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5. The structure of extremal sets

Define N(k,n) = {m:m < n,Q(m) = k}. We call A C [n] N(k,n) typical if for
fixed f andn — o 8(f,AAN(k,n),n) =o0(6(f,A,n)).

Problem 9 Is it true that for “small” f an extremal set N (k,n) is typical? For how
fast decreasing f is this the case?

6. Existence of many disjoint “larger” (almost extremal) primitive subsets

For f(m) = L there are “many” primitive disjoint subsets A,...,A of [n] with
O8(f,Ai,n) > (1—¢€)F(f,n), for f(m)=1, f(m)= @ there are no Ay, ..., A
with these properties. Where is the limit?
We are grateful to A. Granville for having communicated to us in March 2004
a problem B. Poonen had once asked him, and which might be solvable using
some of the results in [AKS04].

Suppose that S C N and §(n) = SN [n]. Consider the asymptotic density (known

to exist) dM(S(n)) and the ratio r(n) = w

Must
lim dM(S(n)) = lim r(n)? (32)
n—oo n—oo

One can prove that the answer is no by constructing sets S where the limit on the
RHS does not exist; but, the limit on the LHS always exists because dM(S(n))
increases as n — oo, and is bounded from above by 1. An example of a set S for
which the limit on the RHS does not exist is a union of dyadic integer intervals
{x; +1,...,2x;}, where the x;’s are chosen to be very far apart. When n = 2x;,
for some i, there will be a higher proportion of integers m < n divisible by some
element of S than when n = x;.

So, one can modify the question in the following way.

Problem 10 If we have that lim r(n) exists, must it follow then that (32) holds?
n—oo
Finally, we mention a conceivable sharpening of Theorem 56 of Lecture 16.

Conjecture (Ahlswede/Khachatrian; also Erdds) In Theorem 56 one can choose
for every k n(k) = cpj for a suitable constant c. Presently, we have only n(k) =

HpS(ﬁl-lk)szk'

Towards Combinatorial Algebraic Number Theory

After all these contributions to Combinatorial (Elementary) Number Theory, which
in particular widens the area treated in [HT88], we open a new area of research by
considering now seemingly basic extremal properties for algebraic number fields.
We present with complete proofs our recent work. For its understanding knowledge
about number fields is required.
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We prove that for all sufficiently large Ny a maximal set of ideals of the max-
imal order of an algebraic number field, such that any pair of ideals from this
set is not coprime and the norm of each ideal does not exceed Ny, is of the form
E(Ny) = {0 :N(6) <Ny, 0 = nyu}, where {ny,ns,...} is the set of prime ideals
of the maximal order and N(n3) > 2.

In the paper [AK95b] the authors investigated the problem of finding the maximal
sets of integers bounded from above by some number Ny without k4 1 coprimes.
There it was proved that for all sufficiently large Ny the unique maximal set is

E(No,k) ={n <Ny, n=pju, i=1,....k}, (33)

where p; < p2 <...1is the sequence of prime numbers. Shortly before it was proved
in [AK94b] that this assertion is not valid for all Ny, i.e., for small values of N the
set E(Ny, k) is not maximal. These facts completely solved the problem of Erdds of
determining the maximal sets of integers without k + 1 coprimes.

It is natural to extend this problem to the case of algebraic numbers. Here we
concentrate our attention on the problem when k = 1. It is a straightforward result
that in the ring of integers the maximal set (for arbitrary Ny) is E(No, 1). The answer
is not so obvious in the case of ideals in the maximal order of an algebraic number
field. Moreover, we can prove that the analogous result is true only for large enough
Ny and only when the norm satisfies N(n3) > 2. We consider the maximal order B
of the algebraic number field K, which is a finite extension of the rationals ! R and
(K : R) = n. Denote the set of integer ideals of the maximal order by ® and the set
of ideals whose norms do not exceed Ny by ®(No).

Let Q = {1, M2, .} be the set of prime ideals of the order B, which are ordered
in such a way that their norms do not decrease, i.e., N(1;) < N(n;11). Recall that for
an arbitrary ) € Q, N(n) = p/ for some prime p and positive integer f. We say that
two ideals 61, 8, € ® are coprime if they do not have any common multiple in their
prime ideal decomposition. The problem we are going to solve here is to determine
for all sufficiently large Ny the maximal set of ideals from @(Np) such that it does
not contain a pair of coprime ideals. The main problem here in comparison with
the ring of integers, which was considered in [AK96a], is that the norm of prime
ideals is not a strictly increasing function. We find that the solution of this problem
is an interesting interaction between the methods of the work [AK96a] and a dia-
metric problem. This interaction is based on the special properties of intersecting
antichains, which we establish here.

Here is the main result.

Theorem 95 (Ahlswede and Blinovsky) If N(12) > 2, then for sufficiently large
No any maximal set of ideals O(Ny) without coprimes and with a norm not exceeding
Ny is one from

E(No,ni) 2{0€ONy): 0 =mju},i=1,....k,

where k is the maximal number such that N(n;) = N(m1), i <k.

! Here R denotes the field of rational numbers whereas the usually used letter Q denotes in this
paper the alphabet {0, 1,...,g—1}.
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IfN(m2) =2, N(m3) > 2, then the maximal set is one from E(No,n1), E(No,N2).

Note that in this theorem we still have the condition (as in the ring of integers
from [AK95b]), that Ny must be sufficiently large, and one additional condition,
that N(13) > 2. In the case N(13) = 2 we do not even have a conjecture what the
maximal set of ideals with restricted norm and without coprimes is and we will show
that the maximal density of such a set can be achieved on several sets of ideals.

Define O(Np) as the family of maximal sets of ideals from ® without coprime
pairs whose norm does not exceed Ny. Next we assume that N(13) > 2. We say that
two ideals 6, 6, € © intersect in the ith position if 1;|6;, 1;|6,. We need the notion
of left compressedness of D C @(Ny). We say that D is left compressed if for all
d € D such that

d=nlu, n fu,i>1,

and all . : k < £, we have . _

d=mngu e D.
Denote by C(Ny) the family of sets, which belong to the family S(N;) of sets of
ideals without coprimes and with a norm not exceeding Ny and which has the addi-
tional property that each set from this family is left compressed. Next we consider a

set of ideals from C(Np). It is easy to show (and it was done for example in Lemma 1
of [AK95b]) that

O(No)("\C(No) # 0.
Note that D € O(No) is adownset, i.e.,ifd =1, ... nl-‘{x‘ €D, thend=1;,...m;, €D
and D is also an upset in the sense that

D =M(D)(®(No),

where M(A) is the set of multiples of A C ®. For D C ® we denote by P(D) C ©
the set of ideals such that for 6;, 6, € P(D), 6, /6, and D C M(P(D)). It is easy to
see that, if D € O(Ny), then

D =M(P(D))()©(No)
and P(D) is the set of square-free ideals.

Lemma 55 For all sufficiently large Ny there exists a t (which does not depend
on Ny and depends only on K) such that any two 6;,6, € A € O(Ny) NC(No) are
i-intersecting for some i < t.

Lemma 56 The density of A € O(Ny) equals 1/N(n1).

The proof of Lemma 56 uses some results about intersecting antichains, which we
introduce later.

Lemma 57 If N(1m2) > 2, then the density 1/N(1n1) is achieved on one of the sets
E(No,m;); i =1,...,k. If N(n2) = 2, then the maximal density 1/2 is achieved on
two sets, E(No,M1) and E(No,12).
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The statement of the next lemma is well known ([N74]).
Lemma 58 (Prime ideal theorem) The following relation is valid

#{neQ: N <2} = (1+0(1)), 2=

Proof of Lemma 55. Let

n(z) ={neQ: N(n) <z}
be the number of prime ideals with norm not exceeding z. Our proof is based on the
following statement, which was proved in [AK96a].
Proposition 24 Forall A€ O(Ny)(C(No) no a € P(A) has divisor n;, i > s, where
s > 2 is the minimal number, such that for z € R the following inequality is valid

27(2) < 1(12). (34)

Notice that this statement looks different from Lemma 4 in [AK96a] but the essential
parts of the proofs coincide.

Now it is easy to see that for a given field K inequality (34) is always true for
s > so, where 59 is sufficiently large. Indeed, let us choose zg such that

1 z z
—— <m(z) <2—=—, z> 2.
2logz — () < logz L=

The possibility of such a choice follows from the mentioned Lemma 58. Then also

1 psz PsZ
— <m(psz) <2 , 2> 20.
2ioe(pa) = " = ig(p)
Now we choose sy such that for s > s
2
Lo Pt (35)

logz ~ log(psz)

If z < 2, then 7(z) = 0 and (34) is valid. If 2 < z < z, then we choose s such
that
m(psz) > m(ps2) > 27(20) > 27(2), 5 > 1. (36)

At last if # = max(sg, s;), then (35) and (36) imply (34). Lemma 55 is proved. O

Thus for some 7, which is independent of Ny, each ideal from P(.A) has no di-
visors 1j, j > t. Hence we should consider only P(.A) such that 6 =1;,...1n;, €
P(A), i} <...<ir <t for some ¢, which depends only on K. We assume that the
square-free ideals aj,ay,... € P(A) are ordered colexicographically. Hence there
exists a natural one-to-one correspondence between ideals from P(.A) and binary -
tuples. The set of 1—tuples, which correspond to P(.A), is an intersecting antichain.
Now we are going to investigate some properties of intersecting antichains. First of
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all note that a maximal .A(Np) must have maximal asymptotic density as Ny — oo.
The density d A(No) is equal to

dA(No) =Y dB', (37)

where dB' is the density of the set of ideals B’ from A, which are divisible by
a; € P(A) and are not divisible by a; € P(A), j < i. By left compressedness of the
set A it follows that if @; = 1), ... 1, (i <... < jy)and N(n;) = g;, then

B = {ee@(No):e:nfl‘l...nj‘.’:fu, a; > 1, (u I n;) = 1}

i<
and hence

-y T (11> = I @ (ﬁ%)l

o = i L
jp2t -4, J<in 4 J<irys J#ips P=1sensti

and

g\
dANo) =Y Hl (qj—1)<H]q,-> ) (38)

i j#jps p=1,ri

We now consider the ¢-tuples, whose jth element is chosen from the alphabet
{0,1,....,9;— 1}, and consider sets A(r) of t-tuples such that every pair of 7-tuples
has a common unit in some position (possibly different for different pairs). As
it was shown in [AK98], the cardinality of a maximal set of ¢-tuples from Q' =
{0,1,...,q— 1}’ such that its diameter is d coincides with the maximal cardinality
of a set of t-tuples from Q' such that every pair of ¢-tuples from this set has t —d com-
mon ones. The same is true for O' =[['_,; 0; ={0,...,q1 — 1} x...x{0,...,q,— 1}.
The characterization of all such maximal sets constitutes a diametric problem. In our
cased =t — 1. In [L79a] was proved (and it also follows from [AK98]) that maximal
subsets from Q' with diameter d =t — 1 are of the form

Aij={(ai,...,a)€Q : ai=j},i=1,....0, j=0,....q— 1.

Their cardinality is ¢’ ~'. We use this result to show the validity of the following

Proposition 25 Any maximal set from Q' with diameter d =t — 1 is one of the form
Aij={(ar,...,a) €0 s aj=j},i=1,...0k, j=0,....q—1
for=...=q=9<qr1, @2>2

and
Aii={(ar,...,a) €Q : aj=j},i=12, j=0,1
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ifqr=q=2<gqs.

Proof. Fort=1ort =2,q; = gp =2 the statement is obvious. Next we suppose
that# > 1 and if t > 2, then g3 > 2. The proof will use induction on ¢.

Suppose that A C Q' is a maximal intersecting set. It can be easily seen
that |A| = [T\_,qi. We set A = ?’;01 Aj, where Aj ={aec A: a=
(a1,...,ai-1,j)}. Denote A} = {x € A;: ¥ intersects with all y/, y € A}, where
& = (X100 X 1,Xi41,...,% ). Denote also T = U?’:_Ol (Aj \A’j) .

We assume that g; > ;. Otherwise the proof of the lemma reduces to the proof
of Theorem 2 from [L79a], which states the result for the case Q; = {0, 1,...,g— 1}
fori=1,...,1.

Consider two cases:

Case 7 = A. It is easy to see that for each (ay,...,a,—1) € {0,...,q1 —1} x... x
{0,...,g;—1 — 1} there exists not more than one a; € {0,...,q; — 1} such that a =
(al;l. ..,ar) € A. Butin this case | A| < H’j_:l] qj, which contradicts to the maximality
of A.

Case T # A. Tt can be easily seen that if ¢; < ¢;, then 7 = 0. Indeed, consider the
decomposition 7 = Ujf‘zf)l 7;, where 7; ={a = (ai,...,a;) €T : a; = j}. With the
pigeon-hole principle follows the existence of an i € {0,...q; — 1} such that|7;| >
|7|/q1- Then the set

-1

A = U A}U{(al,...,a,,l,m), me{0,...,q,— 1}
=0
and (ay,...,a;,_1) =a for some a € T;}.

is intersecting and |.A'| > |.A|, which is a contradiction.

Next, if 7 = 0, then A = 31_,;01 Al and B = {(a1,...,ai-1) = (a1,...,a) € A}
is an intersecting set. By maximality of .4 we have A = {(ay,...,a—1,m), m €
{0,...,q:— 1}, (a1,...,4—1) € B}. Hence to maximize |.A| we should maximize
the intersecting set 53, but this set consists of (# — 1)-tuples and we can use induction.

This completes the proof. a

Now we turn to some facts about intersecting antichains. We introduce sev-
eral relations that have independent interest; however, for our proofs we only need
Proposition 28.

Intersecting Antichains

Let us have an antichain A C 2" satisfying at the same time for arbitrary A{,A; €
A, A1(NA; # 0. Such a set we call an intersecting antichain. Denote by A; C A the
set of binary 7-tuples such that i is the last position where every A € A; has a one.
We start with a simple but interesting inequality.
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Proposition 26 If A is an intersecting antichain, then

A

20—

M-

(39)

N —

1

(It is easy to see that bound (39) is tight; for example there is equality, when
|Ai] = 0 for i > 2, and |.A;| = 1. There is equality also in many other cases, as we
will show later).

Proof. Denote by B; the set of vectors obtained from A; by deleting the last r — i
zeros. The vectors from B; have i components. B =J\_, B; is a prefix-free code and
|Bi| = |A;|. Hence by the Kraft inequality we have

<1

= |Bil
Lo

i=1

and hence

|-A_i|

2!

<1

-

i=1

Now for every i and every b € B; consider all possible continuations of i-tuple b to
the length . The number of such continuations is 2/~/. This way we obtain a set of
different z-tuples C,

1 1
Cl =Y I1B27" =} [ A2 (40)
i=1 i=1
At the same time the set C is intersecting and hence
lc| <21 (41)
Therefore
1
Z |Al_|2t71 S 2t71

i=1

and we obtain (39). Equality in (39) is achieved also on the intersecting antichain

. (£1). if 2 b, o
{AE (%[ﬂl) 1l %ZA}U{AG ([g) 1 eA}, if 2.

This can be easily seen by the fact that the set A is an intersecting antichain whose
sets A; generate the sets I5; such that all possible continuations of the sets 5; to the
length ¢ form the intersecting set C :

1) (", if 2 t,
€= ! ' [t t [t] .
{A €Ujmppn (§) 1 ¢A}U{A eUipn ()1 GA}, if 2t
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and this intersecting set has cardinality 2/~ !. Another proof of this fact can be done
by induction (by proving relation (43) below). Consider for example the case 2 Jr.

We have i
Al=a= ("),
2

Hence

gle) = i Q =1 (43)

We prove (43) by induction. For ¢ =0, 1 it is true. Then

2042 ( i ) 2042 (ifl) 2042 (ifl)

getl)= Y ==Y 5o+ )Y

i
i=c+1 i=c+1 i=c+2 2

2¢+1 2c+2
- (g(0)+ Ce) +gle+1)— (“+')> = 1(1+g(c+1)).

22c+1 22¢+2 2

We can generalize inequality (39) to the case of r-intersecting antichains A, i.e.,
when |A;NAz| > r for all Aj,A; € A. We use Katona’s Lemma: if C C 2 is an
r-intersecting set, then

Y, (), 2|(t+r),
|C§K(t=r):{211(iTr)/2 ' (171) 2/}/(1‘4— )
i=(t+r=1)/2\ i ) r).
and instead of inequality (41) we obtain
Lemma 59 If A is an r-intersecting antichain, then

|Al| <K(tar).
20— 2

(44)

-

Note that everywhere instead of the antichain condition we can consider the weaker
condition that U?:] B; is a prefix-free code. However, when r > 1, equality in (44)
is achieved only on the antichain A consisting of the minimal elements of Katona’s
set (about Katona’s set see for example [AKO0S5]), i.e., when

(@), if 2|(t+r),
{Ae (t) 1¢A}U{Ae (i) 1eA}, if2 ft+7)

2 2

A:

We can find further generalizations of inequality (39), for example when the ground
alphabet is g—ary. Note that the maximal number of intersecting ¢ —tuples from
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Q' ={0,1,...,g— 1} is ¢~'. Hence if we consider .4; C A C Q' as the set of ¢-
tuples such that i is the position of their rightmost nonzero symbol, we can write (39)
with ¢ instead of 2. However, more useful for our purpose will be the model, when
we take into account only positions of ¢-tuples from .4, which contain ones. For
a =(ai,...,a;) € Q" define

Bd)={j: a;=1}

and for A C Q' denote B(A) = {B(d"), a' € A}. Letalso L(.A) be the set of minimal
elements of 5(A). Denote by A; , C L(.A) the set of z-tuples each having its last
one in position i with the whole number of ones equal to @. Then the following

relation is valid: _
H=® 1

o . _
Z Z |~Ar,co‘(qi <-. (45)
i—lo—1 q

The proof of this inequality involves similar counting arguments as the proof of (39).

To find a generalization of (45) for the case of r-intersecting sets we should know
the formula for the maximal cardinality of a g—ary set A such that for every A,A; €
A, |A1NAz| > r, where intersection means the set of positions, where both A; and
A have ones.

_

Proposition 27 If for A C Q',L(A) is an r-intersecting antichain, then

t i
Z Z Aiwl(g—1)"° <

where Ny(t,r) is the maximal cardinality of a set from [q]' whose diameter does not
exceedt —r.

Ny(2,7)
qf

3

1
q

At last we need one, the most general case, when A C [T\, Q; = {0,...,q1 — 1}
x -+ x {0,...,q, — 1}. In this case, we have the following generalization of (45)
(and correspondingly (39)), the proof of which we leave to the reader.

Proposition 28 The following relation is valid:

2 Y [] (a —IHqJ<HqJ (46)

€L(C): st(C)=i jeli]\C J=i+l

where s*(C) is the position of the rightmost one of C.

Proof of Theorem 95. Now we summarize the facts that we have obtained and prove
Theorem 95. Note that the expression on the LHS of (46) is equal to the number of
t-tuples in some set C C [T;_; Q; with intersecting L(C) and if L(C) = P(A(Np)),
then it is proportional up to [T;_, ¢; to the density (37) of A(Nog) C ©(Np) where we
use the one-to-one correspondence between binary z-tuples and square-free ideals
6 € O, such that 1); /8 when 7 > t. Solving the diametric problem in this case, we
see that the maximum of the LHS of (46) for left compressed sets and hence the
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maximum of the density of A(Np) is achieved (only) when L(C) = {(1,0,...,0)}.
As the number of possible P(.A(Np)) such that for 6 € P(A(Np)) we have n; |6
when T > ¢ is bounded from above independently of Ny, there exists N’ such that
when Ny > N’ we have for the maximal A(Np) :

A(No) = {9 S @(No) 0= T]lu}. A7

This maximal set is unique among left compressed sets. This proves Lemma 56.
To prove Lemma 57 and Theorem 95 note that for not left compressed sets, in the
case N(1) > 2 we have additional to (47) possibilities {6 € @(Ny) : 0 = Nu}, i =
2,...,k each of which is a maximal set and in the case N(1;) =2, N(n3) > 2
we have one additional to (47) maximal set {6 € @(Np) : 6 = Mou}. This proves
Theorem 95. O

Remark In the case, when N(13) = 2, the density 1/2 is achieved besides the
set (47) also on the set

A”(No) = {9 € @(No) 0= NiMNau, =NiN3u, = T]z?’]3u} (48)

and at the present we are not able to determine in the general case when N(13) =2
which set of ideals is maximal.

Note that the results that do not use the strict increase of the norm along the set of
ideals 11,12, . .. are still valid for the set of ideals as for the set of positive integers.
Let us give an example. Write

1

—, 5> 1,
N(n)

C(As)= Z

neA

where A is some set of ideals. The lower Dirichlet density D(.A) of the set A is
defined as follows:
D(A) 2 liminf (A, s).

s—1t

For an arbitrary pair of divisors 1,7, denote by (11,12) ([11,7M2]) their greatest
common divisor (least common multiple) and for two sets of ideals A, B3 let

(AaB) = {(7'[17772); n e -'47 me B}a
[A, Bl ={[m,m]; m € A, m € B}.
The following inequality is valid:
D(A)D(B) < D([A, B])D((A, B)).

This inequality is from the class of correlation inequalities. The proof of this in-
equality is literally the same as when the sets .A and B are sets of positive integers
and this proof can be found in [AK97a].



