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Abstract—We consider the problem of searching for an un-
known number in the search spaceU = {0, . . . , M − 1}. q-
ary questions can be asked and some of the answers may be
wrong. An arbitrary integer weighted bipartite graph Γ is given,
stipulating the costΓ(i, j) of each answerj 6= i when the correct
answer isi, i.e., the cost of a wrong answer. Correct answers are
supposed to be cost-less. It is assumed that a maximum coste
for the sum of the cost of all wrong answers can be afforded by
the responder during the whole search. We provide tight upper
and lower bounds for the largest sizeM = M(q, e, Γ, n) for
which it is possible to find an unknown number x∗ ∈ U with
n q-ary questions and maximum lie coste. Our results improve
the bounds in [9] and [3]. The questions in our strategies can
be asked in two batches of non-adaptive questions. Finally, we
remark that our results can be further generalized to a wider
class of error models including also unidirectional errors.

Index Terms—Coding with feedback, Searching with lie cost
Γ(i, j) for answer j, if i is correct, Compound unidirectional
errors

I. I NTRODUCTION, BASIC DEFINITIONS, AND RESULTS

The problem described in the abstract can be considered
equivalently as a coding problem for a channel with noiseless
feedback, an adaptive search problem, or a game with two
players (see [13]). Already Ŕenyi in [18] (Bar Kochba Game),
Berlekamp in [6] (Quiet-Question-Noisy-Answer Game), and
Ulam in [20] used the game notation, which we also did in
[9], [3], and here again. Readers who are more familiar to
coding theory should read the final section “Comments and
Discussions”, in which we formulate the problem and result
in the language of coding theory.

The game is played by two persons, called Paul and Carole.
Carole chooses a numberx∗ ∈ U = {0, . . . ,M − 1}.
Paul has to findx∗ asking n q-ary questions. By aq-ary
question we mean a question of the type“Which set among
T0, T1, . . . , Tq−1 does the secret numberx∗ belong to?”,
whereT = (T0, . . . , Tq−1) is a partition of the setU . Carole’s
answer is just an indexk ∈ Q = {0, 1, . . . , q−1}, saying that
x∗ belongs toTk. Carole may decide to answer incorrectly.

Now a cost matrixΓ : Q×Q → IN0 = {0, 1, 2, . . .} is given
such thatΓ(i, i) = 0 for eachi andΓ(i, j) > 0 for eachi 6= j.
We shall also refer toΓ as “channel”, a name suggested by
the information theoretical model of the problem.Γ is used
to assign cost to Carole’s answers. If Carole answersj to
a question whose correct answer isi, then this answer has
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individual costΓ(i, j). Every correct answer has cost0. The
total cost of Carole’sn answers is not allowed to be larger
than the given total coste known to both players.

Let w = min{Γ(i, j) : i 6= j}. In words,w is the cost of
the cheapestpossible lie for Carole.

We define the set consisting of all possible sequences of
⌊e/w⌋ lies, with total cost not larger thane as

F =







(

(a1, b1), · · · , (a⌊e/w⌋, b⌊e/w⌋)
)

such that∀j aj 6= bj and
⌊e/w⌋
∑

j=1

Γ(aj , bj) ≤ e







.

Note that these are the longest allowed sequences of lies.
Intuitively, these are the sequences of lies on which Carolehas
the largest number of possible alternatives. It turns out that,
asymptotically, only the number of such sequences counts,
regardless of the actual structure of the channel.

For any q, e,Γ, and n we want to estimate the largest
M = M(q, e,Γ, n) for which it is possible to find an unknown
numberx∗ ∈ U with n q-ary questions and maximum lie cost
not larger thane. We study the asymptotics ofM(q, e,Γ, n)
for n → ∞.

We refer to the survey papers [17] and [13] for the most sig-
nificant results in the huge literature on the Rényi-Berlekamp-
Ulam game. Here, we limit ourselves to cite the main results
that are related to our paper, using our formulation of the
problem as a game with a cost matrix.

The problem was studied in [3], where upper and lower
bounds were given for alle and w, which coincide whenw
is a divisor ofe.

Special cases of our model have been considered before.
In [19] the binary game with asymmetric error was in-

troduced, that is, the channelΓ0 =

(

0 e + 1
1 0

)

. For

e = 1, M(2, 1,Γ0, n) was determined forn in [10] up to
a factor 2. More generally, games withq ≥ 2, e ≥ 0, and
Γ(i, j) ∈ {1, e+1} for all i 6= j were considered in [14], where
asymptotically the exponential growth inn was determined.
This is a special case of the work [3].

Other studies concern strategies with little adaptiveness. It
was shown in [11], [12] that two-batch strategies can be as

powerful as the fully adaptive ones forΓ =

(

0 1
1 0

)

and
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for its q-ary generalization. Subsequently in [15] the results
of [14] were also obtained with two-batch strategies.

In the present paper we close the gap between the bounds
of [3] and provide matching upper and lower bounds also if
w is not a divisor ofe. Our main result states that, for any
fixed q, e, andΓ and forn → ∞ it holds that

M(q, e,Γ, n) =

(

qn+⌊e/w⌋/|F |

(

n

⌊e/w⌋

))

(1 + o(1)).

Moreover, our search strategies consist of two batches of non-
adaptive questions.

Finally, we give some further generalizations for a multi-
channel version of the game that can be used to model the
case of unidirectional errors (for more information see [1],
[7], [8]).

II. SEARCHING WITH LIES WITH A GENERAL CHANNEL

We remind the reader of the definitions ofq, Γ ,w ,e ,n , M ,
andF . They enter statements, lemmas, and theorems without
further explanations. We studyM(q,Γ, e, n) for fixed q, Γ , e
as function ofn.

At the stage of the game, when questionsT1, . . . ,Tt

have been asked andt answers have been received, Paul’s
state of knowledge is represented by an(e + 1)-tuple
(A0, A1, A2, . . . , Ae) of pairwise disjoint subsets ofU , where
for eachi = 0, 1, . . . , e the subsetAi consists of all the ele-
ments ofU which could possibly coincide with the unknown
numberx∗, supposing that the sum of the individual cost of
Carole’s answers equalsi. In particular, theinitial state is given
by (U , ∅, ∅, . . . , ∅). A state is final if | ∪i Ai| ≤ 1, i.e., if
there is only one element that is candidate to be the unknown
numberx∗ or if no number exists that complies with Carole’s
answers taking into account the maximum amount of lying
she can do.

We describe astrategyS with n questionsby a q-ary tree
of depth n, where each nodeν is mapped into a question
Tν , and theq edges stemming fromν are labelled with0, 1,
. . . , q−1 and represent Carole’s possible answers toTν . Any
possibleplay of the game coincides with a root-to-leaf path
in the tree. The traversed nodes are the questions asked by
Paul and the traversed edges are the corresponding answers of
Carole. We say that strategyS is winning iff for every path in
the tree the state associated with the leaf reached by the path
is final. A strategy is said to benon-adaptiveif all nodes at
the same depth of the tree are mapped into the same question.
This captures the fact that in a non-adaptive strategy, Paul
cannot use the information gained from the previous answers
of Carole before formulating the next question. In fact, he has
to formulate all the questions at once before asking Carole to
answer them.

III. SOME USEFUL LEMMAS

In this section we shall recall some known facts that will
be used in this paper.

The following is a well-known application of Chernov’s
bound.

Lemma 1:Let X1, . . . ,Xn be independent0-1 random
variables. LetX =

∑n
i=1 Xi andµ = E[X]. For 0 < δ < 1,

P r(|X − µ| > δµ) ≤ 2e−µδ2/3.

We shall now introduce two types of regularities for se-
quences inQn. They will be used repeatedly in the following
sections.

Definition 1: [Regular andP -wise regular sequences] Let
n be a positive integer and~s = s1, . . . , sn be a sequence in
Qn. We say that~s is regular if for eacha ∈ Q the number
of occurrences ofa in ~s differs from n/q by at mostn5/7.

Given a positive integerP, we say that~s is P -wise regular
if, for each j = 0, . . . , P − 1 and for eachc ∈ Q, at least
n

qP (1− 1
P ) occurrences ofc appear in the sequences(j) (j =

0, . . . , P − 1), defined by

s(j) = sj⌊n/P⌋+1 . . . s(j+1)⌊n/P⌋ for j ≤ P − 1− (n mod P )

s(j) = sn−(P−j)⌈n/P⌉+1 . . . sn−(P−j−1)⌈n/P⌉ otherwise.

Intuitively, if we split a P -wise regular sequence intoP
consecutive subsequences as evenly as possible, each subse-
quence contains almost the same number of occurrences of
each character.

Lemma 2:For any real numberδ ∈ (0, 1) there existsn0

such that for all integersn ≥ n0 the number of sequences in
Qn that are not regular is bounded from above byδqn.

Proof: Let r = r(n) = n5/7 and fix an integerc ∈ Q. The
number of sequences that are not regular because the number
of occurrences ofc does not respect the required bound can
be computed asqn × Pr(|

∑n
i=1 Xi − n/q| > r), whereXi

is the random variable which takes value1 if the ith element
in a randomly chosen sequence—with each element chosen
independently and uniformly inQ—is c, i.e., Pr(Xi = 1) =
1/q.

Thus, the desired result follows directly from Lemma 1.

We shall use the following result from [15]. It allows us
to restrict our analysis to instances where the search space
cardinality has a special form. Intuitively, these are the worst
case search space cardinalities for a given number of questions,
whereM is expressed almost as a power ofq. The case when
the search space cardinality is a power ofq has a special
symmetrical structure and via the following lemma it will be
possible to exploit such symmetry also in the general case.

Lemma 3: [15] Fix three real numbersδ, α, α′ such that
δ ∈ (0, 1) and 0 < α < α′ < q⌊e/w⌋

|F | . Then, there existsn0

such that for anyn ≥ n0, for any M ≤ α qn

( n
⌊e/w⌋)

, there exist

a ∈ (qT , qT+1] ∩ IN, and a non-negative integerm such that

M ≤ (1 − δ)aqm < α′ qn

(

n
⌊e/w⌋

) ,

whereT is an integer that only depends onδ andq.

IV. T HE WINNING STRATEGY

In this section we shall prove that, asymptotically inn, for
any M ≤ qn

( n
⌊e/w⌋)

(1 + o(1)), Paul has a winning strategy in a

game with search space of cardinalityM.
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Let M ≤ α qn

( n
⌊e/w⌋)

for someα < q⌊e/w⌋

|F | . In particular, since

we are interested in the worst case bound, we can assume
M = ⌊α qn

( n
⌊e/w⌋)

⌋.

Then there existα′ and δ such thatq
⌊e/w⌋

|F | > α′ > α and

also α′

1−δ < q⌊e/w⌋

|F | . Furthermore, by Lemma 3, we can findm

anda such thatM ≤ aqm < α′

1−δ
qn

( n
⌊e/w⌋)

. This, together with

M = ⌊α qn

( n
⌊e/w⌋)

⌋, gives

m ≥ log
M

a
= log

⌊α qn

( n
⌊e/w⌋)

⌋

a
,

and also

n − m ≥ log
a(1 − δ)

α′
+ log

(

n

⌊e/w⌋

)

.

Therefore,n → ∞ implies m → ∞ and alson − m → ∞.
By Lemma 2 there are enough regular sequences in the

spaceQm so that Paul can define an injective functionf that
maps elements of the search spaceU to pairs(i, ~w), such that
i ∈ {1, 2, . . . , a} and ~w ∈ Qm is regular.

The first batch of questions.Let x∗ be the searched element
andf(x∗) = (i∗, ~w∗). Paul asks a first batch ofm questions,
where theith question is “What is theith component of~w∗?”

Let ~w′ be the sequence of Carole’s answers. Letr = r(n) =
n5/7. We can immediately observe that for eachi ∈ Q the
number of occurrences ofi in ~w′ is at mostm/q+r+⌊e/w⌋ .

For each j = 0, 1, . . . , ⌊e/w⌋ and k = 0, 1, . . . , j,

let F
(j)
k denote the set of possible sequences ofk lies

(a1, b1), . . . , (ak, bk) such that the total cost
(

∑k
ℓ=1 Γ(aℓ, bℓ)

)

is in the set{jw, jw + 1, . . . , j(w + 1) − 1} ∩ {0, 1, . . . , e}.
We have the following.
Lemma 4:Let (A0, . . . , Ae) be the state resulting from

Carole’s answers to Paul’s first batch of questions. Forj =
0, 1, . . . , ⌊e/w⌋ − 1 we have

1

a

w−1
∑

i=0

|Ajw+i| ≤

j
∑

k=0

|F
(j)
k |

k!

(

m

q
+ r +

⌊ e

w

⌋

)k

.

Moreover, we have

1

a

e
∑

i=⌊e/w⌋w

|Ai| ≤

⌊e/w⌋
∑

k=0

|F
(⌊e/w⌋)
k |

k!
(
m

q
+ r +

⌊ e

w

⌋

)k.

Proof: We shall limit ourselves to explain the first state-
ment. The second statement follows by repeating the same
argument withj = ⌊e/w⌋ and observing that in this case we
are only interested in lie-patterns and sequences of answers
with total cost not exceedinge.

We have to count the number of possible different sequences
of correct answers that can have lead Carole to answer the way
she did.

First we notice that in a sequence of Carole’s answers with
total cost betweenjw andj(w + 1) − 1 there can be at most
j lies.

Given 0 ≤ k ≤ j, there are|F (j)
k | possible sequences

of k lies of total cost betweenjw and j(w + 1) − 1.

Let (a1, b1), . . . , (ak, bk) represent one such sequence. Each
positionai can be chosen in at most(m

q +r+
⌊

e
w

⌋

) ways, due
to the regularity property and the maximum possible number
of deviations from regularity given by the allowed maximum
number of wrong answers.

This gives us at most|F (j)
k |(m

q + r +
⌊

e
w

⌋

)k mendacious
sequences. Finally, we notice that each distinct sequence
appears in this counting once for each possible permutation
of the positions for theai’s. Hence, we divide by the factor
k!.

Summing up over all possiblek’s gives us the desired result
for eachj = 0, 1, . . . , ⌊e/w⌋ − 1.

The next two results prove that, starting from the position
reached after the firstm questions, Paul can encode the
remaining candidates in order to successfully finish the game
with a second batch of non-adaptive questions. The key point
is the following lemma, which is a generalization of Lemma 2
in [3]. The difference is that the conditions (8) and (9) in
[3] are replaced by Lemma 4 and then in the estimation of
equations (13)-(17) in Lemma 2 in [3] we use the cardinality
of F instead of the cardinality ofE = {(j, k) : Γ(j, k) = w}.

Lemma 5:There exists ann0 such that for alln ≥ n0 we
have the inequality

q
n−m≥

(

w⌊e/w⌋−1
∑

j=0

|Aj |

)(

2⌊e/w⌋
∑

i=0

(

n − m

i

)

q
i

)

+

e
∑

j=w⌊e/w⌋

|Aj |,

where (A0, . . . , Ae) is the state resulting from Carole’s
answers to Paul’s first batch of questions.

Proof: We use the fact thatm = O(q(n−m)/⌊e/w⌋), which
follows directly from M

1−δ ≤ aqm ≤ α′

1−δ
qn

( n
⌊e/w⌋)

as given by

Lemma 3.
By the previous lemma and asymptotically withn (hence

also withm) we obtain that the sum of the cardinalities of the
setsA1, . . . , Aw⌊e/w⌋−1 is bounded by

O
(

m⌊e/w⌋−1
)

= O
(

q(n−m)
⌊e/w⌋−1

⌊e/w⌋

)

= o(qn−m).

Moreover, the factor
∑2⌊e/w⌋

i=0

(

n−m
i

)

qi accompanying|Aj | is
polynomial in n − m. Therefore, it can be absorbed in the
above calculation.

Regarding the setsAw⌊e/w⌋, . . . , Ae we need to be just a
little bit more careful. By the previous lemma, the sum of the
cardinalities of these sets is bounded byO( |F |

q⌊e/w⌋
n⌊e/w⌋

⌊e/w⌋! ).
By using Lemma 3 this can be bounded by

O(qn−m−⌊e/w⌋|F |α′) = qn−m(1 − Ω(1)). This completes
the proof.

Theorem 1:Starting from the state(A0, . . . , Ae) resulting
from Carole’s answers to Paul’s first batch of questions, there
exists a non-adaptive winning strategy of sizen−m with the
channelΓ with total coste.

Proof: As a consequence of the previous lemma, there
exists a mappingθ sending elements of

⋃w⌊e/w⌋−1
i=0 Ai one-

to-one onto a setC1 ⊆ Qn−m and elements of
⋃e

j=w⌊e/w⌋ Aj

one-to-one onto a setC2 ⊆ Qn−m in such a way that

(i) for all x1,x2 ∈ C1, dH(x1,x2) ≥ 2 ⌊e/w⌋ + 1,
(ii) for all x1 ∈ C1,x2 ∈ C2, dH(x1,x2) ≥ ⌊e/w⌋ + 1,
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where dH(·, ·) is the Hamming distance betweenq-ary se-
quences.

The following simple algorithm accomplishes the above
task. Start withC1 = C2 = A = ∅. 1. Pick up an arbitrary
elementx ∈ Qn−m \ A and add it toC1. 2. Add to A the
set {y ∈ Qn−m \ A : dH(x,y) ≤ 2⌊e/w⌋}. Repeat 1.
and 2. untilC1 reaches the desired cardinality. Finally, pick
up |

⋃e
j=w⌊e/w⌋ Aj | elements fromQn−m \ A and put them

in C2.
Lemma 5 guarantees that one can extendC1 up to the de-

sired cardinality and be left with enough elements inQn−m\A
to accommodate the desired setC2.

By construction, it is also clear thatC1 and C2 satisfy the
desired distance constraints.

The second batch of questions.Paul arbitrarily fixes the
map θ. Then, he asks Carole “What is thejth component of
the element ofQn−m onto which the secret numberx∗ is
mapped byθ?”, for j = 1, 2, . . . , n − m.

The constraints on the Hamming distance between any two
sequences of length(n − m) in C1 and C2 ensure that Paul,
independently of Carole’s lies, will be able to findx∗ as the
numbera ∈

⋃e
i=1 Aj of minimum Hamming distance from

the sequence of length(n − m) defined by the answers of
Carole.

Notice that, due to the constraints on the lie-cost, in this
second batch Carole cannot lie at all if the secret number
is one of the elements in

⋃e
j=w⌊e/w⌋ Aj . Alternatively, she

cannot lie more than⌊e/w⌋ times if the secret number is one
of the elements in

⋃w⌊e/w⌋−1
i=0 Ai.

Therefore, if x∗ ∈
⋃e

j=w⌊e/w⌋ Aj , the sequence of her
answers will be exactly one of the sequences inC2. Hence, by
inverting θ, Paul will correctly find the secret number.

Conversely, ifx∗ ∈
⋃w⌊e/w⌋−1

i=0 Ai, the sequence of Carole’s
answers will not differ fromθ(x∗) in more than⌊e/w⌋ places.
For any y ∈

⋃e
i=0 Ai, y 6= x∗ we havedH(θ(y), θ(x∗)) ≥

2e + 1. Thus, θ(y) differs from the sequence of Carole’s
answers in more thane places. Whence, by choosinga such
that θ(a) has minimum distance from the sequence of length
(n − m) of Carole’s answers, Paul correctly findx∗.

V. THE UPPER BOUND

We shall now give an upper bound on the largest integerM
such that Paul has a strategy of sizen to determine Carole’s
secret number in the Ŕenyi-Berlekamp-Ulam game with the
channelΓ with total coste, over a search space of cardinality
M .

Definition 2: [Paths and Bushes] Given a strategyS, and
integersx ∈ U and0 ≤ i ≤ e, an (i, x)-path in the strategyS
is a root to leaf path~π such that the final state(A0, . . . , Ae)
associated with the leaf reached by~π satisfies|Ai| = {x}
and Aj = ∅ for all j 6= i. A (0, x)-path is also called the
sincerepath forx, since it describes a play in which Carole’s
secret number isx and she always answers sincerely. For each
x ∈ U , the x-bush is the union over alli = 0, 1, . . . , e of all
(i, x)-paths.

Let S be a winning strategy for Paul withn questions. Fix
x ∈ U and let~η = η1, . . . , ηn be the(0, x)-path in S. For

i = 1, . . . , n, let bi be the label of the edgeηi, i.e., the answer
to the ith question, when the play is the one given by~η. For
eachi = 1, 2, . . . , n and for eachj 6= bi such thatΓ(bi, j) ≤ e,
there must exist a(Γ(bi, j), x)-path inS which coincides with
~η in the first i − 1 components and whoseith component is
j. In fact, this is the path that coincides with a play of the
game in which Carole chooses the numberx and decides to
lie (only) at theith question by answeringj instead ofbi.

Let ~π = π1, . . . , πn be such a path for a fixed choice of
i ∈ {1, . . . , n} and j ∈ Q \ {bi}. Let c1, . . . , cn be the label
of the edges of~π. By definition, ~π coincides with~η in the
first i− 1 edges. In analogy with what we observed for~η, we
have that for eachk = i + 1, i + 2, . . . , n, and eachℓ 6= ck

such thatΓ(bi, j)+Γ(ck, ℓ) ≤ e, the strategyS must include a
(Γ(bi, j)+Γ(ck, ℓ), x)-path that coincides with~π in its first k
components and whosekth edge is labeled byℓ. These are the
paths describing plays of the game in which Carole chooses
the numberx and lies exactly twice: once at theith question,
by answeringj instead ofbi and once at thekth question,
by answeringℓ instead ofck. Of course, the argument can be
iterated until there is still room left for Carole to lie.

We shall now turn the above observation into a practical
way to count the paths in thex-bush for some numberx. For
this purpose we need to consider the structure of the paths
involved. In fact, by knowing the labels on the edges of the
sincere path one can count the number of additional paths
needed to accommodate Carole’s possible strategies that are
based on exactly one lie. Then, once these paths have been
given, based on their structure, one can count the number of
paths necessary to accommodate Carole’s possible strategies
that are based on exactly two lies; and so on.

For anyn, such a counting would immediately give us an
upper bound on the size of the search space where Paul can
successfully search with a strategy withn questions. In fact,
Paul has to accommodateM bushes (one for each number in
the search space) into a tree withqn paths. In order to achieve
this, he must first accurately choose the sincere paths so that
there is space for the paths taking care of Carole’s strategies
that are based on exactly one lie. Then he must fix these paths
so that—according to the above counting—there remains space
for the paths necessary to accommodate the resulting possible
strategies of Carole using exactly two lies. Continuing this
way, it must be possible to accommodate with theqn paths
available all strategies of Carole that include lies of total cost
≤ e. Conversely, Paul has no winning strategy of sizen for
a search space of cardinalityM, if it turns out that there is
no way for him to choose theM sincere paths and the1-lie
paths and so on, in such a way that thenecessarilyresulting
paths are in total at mostqn.

We shall show that, for all sufficiently largen, in a strategy
of sizen, almost all bushes include

(

n
⌊e/w⌋

) |F |
q⌊e/w⌋ (1 + o(1))

paths. In fact, the number of bushes that might violate this
bound is negligible.

In the following we shall identify a path by its associated
sequence of labels. LetP be an integer whose value will be
determined in the course of the following analysis. We shall
need one more definition.

Definition 3: A path in a strategy of Paul of sizen is called
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P -wise regular if it coincides with a P-wise regular sequence
in Qn. A bush is calledregular if each path it consists of is
P -wise regular.

We are now ready to prove the following upper bound.
Theorem 2:For all ǫ > 0 there exists an integern0, such

that for all integersn > n0, if Paul has a strategy of sizen
to determine a numberx ∈ U in the q-ary Ŕenyi-Berlekamp-
Ulam game with lies with total coste with the channelΓ,
then

M ≤

(

q⌊
e
w ⌋

|F |
+ ǫ

)

qn

(

n
⌊ e

w ⌋
) .

We shall bound the number of bushes that Paul can pack in a
tree/strategy of sizen. We shall observe that for all sufficiently
largen, in a strategy of sizen almost all bushes are regular.
Intuitively, this means that most paths in a winning strategy
of Paul represent plays in which Carole has a lot of freedom
in choosing the position for her lies. The regularity of almost
all bushes will also give us the possibility to bound the size
of a bush from below and, hence, the number of such bushes
that can be contained in a tree withqn leaves. We shall use
the following generalization of [14, Lemma 4.1].

Lemma 6:For eachǫ > 0 there existsn0, such that for all
n ≥ n0 the size of a regular bush in a winning strategy for

Paul withn questions is at least
(

n
⌊ e

w ⌋
)

(

q⌊
e
w ⌋

|F | + ǫ
2

)−1

.

Proof: Let x ∈ U be such that thex-bush in Paul’s
strategy is regular. Let us think of each path in this regular
bush as divided intoP parts, each one of size⌈n/P ⌉ or
⌊n/P ⌋ (as explained in Definition 1). By definition, in each
one of such parts, each label occurs at leastn

qP (1− 1
P ) times.

Assume that Carole’s secret number isx and she has accepted
to stick to the following rule: for eachj = 1, 2, . . . , P , the
sequence of answers to the questions from the(jn/P )th one
to the((j + 1)n/P − 1)th one will contain at most one wrong
answer.

We shall now count the total number of(i, x)-paths, with
i ∈ {w ⌊e/w⌋ , . . . , e}. These are all and only the paths
followed by the game when Carole uses exactly⌊e/w⌋ lies.
There are|F | possible sequences of⌊e/w⌋ lies, such that
the total lie cost is not larger thane. According to the deal
above, Carole can choose the parts in which she will answer
incorrectly in

(

P
⌊e/w⌋

)

ways. Finally, in each of these parts she
can place the lie in at leastnqP (1− 1

P ) ways, due to the number
of occurrences of each label in eachP th fraction of aP -wise
regular path. Summarizing, there are at least

(

P

⌊e/w⌋

)

|F |

(

n

qP
(1 −

1

P
)

)⌊e/w⌋

paths in thex-bush. For eachǫ there is a (large)P such that

(

P

⌊e/w⌋

)

|F |(
n

qP
(1 −

1

P
))⌊e/w⌋ >

(

n
⌊

e
w

⌋

)

(
q⌊

e
w ⌋

|F |
+

ǫ

2
)−1,

which completes the proof.
We are now ready to prove the theorem.

Proof of Theorem 2:By the previous lemma, it follows that
Paul can have at most

qn

(

n
⌊e/w⌋

)

(

q⌊e/w⌋

|F |
+

ǫ

2

)

regular bushes in his strategy.
On the other hand, he cannot have room for more than
qn

( n
⌊e/w⌋)

ǫ
2 non-regular bushes, since there are at most so many

paths that are notP -wise regular. In fact, by using forP -wise
regular sequences Lemma 1 in a way analogous to its use in
Lemma 2, one can easily bound from above the number of
sequences that are notP -wise regular byqn(1−c) for some
constantc only depending onP and q. Moreover, for any
constantc and for anyǫ > 0 we haveqn(1−c) ≤ qn

( n
⌊e/w⌋)

ǫ
2 for

all sufficiently largen.
Summing up we have that a strategy of Paul of sizen cannot

containM bushes ifM > qn

( n
⌊e/w⌋)

(

q⌊e/w⌋

|F | + ǫ
)

. The proof

of Theorem 2 is complete.
Now we can formulate our main result, which follows

directly from Lemma 4, Theorem 1, and Theorem 2.
Theorem 3:Asymptotically inn we have

M(q, e,Γ, n) =
qn+⌊e/w⌋

|F |
(

n
⌊e/w⌋

) (1 + o(1)).

Moreover, optimal search strategies can be implemented in
two batches of non-adaptive questions.

VI. U NIDIRECTIONAL ERRORS ANDMORE

We discuss in this section another well-studied model of er-
rors: unidirectional errors. In order to simplify the discussion,
let us assume that the channel is completely symmetric and
all lies have cost1. We say that the game is on unidirectional
errors if at the beginning of the game Carole has also to decide
the direction of all her lies. More precisely, if she chooses
increasing(decreasing) lies, she agrees on the following: she
decides that when the correct answer to a question isi, she
only chooses the lies among thej’s such thatj > i (j < i.)
This information is kept secret to Paul. In other words we
can think of Carole and Paul stipulating that the game can
be played with two different channels, one that only includes
errors of the typei → j (j > i) and another that only includes
errors of the typei → j (j < i). At the beginning, Carole can
choose the channel she prefers to use, but then she will only
use that one. Her choice is secret to Paul. We expect this
assumption to restrict the number of possible lie patterns that
Carole can use. Having tighter bounds for such situations is
important in those applications where engineering constraints
may allow to assume that errors in the same transmission block
only occur in one direction.

By using an argument analogous to the one described above,
we can prove the following general result where we assume
the parametere to be given.

Theorem 4:Let Γ1,Γ2, . . . ,Γt be channels. Forj =
1, . . . , t, let wj = wΓj . Let w̃ = mint

j=1 wj and ẽ = ⌊e/w̃⌋ .
Let Gi = GΓi be defined as
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Gi = {((a1, b1), · · · , (aẽ, bẽ)) : aj 6= bj ∀j,

ẽ
∑

j=1

Γi(aj , bj) ≤ e}

Let M(n) be the largest size of a search space where Paul can
find a secret number in the variant of the game where Carole
is allowed to choose theΓi she wants to play with, and keep
it secret to Paul.

Then, for all sufficiently largen, we have

M(n) =





qn+ẽ

(

n
ẽ

)

∣

∣

∣

∣

∣

⋃

i:wi=w̃

Gi

∣

∣

∣

∣

∣

−1


 (1 + o(1)).

Moreover, optimal strategies can be implemented in two
batches of non-adaptive questions.

VII. C OMMENTS AND DISCUSSIONS

We finish our paper with an alternative formulation of the
problem and the main theorem which is closer to the classical
model used in coding theory. We shall then reformulate
our problem as a channel model with feedback. Already
Berlekamp in 1964 described the problem in both ways in
his PhD-thesis.

A sender wants to transmit a messagex ∈ U over a noisy
q-ary channel with feedback.U = {0, . . . ,M − 1} denotes
the set of possible messages andQ = { 0, . . . , q − 1 }
the coding alphabet. We have a passive feedback, that means
that the sender always knows what has been received. The
codewords (blockcodes) are elements ofQn and the encoding
function is defined by :c (x) =

(

c1 (x) , . . . , cn

(

x, yn−1
))

,
where ci : U × Qi−1 → Q is a function for thei-th letter
which depends on the message we want to transmit and the
(i − 1) letters which have been received before. In the basic
model one assumes that the noise changes less thane symbols.
We generalized this model in the following way. We assume
that for each pair of code symbols,c1, c2 ∈ Q, there is a
fixed amount of noiseΓ(c1, c2) that has to be produced by the
channel in order to changec1 into c2. Moreover, we assume
that the channel can produce a maximum amount of noise per
codeword sent. This amount is defined by the parametere.

The noise functionΓ characterizing the channel can be
represented as aq × q matrix, where the entry in thei-th
column andj-th row denotes the value ofΓ(i, j). For example
the channel with binary input and output alphabet and bounded

number of errors corresponds to the matrixΓ =

(

0 1
1 0

)

.

The goal of the paper is to find upper and lower bounds
for M(q, e,Γ, n), which denotes the maximal number of
messages, which can be transmitted over aq-ary channel with
feedback described by the functionΓ and the total cost bound
e with a blockcode of lengthn.

We show in this paper that givenq, e, andΓ asymptotically
in n we have

M(q, e,Γ, n) =
qn+⌊e/w⌋

|F |
(

n
⌊e/w⌋

) (1 + o(1)).

We also give a strategy, which achieves this bound. Further-
more, this strategy does not use the full feedback. Letm be

as defined in Lemma 3. The sender transmits a first batch of
m symbols without intermediate feedback, then he receives
in one shot the symbols actually delivered to the receiver.
Depending on them he sends the remainingn − m symbols.
Therefore we show that for bign the two-batch strategy is as
good as a full adaptive strategy. An open question is how to
minimize the number of symbols in the first batch, since this
means to reduce the use of the feedback channel.

Our Theorem 2 is a generalization of Berlekamp’s Volume
Bound, which is a generalization of the Sphere Packing Bound
to feedback. It also holds without feedback and therefore gives
a Sphere Packing Bound for aq-ary input,q-ary output channel
with error functionΓ.

In the second batch of our strategy we use a Gilbert-
Varshamov construction, which in our case leads to an optimal
strategy. If one uses such construction without feedback it
does not give an optimal solution, because the packing is not
optimal and one gets a lot of not used sequences. In our case
the situation is different. We have a lot of messages for which
we know that no error can occur any more and we can use
the sequences, which in the Gilbert-Varshamov construction
without feedback are not used. A related result for the case of
the classicalq-ary channel without costs can be found in [5].

We remark that for the equivalent channel without feedback
there does not exists such a general combinatorial model. For
simple cases we can provide some comparisons between the
models with and without feedback. Forq-ary codes with errors
the Hamming Bound holds with and without feedback. A code
is called perfect, if it achieves the Hamming Bound and it is
called quasi-perfect if the difference between its number of
messages and the Hamming Bound is 1. For every givenq
and e it is shown that there exists ann0 such that for all
n ≥ n0 all code strategies with feedback are perfect or quasi-
perfect. And the code strategies are known. Without feedback
for all n > 1 perfect codes are only known forq ≤ 3.
These are the following cases: Hamming Codes fore = 1,
Repetition Codes fore = n−1

2 (n odd), the binary Golay-
Code(23, 12, 7), and the two ternary Golay-Codes(11, 6, 5)
and (23, 11, 5). Another good comparison of error-correcting
codes with and without feedback is the capacity error function
C, the supremum of the rates achievable for allτ = e

n and all
large n. This problem without feedback is still open for the
binary case. It is completely known for the binary case with
feedback ([6], [21]) and almost known for theq-ary case ([4]).
In all these cases the capacity error function with feedbackCf

is bigger than the capacity error function without feedbackC
for all τ > 0, if Cf > 0.

The new idea of a game with a channel was developed
during the project “General Theory of Information Transfer
and Combinatorics” at the ZIF (Center for Interdisciplinary
Research) in Bielefeld from 2001-2004 (see [2]). During this
project the papers [9] and [3] were written. In [9] the authors
analyzed the special case where the channel satisfies for every
k ∈ Q |{(j, k) : Γ(j, k) = w, j ∈ Q}| = d and the cardinality
of the search space is a power ofq, i.e. M = qm. Upper and
lower bounds were given. However, there is a problem with
the lower bound of [9]. In fact, it only holds ifw is a divisor
of e (in this case the bound is tight) and unfortunately this is
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not stated in the formulation of the main theorem in [9].
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