qx
i=1

the following holds:

QW) <7, Yo e V\W (1 — )Q() < Q) < (14 €)Q(v),

2In2log(2[V
L<1+ gy 2 n2108EVD
€

Remark The lemma applies also to identification for (classical)
quantum channels (Ahlswede/Winter [43]).

The blowing up technique

We define the k-Hamming-neighbourhood I'*B of a set B € V" as

T*B2 (y" € Y": d(y", y™) < kfor some y'" € B}
where d(y™, y'™) = ({t: 1< t<n, v Fy-
Blowing up Lemma (Ahlswede/Gacs/Korner, 1976, [36])
For any DMC W there is a constant c(W): vx" € X", B C Y"

WHTEBI) > &(O~HWHB™) + 17 2k—De  if @)=
[h e e 2y,
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Remark We have no quantum version!
A wringing technique
useful for
— strong converse for multi-user channels
— converses for multiple-descriptions in rate-distortion theory

Lemma Let P and Q be probability distributions on X" such that for a
positive constant ¢

(1) P(@™) < (1 +0)Q(x™) for all " € X",
then  for any O<y <c, 0=<e<1 there exist

Hy.ooowteef{l,...,n}, where 0 <k < ﬁ, such that for some
Xbysonns Xty

(2) P(xnlxty, ..., xy) < max((1 4+ y)Q(x;|xs, ..
xpeXandall t=1,2,...,nand

., Xy),€) for all

k

(3) P(J_Ctl, ey J_Ctk) > €

Remark Presently only method to prove strong converse for
transmission for (classical) quantum multiple-access channel
(Ahlswede/Cai [28]).

VII Source Coding for Identification: a
Discovery of Identification Entropy

Shannon’s Channel Coding Theorem for Transmission is paral-
leled by a Channel Coding Theorem for Identification. We intro-
duced noiseless source coding for identification and suggested
the study of several performance measures.

Interesting observations were made already for uniform sources
Py = (I\ll’ el I\ll)' for which the worst case expected number of
checkings L(Py) (defined in the next column) is approximately 2.
Actually it has been shown that

lim L(PyN) = 2.
Ngnoo(N)

Recall that in channel coding going from transmission to identifi-
cation leads from an exponentially growing number of manage-
able messages to double exponentially many.

Now in source coding roughly speaking the range of average
code lengths for data compression is the interval [0, co) and it is
[0,2) for an average expected length of optimal identification
procedures.

Note that no randomization has to be used here.

A discovery is an identification entropy, namely the functional
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N
Hy(P) =2 (1 - ZP%,)
u=1

for the source (U, P), whereld ={1,2,...,N}
(P1, ..., Pn) is a probability distribution.

and P=

Its operational significance in identification source coding is sim-
ilar to that of classical entropy H(P) in noiseless coding of data: it
serves as a good bound.

Noiseless identification for sources and basic
concept of performance

For the source (U, P) let C = {c1, ..., cN} be a binary prefix code
(PC) with |[|¢y || as length of ¢;.

Introduce the RV U with Prob(U = u) = Py, for u € U and the RV
C with C = ¢y = (cy1, €2+ - -+ s Cujuy) if U = 11

We use the PC for noiseless identification, that is user 1 wants
to know whether the source output equals 1, that is, whether C
equals ¢, or not.

He iteratively checks whether C = (C1, Cp, ...) coincides with ¢,
in the first, second etc. letter and stops when the first different
letters occur or when C =c,. What is the expected number

Lc(P, u) of checkings?

Related quantities are
Lc = max Lc(P,u),
¢ = max c(P,u)

that is, the expected number of ckeckings for a person in the
worst case, if code C is used,

L(P) = minLc(P),

the expected number of checkings in the worst case for the best
code, and finally, if users are chosen by a RVV independent of U
and defined by Prob(V = v) = Q, for v € V = U, we consider

Le(P,Q) =) QoLc(P. o)

veld

the average number of expected checkings, if code C is used, and
also

L(P.Q) =min Lc (P.Q)

the average number of expected checkings for a best code.
A natural special case is the mean number of expected checkings
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_ N q
Le(P) =} Lc®.w,

u=1

which equals Lc (P, Q) for Q = (%, e, %), and

L(P) = mgn Lc (P)

Another special case of some “intensive appeal” is the case Q = P.
Here we write

L(P,P) = mcin Lc(P, P).

It is known that Huffman codes minimize the expected code
length for PC.

This is not the case for L(P) and the other quantities in identifica-
tion. It was noticed already in [13], [17] that a construction of code
trees balancing probabilities like in the Shannon-Fano code is
often better. In fact the Theorem of [17] establishes that L(P) < 3
for every P = (Pq, ..., PN)!

Still it is also interesting to see how well Huffman codes do with
respect to identification, because of their classical optimality

property.

Examples for Huffman codes
We start with the uniform distribution

PNy Py = (= L)),
N N

2m < N < 211,

Then 2! — N codewords have the length n and the other
2N — 2"*1 other codewords have the length 7 + 1 in any Huffman
code. We call the N — 2" nodes of length 7 of the code tree, which
are extended up to the length 1 + 1 extended nodes.

All Huffman codes for this uniform distribution differ only by the
positions of the N — 2" extended nodes in the set of 2" nodes of

length n.

The average codeword length (for transmission) does not depend
on the choice of the extended nodes.

However, the choice influences the performance criteria for

identification!

Example 5 N = 10. There are (102_323) = 28 Huffman codes.

The 4 worst Huffman codes are maximally unbalanced.
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Here

Le(P) =140.6+04+02=22
1
Le(P.P) = 15[16-4+18-2+22-4] = 1880,

One of the 16 best Huffman codes

A1
0 10

,_.
il
o|"‘

<
<5

-

1 1 1
10 10 10

-

1
10 10 1

0 10 10
3 2 2 3
10 10 10 10
S S

10

\/

1

|
Q

Here

Le(P) =Le@)=140.5+0.3+0.2=2.000
1
Le(P.P) = £(17-2+18-1420-2) = 1.840

Remark Notice that Shannon’s data compression gives

HP)+1=10g10+1> Y10 Py|ICyll = 15 -3-6+ o -4-4=3

£ >1log10

Theorem For every source (U, PN)
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L(PN) > L(PN, PN) > Hy(PN).

Theorem For PN = (Py, ..., PN)

- N _i
L )52(1 NZ)'

Theorem For PN = (274, ..., 27) with 2-powers as probabilities

L(PN, PNy = Hy(PM).
Theorem
N pN i 2 1 2
L(PN, PNy <2(1— P <2(1-=Y"P%).
(-x(Er))=2(-23m)

For P, = %(u € U) this gives the upper bound 2(1 — %N), which
is better than the bound 2(1 — %) for uniform distributions.

Finally we derive

Corollary

L(PN, PNy < H;(PN) + max P,,.
1<u<N

It shows the lower bound of L(P", PN) by Hj (PN) and this upper
bound are close.

Further Remarks

1. Our results can be extended to g-ary alphabets, for which
then identification entropy has the form

N
Hy 4(P) = Ll (1 - pr,) .
q- u=1

2. Tsallis generalized Boltzmann's entropy
H(P) = —k )  PylnP,

to

1 N
Su(P) =k— (1 - ZP‘},)
u=1

for any real o # 1.
Clearly lim, .1 So (P) = H(P) = S1(P), say.

One readily verifies that for product-distributions P x Q for inde-
pendent random variables

(@—1)
k

Sa (P x Q) = Sa(P) + Sa(Q) — S0 (P)Sa (Q).
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Since in all cases S > 0, @ <1, =1 and «a > 1 respectively cor-
respond to superadditivity, additivity and subadditivity (also
called for the purposes in statistical physics superextensitivity,
extensitivity, and subextensitivity).

We have been told by several experts in physics that the opera-
tional significance of the quantities S, (for « # 1) in statistical
physics seems not to be undisputed.

In contrast we have demonstrated the significance of identifica-
tion entropy, which is formally close, but essentially different for
two reasons: always « =2 and k = qzl is uniquely determined
and depends on the alphabet size 4!

3. In [26] we have discussed the coding theoretical meanings of
the factors q_il and (1 — Zﬁ;l P12/)~

In particular we have the

Theorem For a DMS (U",V")*°, with generic distribution
Puy = PQ, i.e. the generic random variables U and V are independent
and Pyy =P, Py =Q

. oA 1 ifP#Q
lim L(P",Q") = .
n—>1 ] (%, ) {qil lfP: Q.

B. Combinatorial Models

That Combinatorics and Information Sciences often come togeth-
er is no surprise, because they were born as twins (Leibniz in Ars
Combinatoria gives credit to Raimundus Lullus from Catalania,
who wanted to create a formal language).

VIII Updating Memories with Cost
Constraints: Optimal Anticodes

In the example

NJIO|]T]|S|J]O|C|L|E|A]|R

NIOW|C|IL|E|A|R|E|R

d =7 letters have to be changed for an updating, where d is the
Hamming distance, measuring the cost.

How many messages can be updated into each other, if cost < ¢?
This is equivalent to the diametric problem in Hamming spaces.
It was solved in [39].

For a Hamming space (X7, dp), the set of n-length words over the
alphabet Ay = {0, 1, ..., g — 1} endowed with the distance dp, we
determine the maximal cardinality of subsets with a prescribed
diameter d or, in another language, anticodes with distance d. We
refer to the result as Diametric Theorem.

In a sense anticodes are dual to codes, which have a prescribed
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lower bound on the pairwise distance. It is a hopeless task to
determine their maximal sizes exactly.

We find it remarkable that the Diametric Theorem (for arbitrary q)
can be derived from the Complete Intersection Theorem, which
can be viewed as a Diametric Theorem (for g = 2) in the constant
weight case, where all n-length words considered have exactly k
ones.

N denotes the set of positive integers and for i, je N, i < j, the set

{i.i+1,..., ]} is abbreviated as [i, j]. Moreover, for [1, j] we also
write [j]. For k,n € N, k < n, we set

2l —(F:Fc[1,n]}) and <[Z]>:{Fe2[”]:|1f|:k}.

A system of sets A c 2I"] is called tintersecting, if

A1 N Ay >t forall A, Ap € A,

and I(n, t) denotes the set of all such systems.
Moreover, we define I(n, k, f) = {A e I(n, t): A C ([Z])}.

The investigation of the function M(n, k, f) = max aecin i p Al
1 < t<k<mn, and the structure of maximal systems was one of
the oldest problems in combinatorial extremal theory and was ini-
tiated by Erdos, Ko, and Rado.

They proved already in the year 1938 the following theorem,
which was published only in 1961 [68].

Theorem For 1 < t < k and n > nqy(k, ) (suitable)

M. k. t) = (:: :)

Clearly, the system

A k. B = {A c <[Z]> L] C A}

is t-intersecting, has cardinality (}"}), and is therefore optimal for

n > no(k, t).

The smallest ng(k, f), for which this is the case, has been deter-
mined by Frankl 1978 in [72] for t > 15 and subsequently 1984 in
[110] for all ¢

no(k, t) = (k— t+ 1)(t+ 1).

We have settled all the remaining cases: n < (k — t+ 1)(t+ 1).

Complete Intersection Theorem [38] Define F;=
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Fe (M PN t4+2i|= t+ ) for0<i< " Forl<t<k<n
with

() (k—t+DQ+LED <n<k—t+1Q+ 5L for some
re NU {0}

we have

M(n, k, ) = | Frl
and Fy is—up to permutations—the unique optimum. By con-
vention # = oo for r=0.

(i) (k— t+ )2+ £1) = n for re NU {0}
we have
M(n, k, t) = | Fy| = | Frpal

and an optimal system equals—up to permutations—either F; or
]: r+1-

Remark In particular this proves the so called 4m — Conjecture
(Erdos, Ko, Rado 1938, [68])

M(4m, 2m, 2) = HFe <[4m]) CFA1,2m] > m+1H.
2m

Remarks Our most recent results on intersecting families can be
found in [15], which contains many further references, and our
most advanced method is the shifting technique of [14]. We also
draw attention to the local-global principle [21] which plays a key
role in the recent book [79].

For non-constant weight anticodes the complete solution is this.

Diametric Theorem [39] For g > 2 let r € {0} U N be the largest inte-
ger such that

n—d+2r<min{n+1,n—d+2n;7d;1},
then
max{| Al : A C A7, diam(A) < d} = |[{a" € A7 : Zg;ldﬂr wr(as) <

}.

(By convention ”;51

= oo forq=2.)

Another diametric theorem in Hamming spaces concerns optimal
group anticodes [12].

A report on Extremal Problems in Number Theory and especial-

ly also in Combinatorics, which arose in Information Theory, can
be found in [10], [19] and [67].
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IX Information Flows in Networks

We continue now with the subject whose origin is generally
attributed to [29]. The founder of Information Theory Claude E.
Shannon, who set the standards for efficient transmission of chan-
nels with noise by introducing the idea of coding also wrote
together with Peter Elias and Amiel Feinstein a basic paper on
networks [99] discussing algorithmic aspects of the Min Cut—
Max Flow Theorem [70], saying that for flows of physical com-
modities like electric currents or water, satisfying Kirchhoff’s
laws, the maximal flow equals the minimal cut.

With the stormy development of Computer Science there is an
ever increasing demand for designing and optimizing informa-
tion flows over networks—for instance in the internet.

Data, that is strings of symbols, are to be send from sources
1, ..., S, to their destinations, sets of node sinks Dy, ..., Dy.

Computer scientist quickly realized that it is beneficial to copy
incoming strings at processors sitting at nodes of the network
and to forward copies to adjacent nodes. This task is called multi-
casting.

However, quite surprisingly they did not consider coding, which
means here to produce not only copies, but, more generally, new
output strings as deterministic functions of incoming strings.

A Min-Max-Theorem was discovered and proved for informa-
tion flows by Ahlswede, Cai, Li, and Yeung in [29].

Its statement can be simply explained. For one source only, that is
n =1, in the notation above, and D1 = {d11, d12, ..., d1;} let Fyj
denote the max-flow value, which can go for any commodity like
water in case of Ford/Fulkerson from s; to dy;. The same water
cannot go to several sinks. However, the amount of min; < j<tF1j
bits can go simultaneously to dy1, di2, ... and dq;. Obviously, this
is best possible. It has been referred to as ACLY-Min-Max-
Theorem. To the individual F;; Ford/Fulkerson’s Min-Cut-Max-
Flow Theorem applies.

Itis very important that in the starting model there is no noise and
it is amazing for how long Computer Scientists did the inferior
multi-casting allowing only copies. It is perhaps surprising that
Shannon seems not to have realized the consequences of the basic
difference between classical and information flows. We substanti-
ate this by citing from his Kyoto lecture [98].

“A basic idea in information theory is that information can be
treated very much like a physical quantity, such as mass or ener-
gy. For example, an information source is like a lumber mill pro-
ducing lumber at a certain point. The channel might correspond
to a conveyor system for transporting the lumber to a second
point. In such a situation there are two important quantities: the
rate R (in cubic feet per second) at which lumber is produced at
the mill and the capacity C (in cubic feet per second) of the con-
veyor. These two quantities determine whether or not the convey-
or system will be adequate for the lumber mill. If the rate of pro-
duction R is greater than the conveyor capacity C, it will certain-
Ly be impossible to transport the full output of the mill; there will
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not be sufficient space available. If R is less than or equal to C, it
may or may not be possible, depending on whether the lumber can
be packed efficiently in the conveyor. Suppose, however, that there
is a sawmill at the source. This correspond in the analogy to the
encoder or transmitter. Then the lumber can be cut into small
pieces in such a way as to fill out the available capacity of the con-
veyor with 100 percent efficiency. Naturally, in this case a car-
penter would be provided at the receiving point to fasten the
pieces back together in their original form before passing them on
to the consumer.

If this analogy is sound, it should be possible to set up a measure
R, in suitable units, giving the rate at which information is pro-
duced by a given information source, and a second measure C
that determines the capacity of a channel for transmitting infor-
mation. Furthermore, the analogy would suggest that by a suit-
able coding or modulation system, the information can be trans-
mitted over the channel if and only if the rate of production R is
not greater than the capacity C. A key result of information the-
ory is that it is indeed possible to set up measures R and C hav-
ing this property.”

Network flows with more than one source are much harder to
analyze and lead to a wealth of old and new combinatorial
extremal problems.

Even nicely characterized classes of error correcting codes come
up as being isomorphic to a complete set of solutions of flow
problems without errors!

Also optimal anticodes (see theorem above) arise in such a role!
On the classical side for instance orthogonal Latin Squares arise.

It is known that classical network flows have many connections to
combinatorial extremal problems like Baranyai’s factorization
theorem [52] or especially for matching problems. Information
flows promise more such connections as for example in [113].
There may be a great challenge not only coming to Combinatorics
but also to Algebraic Geometry and its present foundations.

We draw attention to the chapter on Network Coding in [19],
pages 858-897.

X Localized Errors

A famous problem in coding theory consists in finding good
bounds for the maximal size, say N(n, t, ), of a t-error correcting
code over a g-ary alphabet Q = {0, 1, ... , ¢ — 1} with blocklength
.

This code concept is suited for communication over a g-ary chan-
nel with input and output alphabets Q, where a word of length n
sent by the encoder is changed by the channel in atmost ¢ letters.
Here neither the encoder nor the decoder knows in advance
where the errors, that is changes of letters, occur.

It is convenient to use the notation relative error t = t/n and rate
R=n"llogM.
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The Hamming bound is an upper bound on it.

1—hy(t) —tlo -1 if 0<r<™
Hq(r):{ 4(0) g,(q—1) st=<

q
if q;ql<‘r§1.

We turn now to another model. Suppose that the encoder, who
wants to encode message i € M = {1,2, ..., M}, knows the t-ele-
ment set E C [n] ={1,...,n} of positions, in which only errors
may occur. He then can make the codeword presenting i depend-
entonE e & = ([yt’]), the family of t-element subsets of [1]. We call
them “a priori error pattern”. A family {1;(E): 1 <i< M, E € &)
of g-ary vectors with n components is an (M, n, t, q); code (for
localized errors), if for all E,E € & and all g-ary vectors
ecV(E)={e=(e1,...,en): ej=0for j¢ E} and ¢ € V(E')

u(Ey®e#uy(EY®e for i#1i,

where @ is the addition modulo 4.

We denote the capacity error function, that is the supremum of
the rates achievable for r and all large 1, by C.. It was determined
by Bassalygo/Gelfand/Pinsker [54] for the binary case to equal
Hj (7). For general g the best known result is

Theorem

(l) Cfl(f) =< Hq(f), for 0 <t< %

q-2

(ii) Cé(r) = Hy(r), for0<7t< % - N

Competing Ideas:

Ahlswede: With increase of g the Hamming space should become
more flexible for packing and the Hamming bound should be
tight for0 <t < %

Pinsker: Knowing the a-priori error pattern E gives less protocol
information if g increases.

Who wins?

XI Search

After we wrote with I. Wegener one of the first books on search in
1978, the subject has grown terrifically. Still progress is possible
on basic questions.

For input alphabet & =Q and output alphabet Y =0Q let
My (n, t, q) be the maximal size of a t-error correcting code over a
g-ary alphabet with block length 7 in the presence of noiseless
feedback, that means having sent letters xi,... Xj1 € X the
encoder knows the letters y, ... Y1 €Y received before he
sends the next letter xj(j=1,2,...,n). Define the relative error
T = t/n, the rate R = nt log M, and the capacity error function
Cq (7) as the supremum of the rates achievable for t and all large
n.
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Theorem ([55], [116])

) = ho () if0<t=<t
2T (-8R + Ry if <t <3,
where Ry = 10g2(1+Tf5) and 7= 3+ /5) L.
Theorem ([33]) Let ¢ >3
(i)
< Hy(1) ifo<st<y
Cjm {=a-20logg—1 ift<r<}

(ii) The rate function obtained by the -rubber method is a tangent to
Hy(t) going through (hlL—l, 0).

The rubber method

Letb: M — {1,2,....q— 1}"2t be a bijection between the mes-
sages and the used sequences.

The “0” is used for error correction only.

Given i€ M the sender chooses b(i) = (x1,x2,..., Xy_2¢) €
{1.2,....9— 1}"=2t a5 a skeleton for encoding, which finally will
be known to the receiver.

For all positions i < 1 not needed dummies x; = 1 are defined to
fill the block length #.

Transmission algorithm: The sender sends xq, xp until the first
error occurs, say in position p with xp sent.

If a standard error occurs (x, — yp € {1,2, ..., q — 1})}, the sender
transmits, with smallest [ possible, 2/ + 1 times 0 until the decoder
received [+ 1 zeros. Then he transmits at the next step xp, again,
and continues the algorithm.

If a towards zero error occurs (xp, — yp = 0), the sender decreases
pby one (if it is bigger than 1) and continues (transmits at the next
step xp).

Decoding algorithm: The receiver just regards the “0” as a proto-
col symbol—he erases it by a rubber, who in addition erases the
previous symbol.

r-rubber method: Let the skeleton defined by {x"~(+Dfe
{0,1,....9— 1y D1 the sequence contains < 7 — 1 consecutive
zeros } and the protocol string defined as r consecutive zeros.

Relation between Berlekamp’s strategies
and r-rubber method

— For g =2and r > 1 the r-rubber strategies have the same rate
as Berlekamp’s strategies (tangents to the Hamming bound
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going through (H% . 0)).

— Especially for =2 and r =2 we get Berlekamp’s tangent
bound.

— More general we get for g>2 and r>1 tangents to the

Hamming bound going through (hlL—l, 0).

XII Combi-probabilistic Models: Coloring
Hypergraphs did a Problem by Gallager

Slepian/Wolf Model 1973 ([102])

For a DMCS ((X", Y")?° ; with alphabets A and Y for encoding
f:Y"—>N and decoding g:X"xN-—> X"xY"' with
Prob(g(X", f(Y™)) = (X", Y™)) ~ 1 it is true that the optimal rate

(f) equals H(Y|X).

Gallager Model 1976 ([75])

For a discrete, memoryless conditional distribution
(YY" (") - x" e X™")52, (Generic Py|x) with alphabets X' and )
for encoding f:Y" — N and decoding g: X" x N — X" x Y"
with Prob(g(x", f(Y") =", Y")) ~1 Vx'e X", we proved
that the optimal rate (f) equals maxy H(Y|X = x).

Here RANDOM SELECTION fails.

Our solution is given already in [1] by a counting argument and
in [7] it proceeds by a combined greedy/random selection.

C. Further Perspectives

Protocol Information

“Protocol” information we encountered in the Theory of
Localized Errors and in the Rubber Method. The subject was start-
ed by R.G. Gallager [74] and deserves further investigations.

Beyond Information Theory: Identification

as a New Concept of Solution for

Probabilistic Algorithms

We mention as perhaps one of the most promising directions the

study of probabilistic algorithms with identification as concept of
solution and underline its importance by repeating:

The algorithm should be fast and have small error probabilities.
Every algorithmic problem can be thus considered. This goes far
beyond Information Theory. Of course, like in general informa-
tion transfer also here a more general set of questions can be con-
sidered. As usual in Complexity Theory one may try to classify
problems.

What rich treasures do we have in the much wider areas of infor-
mation transfer?!

Example 6
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Develop probabilistic algorithms which answer very quickly with
high probaility correctly whether a polynomial P: R — R has a
root in the interval [i, i + 1] or not, for any 7 € N.

A new connection between information inequalities and
Combinatorial Number Theory: The final form of Tao’s
inequality relating conditional expectation and conditional
mutual information

Recently Terence Tao approached Szemerédi’s Regularity Lemma
from the perspectives of Probability Theory and of Information
Theory instead of Graph Theory and found a stronger variant of
this lemma, which involves a new parameter.

To pass from an entropy formulation to an expectation formula-
tion he found the following

Lemma. Let Y, X, and X be random variables taking values in ) and
X, respectively, where Y C [—1, 1], and with X' = f(X) for a (deter-
ministic) function f. Then we have

E(E(YIX") — E(Y|X)]) < 21X A Y|X))2.

We show that the constant 2 can be improved to (21n2)% and that
this is the best possible constant.

Could we ask Shannon’s advice !!!

The following last paragraph on page 350 is taken from “Coding
theorems for a discrete source with a fidelity criterion”, C.
Shannon Collected Papers, 325-350.

“In a somewhat dual way, evaluating the rate-distortion
function R(D) for a source amounts, mathematically, to
minimizing a mutual Information under variant of the
qi(j), again with a linear inequality constraint. The solu-
tion leads to a function R(d) which is convex downward.
Solving this problem corresponds to finding a channel that
is just right for the source and allowed distortion level. This
duality can be pursued further and is related to the duality
between past and future and the notions of control and
knowledge. Thus we may have knowledge of the past
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but cannot control it; we may control the future but
have no knowledge of it.”

The often cited last sentence, which we put here in boldface, has
made several thinkers curious.

We sketch below our ideas about creating order involving knowl-
edge of past and future and wonder what Shannon, whom we
never met, would think about them. They are motivated by
Clausius’ second law of thermodynamics

“Heat cannot by itself pass from a colder to a hotter body.”

He also introduced entropy, for which Boltzmann gave a
famous formula.

We quote A. Rényi, Probability Theory, North Holland,
Amsterdam, p. 554, 1970, for his opinion about this.

“The quantity Y ;_q pilog, %’k is frequently called the entropy of
the distribution P = (p1, . ... px). Indeed, there is a strong con-
nection between the notion of entropy in thermodynamics and the
notion of information (or uncertainly). L. Boltzmann was the first
to emphasize the probabilistic meaning of the thermodynamical
entropy and thus he may be considered as a pioneer of information
theory. It would even be proper to call the formula the Boltzmann-
Shannon formula. Boltzmann proved that the entropy of a physi-
cal system can be considered as a measure of the disorder in the
system. In case of a physical system having many degrees of free-
dom (e.g. perfect gas) the number measuring the disorder of the
system measures also the uncertainty concerning the states of the
individual particles.”

Creating order with simple machines

In [45] and [46] a new field of research, creating order in sequence
spaces with simple machines, was introduced. People spend a
large amount of time creating order in various circumstances. We
contribute to a theory of ordering. In particular we try to under-
stand how much “order” can be created in a “system” under con-
straints on our “knowledge about the system” and on the “actions
we can perform in the system”.

We have a box that contains g objects at time t labeled with num-
bers from X ={0,...,a—1}. The state of the box is
st = (s¢(1), ..., s(a)), where s¢(i) denotes the number of balls at
time ¢ labeled by i.

Assume now that an arbitrary sequence x" = (x1, ..., x,) € X"
enters the box iteratively. At time t an organizer O outputs an
object y; and then x; enters the box. " = (x1, ... , xp) is called an
input and y" = (y1, ... . y») an output sequence. The organizer’s
behavior must obey the following rules.

Constraints on matter. The organizer can output only objects
from the box. At each time t he must output exactly one object.

Constraints on mind. The organizer’s strategy depends on
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(a) his knowledge about the time t. The cases where O has a
timer and has no timer are denoted by T and T~, respec-
tively.

(b) his knowledge about the content of the box. O~ indicates
that the organizer knows at time f only the state s; of the box.
If he also knows the order of entrance times of the objects,
we write Ot

(c) the passive memory (m, 8, ¢). At time t the organizer
remembers the output letters y;_», ... . y;—1 and can see the
incoming letters X1, ... , Xtyq-

Let Fu(m,B,9,T~,07) be the set of all strategies for
(T~,07), length n and a given memory (r, 8, ¢) and S be
the set of all states. A strategy f; : X" x & — X" assigns to
each pair (x", s;) an output y". Denote )(f,) the image of
X" x S under f,. Also denote ||V (fy)|| the cardinality of

Y(fw)-

Now we define the size

Ng(nv ;Bv (ﬂ) :mm{”y(fll)” : fil € ]:11(7[7 ;Bv @, T_v O_)}

and the rate
Ve (T, B, ) = lim —1 log N (x, B, @)
o s P, @ 7 g o s Py ®).

Analogously, we define in the case (T, O") the quantities
Ol (r, B, ¢), wa (7, B, ¢), in the case (T, O~) the quantities
T (rr, B. ¢), T (7, B, ) and in the case (T, O") the quanti-
ties G (w, B, @), va (7, B, @).

(d) the active memory. Now the organizer has additional mem-
ory of size m, where he is free to delete or store any relevant
information at any time. Here we are led to study the quan-
tities NX(xt, B, ¢, m), vy (7, B, ¢, m), etc.

Survey of the results

b3 % v (1. B. ¢)

0 0 1

0 1 1

1 0 sup(l = (6 = Do)k (1_(,57_1)5)

bis o0 1/8

00 <p-1 log A*, where 1* is the largest root of

A0 — ) T(B+H14+0)/2] 4 5 LB+T+9)/2]

oo >p-1 1/8
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Furthermore the following relations hold. wy(co, B, ¢) =
v2(00, B, 9), wr(m, B,00) = va(m, B, 00), limpgoov3(0,8,0) =1,
(7, B, ) = v2(00, B, ¢) for m > 1,

(0,2, 0) = log((v/5 + 1)/2).

In the model of active memory we have for the memory size
m =2 that (0, 8,0,2) = (1, 8,0) = log Ag, where Ag is the pos-
itive root of A# — =1 —1=0.

The general case, where the size « of the set X, the size g of
the box, and the memory parameters x, ¢ and m are arbitrary,
has not been solved yet. This is the cardinal goal for our
research to aim at within this field. We have the following
conjectures.

1. limy_s 00 v2(7, B, @) # V2(, B, 00) (in the analogous case for
m — oo equality holds)

2. limg_ 00 (0, B, 0) =log, [(e +1)/2] (for « =2 and « =3
this is true)

3.0, 8,0) =v2(1,8—-1,0)

In a probabilistic model the objects or letters are produced by a
stochastic process, which in the simplest case is a sequence (X;)?%,
of iid. RV’s with values in X = {0, 1, ..., o — 1} and generic dis-
tribution Px. In Information Theory this is also called a discrete,
memoryless source. For a strategy f,;, which depends on the triple
(7, B, @), let Y = Y71 ...Y}, be the output sequence corresponding
to X" =Xjy...Xyu. Let Fl)(w, B, ¢, Px) be the set of strategies
restricted to block length n.

We use the “per letter” entropy %H(Y”) as performance criterion
and define

1
7, B, ¢, Px) = lim min —HY™).
ne (T, B, @, Px) o g, Py) X"

This is the smallest mean entropy of the output process,
which can be achieved by O with strategies based on his
knowledge. It corresponds to the optimal rate v, (7, 8, ¢) in
the non-probabilistic model. Our new quantity is much hard-
er to analyze.

In the first non-trivial case g =2 and 7 = oo, ¢ = 0 only the sim-
plest non-trivial source, namely the binary symmetric source
defined by Px(0) = Px(1) = 1/2, could be analyzed.

Theorem The strategy which is locally optimal for every t =1,2, ... is
optimal. Moreover for the disjoint events Dy = Ej \ Exy1, where
Ep = {Yk = 01010...}, q(k) = Prob(Dy) satisfies Y o q q(k) = 1 and

H
(00, 2,0, Px) = ooi

> kq(k
k=1

=0,5989... (2)
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Conjecture The formula (2) has a nice structure. It suggests a general
principle for arbitrary sources. However, already the binary non-sym-
metric source is difficult to solve.

Finally we mention the survey of Vanroose, pages 603-613 in
[48].

Directions of developments of our basic model
for sequences

Multiple in- and outputs: s inputs and s outputs, varying number
of outputs, merging, splitting, correlation

Objects with special features: Varying-length objects, death-birth,
idle objects, box with exclusion rule

Compound objects: Box with reaction rules, representatives,
objects with many properties, exchanging parts of objects

Errors: Probabilistic, confusion rule, frequency rule, receiver can
distinguish only certain objects

Applications

Production of goods, arrival of goods and documents, garbage
collection

Extensions of the basic model

A combined theory of ordering and source coding
Ordering, sorting and Maxwell’s demon

A calculus of machines: comparisons of machines, commutativity

Other topics

When after an interruption of a decade we attended the ISIT
again, namely in Seattle 2006, we learned from the outside
world about seemingly important topics: oblivious transfer
capacity, denoising, fountain capacity, and timing channels
with jamming. All these can be studied also in the context of
GTIT.

One can conceive of Information Theory in the broad sense as
covering the theory of Gaining, Transferring, and Storing
Information, where the first is usually called Statistics. For a
somewhat different view the reader is advised to look at [61]. A
broad class of statistical problems arises in the framework of
hypothesis testing in the spirit of identification for different kinds
of sources, with complete or partial side information or without
it. Paper [37] is a start.

Information concepts play an important role in Game Theory.
Information theorists usually think about choosing portfolios (see
[60]), a direction started by J. Kelly ([83]), but there are many more
connections which ought to be studied. We hint at them by listing
basic papers [49], [50], [80], [104] and by pointing at the titles of
the following survey articles [76], [88], [93] and [94] in the
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Handbook of Game Theory. They contain the terms common
knowledge, communication, correlated equilibria, search, and
signalling.

We feel that animal communication ([58], [81]), psychology, and
also neurology ought to be studied experimentally in the light of
GTIT, with and without feedback.

A final question to Shannon’s attorneys

The following last paragraph on page 376 is taken from “Two way
communication channels”, C. Shannon Collected Papers, 351-384.

“The inner bound also has an interesting interpretation. If we
artificially limit the codes to those where the transmitted sequence
at each terminal depends only on the message and not on the
received sequences at that terminal, then the inner bound is
indeed the capacity region. This results since in this case we have
at each stage of the transmission (that is, given the index of the
letter being transmitted) independence between the two next
transmitted letters. It follows that the total vector change in
equivocation is bounded by the sum of n vectors, each correspon-
ding to an independent probability assignment. Details of this
proofs are left to the reader. The independence required would
also occur if the transmission and repetition points at each
end were at different places with no direct cross communi-
cation.”

According to our understanding the last sentence in this quote
(which is put here in boldface) implies the solution of the capac-
ity region problem for what is now called Interference Channel.
Already in [5] we showed that the region obtained with inde-
pendent sender’s distributions is generally smaller than the
capacity region.
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Award Announcements

2008 Claude E. Shannon Award

Prof. Bob Gray from Stanford was awarded the “2008 Claude E.
Shannon Award.” Prof. Gray will held his Shannon lecture at ISIT
2008 in Toronto, Canada.

2007 Information Theory Society Paper Award

The 2007 Information Theory Society Paper Award recognizes an
exceptional publication in information theory, appearing in the
period January 1, 2005 through December 31, 2006. At ISIT 2007 in
Nice, it was announced that the award goes to:

“The Capacity Region of the Gaussian Multiple-Input Multiple-
Output Broadcast Channel,” by H. Weingarten, Y. Steinberg and S.
Shamai (Shitz), which appeared in the IEEE Transactions on
Information Theory, vol. 52, No. 9, pp. 3936-3964, September 2006.

This paper establishes the capacity region of one of the most
important class of broadcast channels. In the process, new concepts
and analytical tools are introduced. These results already impact-
ed many other works in information theory.

A special mention should be given to the runner-up paper which was rec-
ognized by the award subcommittee to be an extremely strong contender:

“Mutual Information and Minimal Mean-Squared Error in Gaussian
Channels", by D. Guo, S. Shamai (Shitz) and S. Verdu, IEEE
Transactions on Information Theory , vol. 51, pp. 1261-1282, April 2005.

2007 Information Theory Society Aaron D.
Wyner Distinguished Service Award

Dr. Jack Wolf, Stephen O. Rice Professor of Magnetics at the
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Marc Fossorier

University of California at San Diego, has been awarded the 2007
Aaron D. Wyner Distinguished Service Award. The award honors
individuals who have shown outstanding leadership in, and pro-
vided long standing exceptional service to, the Information Theory
community.

2007 Information Theory Society Chapter of the
Year Award

The award goes to the Seoul Chapter. The award recognizes the
most active chapter during the previous year.

2007 Information Theory Student Paper Award

The first Information Theory Student Paper Award has been
awarded to:

“Minimum Expected Distortion in Gaussian Layered Broadcast
Coding with Successive Refinement,” by Chris T.K. Ng, Deniz
Gunduz, Andrea Goldsmith, and Elza Erkip

and

“Uplink Macro Diversity with Limited Backhaul Capacity,” by
Amichai Sanderovich, Oren Somekh, and Shlomo Shamai

Papers with a student author as the major contributor and
presenter were eligible for this award. In total, 193 of the sub-
missions to ISIT were self-marked as eligible for the student
paper award. Of these, 106 were accepted for publication in
ISIT and considered in the selection of the finalists. The com-
plete list of the finalists is available at http://www.
isit2007.org/index.php.
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