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Abstract—We consider the problem of searching for an un- individual costI'(4,j). Every correct answer has cdst The
known number in the search spacet/ = {0,...,M — 1}. ¢- total cost of Carole’s: answers is not allowed to be larger
ary questions can be asked and some of the answers may bethan the given total cost known to both players.
wrong. An arbitrary integer weighted bipartite graph T is given, . N . .
stipulating the costI'(i, j) of each answer;j # i when the correct Let w = mln{r(”])_ 11 # j}. In words,w is the cost of
answer isi, i.e., the cost of a wrong answer. Correct answers are the cheapespossible lie for Carole.
supposed to be cost-less. It is assumed that a maximum cast
for the sum of the cost of all wrong answers can be afforded by  \we define the set consisting of all possible sequences of

the responder during the whole search. We provide tight upper : :
and lower bounds for the largest sizeM = M(q,e,I',n) for e/w] lies, with total cost not larger than as

which it is possible to find an unknown number z* € U with
n g-ary questions and maximum lie coste. Our results improve

the bounds in [9] and [3]. The questions in our strategies can = ((a1>b1>7"'v(aLE/vabLE/wJ))
be asked in two batches of non-adaptive questions. Finally, we
remark that our results can be further generalized to a wider le/w)
class of error models including also unidirectional errors. such thatvj a; # b; and Z T(a;,b;) < e
Index Terms—Coding with feedback, Searching with lie cost i=1
I'(¢,7) for answer j, if i is correct, Compound unidirectional
errors Note that these are the longest allowed sequences of lies.

Intuitively, these are the sequences of lies on which Cdrate
|. INTRODUCTION. BASIC DEFINITIONS. AND RESULTS the largest number of possible alternatives. It turns oat, th
asymptotically, only the number of such sequences counts,

The problem described in the abstract can be con5|derr% ardless of the actual structure of the channel.

equivalently as a coding problem for a channel with noiseles For any g.e,T, and n we want to estimate the largest
feedback, an adaptive Se"ferh. .problem, or a game with = M(q e’F’ n) for which it is possible to find an unknown
players (see [13]). Already&yi in [18] (Bar Kochba Game), umberz* € U with n ¢g-ary questions and maximum lie cost

Berlekamp in [6] (Quiet-Question-Noisy-Answer Game), an :
Ulam in [20] used the game notation, which we also did iaot larger thare. We study the asymptotics d¥f (g, e, T', )

[9], [3], and here again. Readers who are more familiar E) e
coding theory should read the final section “Comments andwe refer to the survey papers [17] and [13] for the most sig-
Discussions”, in which we formulate the problem and resufiificant results in the huge literature on thérii-Berlekamp-

in the language of coding theory. Ulam game. Here, we limit ourselves to cite the main results
The game is played by two persons, called Paul and Caraleat are related to our paper, using our formulation of the
Carole chooses a number* € U = {0,...,M — 1}. problem as a game with a cost matrix.

Paul has to findz* askingn g-ary questions. By aj-ary = The problem was studied in [3], where upper and lower
question we mean a question of the typhich set among bounds were given for alt and w, which coincide whenw
To,T1,...,T,—1 does the secret number* belong t0?" is a divisor ofe.
whereT = (Tp, ..., T,-1) is a partition of the sa¥/. Carole’s  Special cases of our model have been considered before.
anSgVTr is just an gdeTG Q :d{o’ (1ja-~-aqfl}, saying théllt In [19] the binary game with asymmetric error was in-
z* belongs toT},. Carole may decide to answer incorrectly. . 0 e+1

Now a cost matriX* : 9xQ — Ny = {0,1,2,...} is given troduced, that is, the channdly = 1 0 - For
such thaf(i, ) = 0 for eachi andT'(i, j) > 0 for eachi # j. e = 1, M(2,1,Ty,n) was determined for in [10] up to
We shall also refer td* as “channel”, a name suggested by factor 2. More generally, games with> 2, e > 0, and
the information theoretical model of the problei.is used T'(i,j) € {1,e+1} forall i # j were considered in [14], where
to assign cost to Carole’s answers. If Carole answjete asymptotically the exponential growth in was determined.
a question whose correct answeriisthen this answer has This is a special case of the work [3].

Tsupported by the Sofia Kovalevskaja Award of the Alexandsr Hum- Other studps concern strategies with little agiaptlvenmss
boldt Foundation and The Bundesministeriuim Bildung and Forschung. was shown in [11], [12] that two-batch strategies can be as
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for its g-ary generalization. Subsequently in [15] the results Lemma 1l:Let X;,..., X, be independen®-1 random
of [14] were also obtained with two-batch strategies. variables. LetX = Y | X; andp = E[X]. For0 <6 < 1,

In the present paper we close the gap between the bounds Pr(|X —p| > dp) < 2e—H8/3,

of [3] and provide matching upper and lower bounds also if We shall introd Wo t ‘ larities f
w is not a divisor ofe. Our main result states that, for any € shall how introduce two types of regufarties for se-

fixed ¢, e, andT and forn — oo it holds that guences inR™. They will be used repeatedly in the following

sections.
M o) = (gntle/wl n 1 " Def|n|t|on_ 1 [Regular andP-wise regular sequences] L_et
S (q /IF] le/w] (1+0(1)) n be a positive integer andl = s1,...,s, be a sequence in

n . .
Moreover, our search strategies consist of two batches rof noQ - We say thats IS rtigglar if for eacha € Q the n5ur;1ber
of occurrences of; in 3 differs fromn/q by at mostn®/7.

adaptive questions. ) . G )
Finally, we give some further generalizations for a multi- Given a positive integef’, we say thats is P-wise regular
' if for eachj = 0,...,P — 1 and for eachc € Q, at least

channel version of the game that can be used to model {—e(l — 1) occurrences of appear in the sequencé) (j —

case of unidirectional errors (for more information see, [181’. 3 PP— 1), defined by J=
(71, [8D). o ’

S(j) = Sj|n/PJ+1---S(j+1)|n/P] forj <P-1- (n mod P)

Il. SEARCHING WITH LIES WITH A GENERAL CHANNEL $U) — Sm (P} /P11 -~ Sn(P—j—1)[n/p] Otherwise

We remind the reader of the definitionsfl’ ,w ,e ,n, M,

and F'. They enter statements, lemmas, and theorems With%%{nn ;gg:ﬁ% gu;vsee SS(!L;ISDZ\QS:V:]?UI:; Siggg?geelgéi subse
further explanations. We study/ (¢, T, e, n) for fixed ¢, T", e 4 y P '

as function ofn guence contains almost the same number of occurrences of

. each character.
Al the stage of the game, when quest|ofms.,...,Tt .. Lemma 2:For any real numbeé € (0,1) there existsng
have been asked andanswers have been received, Pau'ss,uch that for all integera > ng the number of sequences in
state of knowledge is represented by afe + 1)-tuple gera = no q

(Ap, A1, As, ..., A.) of pairwise disjoint subsets &f, where Q" that are not regular is t;(/)gnded_from_ abovedy
. X Proof: Letr = r(n) = n°/" and fix an integet € Q. The
for eachi = 0,1,...,e the subsetd; consists of all the ele-
. . L . number of sequences that are not regular because the number
ments ofi/ which could possibly coincide with the unknown

numberz*, supposing that the sum of the individual cost o?f occurrences ot does not respect the required bound can

Carole’s answers equalsin particular, thenitial state is given EetﬁgT;nuéidm &:/qari:bi7$r%:%=%afé;v2{ﬁlif>thg) ;t\r,]vr:(;ié?] ¢
by (U,0,0,...,0). A state is final if| U; A;| < 1, i.e., if

: . . in a randomly chosen sequence—with each element chosen
there is only one element that is candidate to be the unknown . . . .

L X . . Independently and uniformly i®—is ¢, i.e., Pr(X; =1) =
numberz* or if no number exists that complies with Carolesl
answers taking into account the maximum amount of lyin
she can do.

We describe atrategyS with n questionsby a g-ary tree

of depthn, where each node is mapped into a question

T, and theg edges stemming from are labelled with, 1, cardinality has a special form. Intuitively, these are tharsy

o4~ 1 and represent Carolle s possble answerd’o Any case search space cardinalities for a given number of guesti
possmleplay of the game coincides with a root-Fo-Ieaf patk\‘/vhereM is expressed almost as a powergofThe case when
in the tree. The traversed nodes are the questions askedﬂpé/ search space cardinality is a power gohas a special

CP:auI lan(;.thhe tra\t/r?rfe(tzl etdge§ are th_e c_(;rr:cespondmg ztir?siwers%/%metrical structure and via the following lemma it will be
arole. Yve say that stra egyis winning it for every path In -, »sqiple to exploit such symmetry also in the general case.
the tree the state associated with the leaf reached by the p%tLemma 3:[15] Fix three real numbers, a, o’ such that

is final. A strategy is said to beon-adaptiveif all nodes at ;o gle/w) .
the same depth of the tree are mapped into the same quesﬁsoﬁ. (0,1) and0 < a < o' < - Then, there existsiy

q.
Thus, the desired result follows directly from Lemma 1.
|
We shall use the following result from [15]. It allows us
to restrict our analysis to instances where the search space

[F

This captures the fact that in a non-adaptive strategy, P&YcCh that for any, > n, for any M < aﬁ’ there exist
cannot use the information gained from the previous answers (¢T,¢"t] NN, and a non-negative in'tegen such that

of Carole before formulating the next question. In fact, he h n
to formulate all the questions at once before asking Camle t M<(1-6)ag" <o ———,
answer them. (Le/w])

whereT is an integer that only depends érandgq.

[1l. SOME USEFULLEMMAS
In this section we shall recall some known facts that will ) _lV' THE WINNING STRATEGY . )
be used in this paper. In this section we shall prove that, asymptoticallyrinfor

n

The following is a well-known application of Chernov’s@ny M < (qn%)(l +0(1)), Paul has a winning strategy in a

. \le/w] .
bound. game with search space of cardinality.



n le/w) . .
Let M < a—%— for somea < (I\TI In particular, since Let (a,b1),..., (ar,br) represent one such sequence. Each

. Le/wl) . it ;
we are interested in the worst case bound, we can asstRREItiona; can be chosen in at mog¥: +r+ | £ |) ways, due
M = Laqi"f to the regularity property and the maximum possible number
(le/w)) ) of deviations from regularity given by the allowed maximum

Then there exist’ and§ such that% > o/ > o and number of wrong answers.

also 2 < £ Furthermore, by Lemma 3, we can find ~ This gives us at mostF”|( + r + | £])* mendacious

[F| - h ) i .
anda such that\/ < ag™ < 2" This, together with sequences. F_lnaIIy, we notice that each dl_stmct sequence
) (Lefw)) appears in this counting once for each possible permutation
M = La(({ﬁj, gives of the positions for thei;'s. Hence, we divide by the factor
Le/w]
k!
la—4— | Summing up over all possibles gives us the desired result
>1 M =1 (LC/wJ) f . _
m > log — = log —=—| or eachj =0,1,..., |e/w]| — 1. [ |
a a The next two results prove that, starting from the position
and also reached after the firsin questions, Paul can encode the
n—m>lo a(l —0) o n remaining candidates in order to successfully finish theegam
=Ty & le/w| with a second batch of non-adaptive questions. The key point

Therefore,n — oo implies m — oo and alson — m — oo is the following lemma, which is a generalization of Lemma 2

By Lemma 2 there are enough regular sequences in tRel3l- The difference is that the conditions (8) and (9) in
spaceQ™ so that Paul can define an injective functigrihat [3] are replaced by Lemma 4 and then in the estimation of

maps elements of the search spact pairs(i, @), such that €duations (13)-(17) in Lemma 2 in [3] we use the cardinality
i€{1,2,...,a} andw € Q™ is regular. of F instead of the cardinality of = {(j, k) : T'(j, k) = w}.

Lemma 5:There exists amg such that for alln > ng we

The first batch of questions.Let z* be the searched elemen ave the inequality

and f(z*) = (¢*,w*). Paul asks a first batch ef questions,

where theith question is “What is théth component ofi*?” wle/wl-1 2le/w] e
. ) , i = > ) | Y (” m)ql + Y 14l
Let @’ be the sequence of Carole’s answers.iLetr(n) = = — imwlerw)
n®/7. We can immediately observe that for eacte Q the _ _
number of occurrences ofin @' is at mostm/q+7r+ |e/w|.  Where (Ao,..., Ac) is the state resulting from Carole’s
For eachj = 0,1,...,|le/w| and k = 0,1,...,5, @answers to Paul's first batch of questions. _
let F”) denote the set of possible sequences kofiies Proof: We use the fact that = O(q""~™/1¢/*]), which

n

follows directly from 24 < ag™ < ﬁ(qi) as given by
le/w]

(a1,b1),..., (ax, bg) such that the total co{tzle I'(ae, be)

is in the set{jw, jw+1,....j(w+1)—1}N{0,1,...,e}. LemMmas. ' '
We have the following. By the previous lemma and asymptotically with(hence

Lemma 4:Let (4, A,) be the state resulting from also withm) we obtain that the sum of the cardinalities of the
Carole’s answers to Paul's first batch of questions. Fer  S€SAL -+, Aw|e/w) -1 IS bounded by

1,... —1 h e/w]—
Oa ) 3 I_e/'l,UJ we have O (mle/wjfl) — O <q(n_m)LL/ﬂ/1JuJ1) _ O(Qnim)'

w—1 J (4) k
IS g e S B () : -
a & Jwtil = 2 g q wl) Moreover, the factoly 2L¢/* (") q" accompanyindA;| is
= - polynomial inn — m. Therefore, it can be absorbed in the
Moreover, we have above calculation.
1 e le/w) |F(Le/wJ)| m . Regarding the setsl,,|c/y,---, 4. We need to be just a
- Z |4;| < Z ’“T(f +r+ {fJ)’“. little bit more careful. By the previous lemma, the sum of the
b izlefwlw k=0 S v cardinalities of these sets is boundeddy_ZL- 27,

By using Lemma 3 this can be bounded by

Proof: We shall limit ourselves to explain the first state- )
nmmele/v]|Plo’) = ¢"~™(1 — Q(1)). This completes

ment. The second statement follows by repeating the sa&

argument withj = |e/w]| and observing that in this case wen€ Proof. _ . -
are only interested in lie-patterns and sequences of asswer] heorem 1:Starting from the statgA,, ..., A.) resulting
with total cost not exceeding from Carole’s answers to Paul’s first batch of questionsiethe

We have to count the number of possible different sequen&dSts @ non-adaptive winning strategy of size- m with the
of correct answers that can have lead Carole to answer the Wwignnell” with total coste. .
she did Proof: As a consequence of the pre\an/)qu lemma, there
: _ _ ] &
First we notice that in a sequence of Carole’s answers wigiSts a mapping sendlrjg elements dfj;"; we A; one-
total cost betweeriw and j(w + 1) — 1 there can be at mostt0-one onto a sef; € Q"™ and elements ofJ;_ . /.| 4;
j lies. one-to-one onto a s&, C Q™™ in such a way that
Given 0 < k < j, there are|F,£7)\ possible sequences (i) for all x1,xs € C1, di(x1,%2) > 2|e/w] + 1,
of k lies of total cost betweenjw and j(w + 1) — 1. (i) for all x; € C1,x2 € Ca, dy(x1,%2) > |e/w]| + 1,



where dg (+,-) is the Hamming distance betweerary se- i=1,...,n, letb; be the label of the edge, i.e., the answer
guences. to theith question, when the play is the one givenipy For
The following simple algorithm accomplishes the aboveachi =1,2,...,n and for eacly # b; such that(b;, ) < e,
task. Start withC; = C; = A = (). 1. Pick up an arbitrary there must exist & '(b;, j), z)-path inS which coincides with
elementx € Q"™ \ A and add it toC;. 2. Add to .A the 1 in the firsti — 1 components and whosgh component is
set{y € 9"\ A : du(x,y) < 2|e/w]}. Repeat 1. j. In fact, this is the path that coincides with a play of the
and 2. untilC; reaches the desired cardinality. Finally, piclgame in which Carole chooses the numbkeand decides to
up |U§:wLe/wJ A;| elements fromQ”~™ \ A and put them lie (only) at theith question by answering instead ofb;.
in Co. Let ¥ = m,...,m, be such a path for a fixed choice of
Lemma 5 guarantees that one can extépdip to the de- i € {1,...,n} andj € Q\ {b;}. Let¢y,...,c, be the label
sired cardinality and be left with enough element©inr™\ .4 of the edges ofr. By definition, 7 coincides with7 in the

to accommodate the desired gt firsti — 1 edges. In analogy with what we observed fowe
By construction, it is also clear tha; and(C, satisfy the have that for eaclk =i+ 1,74+ 2,...,n, and each # ¢,
desired distance constraints. such thaf(b;, j) +I'(ck, ) < e, the strategys must include a

The second batch of questionsPaul arbitrarily fixes the (I'(b;,j) +I'(ck, ), z)-path that coincides with¥ in its first &
map 6. Then, he asks Carole “What is théh component of components and whosgh edge is labeled by. These are the
the element of@®~™ onto which the secret numbar® is paths describing plays of the game in which Carole chooses
mapped by?”, for j =1,2,...,n —m. the numberz and lies exactly twice: once at thé&h question,
The constraints on the Hamming distance between any thy answering; instead ofb; and once at théth question,
sequences of lengttn — m) in C; andC, ensure that Paul, by answering instead ofc;.. Of course, the argument can be
independently of Carole’s lies, will be able to find as the iterated until there is still room left for Carole to lie.
numbera € (J;_, 4; of mininum Hamming distance from We shall now turn the above observation into a practical
the sequence of lengttn — m) defined by the answers ofway to count the paths in the-bush for some number. For
Carole. this purpose we need to consider the structure of the paths
Notice that, due to the constraints on the lie-cost, in thigvolved. In fact, by knowing the labels on the edges of the
second batch Carole cannot lie at all if the secret numbgincere path one can count the number of additional paths
is one of the elements iU;:wLe w] Aj. Alternatively, she needed to accommodate Carole’'s possible strategies that ar

cannot lie more tharlje/wJ times If the secret number is onebased on exactly one lie. Then, once these paths have been
wle/w

of the elements iJ!"' 1A, given, based on their structure, one can count the number of
Therefore. if z* g U A;, the sequence of her Paths necessary to accommodate Carole's possible s@sitegi
! J=wl|e/w ?

answers will be exactly one of the sequence€sinHence, by that are based on exactly two lies; and so on.
inverting , Paul will correctly find the secret number. For anyn, such a counting would immediately give us an
Conversely, ite* € [JL¢/"1=! 4;, the sequence of Carole’sUPPET bound on the size of the search space where Paul can
) i= 9

answers will not differ fromd(z*) in more than|e/w| places. successfully search with a strategy withquestions. In fact,
For anyy € US_, A;, y # 2* we havedy (0(y),0(z*)) > Paul has to accommodafd bushes (one for each number in
% + 1. Thus, ltf(y) differs from the sequence of Carole'sthe search space) into a tree with paths. In order to achieve
answers in more thaa places. Whence, by choosingsuch this, he must first accurately choose the sincere paths $o tha

that #(a) has minimum distance from the sequence of lengtfi€re is space for the paths taking care of Carole’s stegeg
(n —m) of Carole’s answers, Paul correctly find. m thatare based on exactly one lie. Then he must fix these paths

so that—according to the above counting—there remains space

for the paths necessary to accommodate the resulting p@ssib

strategies of Carole using exactly two lies. Continuings thi
We shall now give an upper bound on the largest intéger way, it must be possible to accommodate with tfiepaths

such that Paul has a strategy of sizéo determine Carole's available all strategies of Carole that include lies of ltotast

secret humber in the &uyi-Berlekamp-Ulam game with the< e. Conversely, Paul has no winning strategy of sizéor

channell’ with total coste, over a search space of cardinalitya search space of cardinalify/, if it turns out that there is

M. no way for him to choose th&/ sincere paths and thelie
Definition 2: [Paths and Bushes] Given a stratef§y and paths and so on, in such a way that tiecessarilyresulting

integersz € Y and0 < i < e, an (i, x)-path in the strategyy paths are in total at mogt®.

is a root to leaf pathr such that the final statedo, ..., A.) We shall show that, for all sufficiently large in a strategy

associated with the leaf reached Bysatisfies|A;| = {z} of sizen, almost all bushes includ(ate;’w)LLL/LJ (14 0(1))

and A; = 0 for all j # i. A (0,z)-path is also called the paths. In fact, the number of bushes that might violate this

sincerepath forz, since it describes a play in which Carole’sound is negligible.

secret number is and she always answers sincerely. For eachIn the following we shall identify a path by its associated

x € U, the z-bush is the union over all=0,1,...,e of all sequence of labels. L&? be an integer whose value will be

(i, z)-paths. determined in the course of the following analysis. We shall
Let S be a winning strategy for Paul with questions. Fix need one more definition.

x € U and letij = m,...,n, be the(0,x)-path inS. For Definition 3: A path in a strategy of Paul of sizeis called

V. THE UPPER BOUND



P-wise regular if it coincides with a P-wise regular sequence Proof of Theorem 2By the previous lemma, it follows that
in Q™. A bush is calledregular if each path it consists of is Paul can have at most

P-wise regular. n lefw]
We are now ready to prove the following upper bound. qn (q 7] + 2)
Theorem 2:For all ¢ > 0 there exists an integer,, such (Le/wj)

that for all integersn > ny, if Paul has a strategy of size reqular bushes in his strategy.
to determine a number € U/ in the g-ary Renyi-Berlekamp-  on the other hand, he cannot have room for more than

li]lam game with lies with total cost with the channell’, —2" < non-regular bushes, since there are at most so many
then le/w] . . .
B N paths that are naP-wise regular. In fact, by using faP-wise
M< (L )4 regular sequences Lemma 1 in a way analogous to its use in
- | F| (LEJ) Lemma 2, one can easily bound from above the number of

sequences that are nét-wise regular byg*(!1=<) for some

We shall bound the number of bushes that Paul can pack if'Stantc only depending on” and ¢. Moreover, for any
tree/strategy of size. We shall observe that for all sufficiently cOnstanic and for anye > 0 we haveg"(!~) < (Leq/”w J)é for

largen, in a strategy of sizen almost all bushes are regularall sufficiently largen.

Intuitively, this means that most paths in a winning strgteg Summing up we have that a strategy of Paul of sizannot

of Paul represent plays in which Carole has a lot of freedogantain M bushes ifM > qi) (q“‘/"” + 6) . The proof

. : e . . (1e/w) [P
in choosing the position for her lies. The regularity of akhq of Theorem 2 is complete. -

all bushes will also give us the possibility to bound the size Now we can formulate our main result, which follows

r31‘?rsectly from Lemma 4, Theorem 1, and Theorem 2.
Theorem 3:Asymptotically inn we have

that can be contained in a tree wiglt leaves. We shall use
the following generalization of [14, Lemma 4.1].

Lemma 6: For eache > 0 there existsig, such that for all gntle/wl
n > ng the size of a regular bush in a winning strlategy for M(g,e,I\n) = |F|(L 7 J) (1+0(1)).
Paul withn questions is at leadt © @ £ : : . .
nq S(Lﬂ) F T2 : Moreover, optimal search strategies can be implemented in

Proof: Let + € U be such that thes-bush in Paul's two batches of non-adaptive questions.
strategy is regular. Let us think of each path in this regular
bush as divided inta? parts, each one of sizgn/P] or V1. UNIDIRECTIONAL ERRORS ANDMORE
n/P] (as explained in Definition 1). By definition, in each
one of such parts, each label occurs at lefstl — %) times. We discuss in this section another well-studied model of er-
Assume that Carole’s secret numberiand she has accepted0rs: unidirectional errors. In order to simplify the dission,
to stick to the following rule: for each = 1,2,..., P, the let us assume that the channel is completely symmetric and
sequence of answers to the questions from(the/ P)th one all lies have cost. We say that the game is on unidirectional
to the((j 4+ 1)n/P — 1)th one will contain at most one wrongerrors if at the beginning of the game Carole has also to decid

answer. the direction of all her lies. More precisely, if she chooses
We shall now count the total number ¢, z)-paths, with increasing(decreasing lies, she agrees on the following: she
i € {wle/w|,...,e}. These are all and only the pathsiecides that when the correct answer to a question she

followed by the game when Carole uses exadtlyw| lies. Only chooses the lies among this such thatj > i (j < i.)
There are|F| possible sequences df/w]| lies, such that This information is kept secret to Paul. In other words we
the total lie cost is not larger than According to the deal ¢@n think of Carole and Paul stipulating that the game can
above, Carole can choose the parts in which she will answR§ Played with two different channels, one that only inckide
incorrectly in( /", ) ways. Finally, in each of these parts sh&'Tors of the type — j (j > 7) and another that only includes
can place the lie in at Iea%(l—%) ways, due to the number €1rors of the type — j (j < ). At the beginning, Carole can

of occurrences of each label in eafth fraction of aP-wise choose the channel she prefers to use, but then she will only
regular path. Summarizing, there are at least use that one. Her choice is secret to Paul. We expect this

assumption to restrict the number of possible lie pattenas t
P n 1\ Le/wl Carole can use. Having tighter bounds for such situations is
IFI—501-25) important in those applications where engineering coimta
le/w] qP P . o
may allow to assume that errors in the same transmissiok bloc
paths in thez-bush. For each there is a (large)P such that only occur in one direction.
By using an argument analogous to the one described above,
( P Tl n % 1 ))Le/wj n qLﬁJ 6)71 we can prove the following general result where we assume
L P 5] ’

e/w] qP |F| T3 the parametee to be given.
Theorem 4:Let I';,T'5,...,I'y be channels. Forj =
which completes the proof. B 1.t letw; =w'. Let® = minf_, w; andé = |e/w] .
We are now ready to prove the theorem. Let G; = G be defined as

€
w



as defined in Lemma 3. The sender transmits a first batch of

é m symbols without intermediate feedback, then he receives

Gi={((a1,b1),+ -, (ae,be)) : a; #b; V4, Y Tilaz,b;) <e}  in one shot the symbols actually delivered to the receiver.
j=1 Depending on them he sends the remaining m symbols.

Let M (n) be the largest size of a search space where Paul ddirefore we show that for big the two-batch strategy is as
find a secret number in the variant of the game where Car§i@ed as a full adaptive strategy. An open question is how to

is allowed to choose thE; she wants to play with, and keepminimize the number of symbols in the first batch, since this
it secret to Paul. ’ means to reduce the use of the feedback channel.

Then, for all sufficiently large:, we have Our Theorem 2 is a generalization of Berlekamp’s Volume
Bound, which is a generalization of the Sphere Packing Bound
U a

- to feedback. It also holds without feedback and thereforegyi

M(n) =

qn+é
B (1+0(1)). a Sphere Packing Bound fokeary input,g-ary output channel
N with error functionT'.
Moreover, optimal strategies can be implemented in two In the second batch of our strategy we use a Gilbert-

batches of non-adaptive questions. Varshamov construction, which in our case leads to an optima
strategy. If one uses such construction without feedback it
VIl. COMMENTS AND DISCUSSIONS does not give an optimal solution, because the packing is not

We finish our paper with an alternative formulation of th@Ptimal and one gets a lot of not used sequences. In our case
problem and the main theorem which is closer to the classidgf Situation is different. We have a lot of messages for hic
model used in coding theory. We shall then reformulaié® know that no error can occur any more and we can use
our problem as a channel model with feedback. Alreadpe sequences, which in the Gilbert-Varshamov constmuctio

Berlekamp in 1964 described the problem in both ways Wiithout feedback are not used. A related result for the cése o
his PhD-thesis. the classical-ary channel without costs can be found in [5].

A sender wants to transmit a message U over a noisy We remark that for the equivalent channel without feedback
g-ary channel with feedback/ = {0 M — 1} denotes there does not exists such a general combinatorial model. Fo
A . . .
the set of possible messages a@d = {0,...,q—1} simple cases we can provide some comparisons between the

the coding alphabet. We have a passive feedback, that meBigsiels with and without feedback. Ferary codes with errors
that the sender always knows what has been received. i@ Hamming Bound holds with and without feedback. A code

codewords (blockcodes) are elements®f and the encoding 'S called perfect, if it achieves the Hamming Bound and it is
function is defined by ¢ (z) = (61 (2),....cn (m y1 called quasi-perfect if the difference between its number o

wherec; : U x Q°~' — Qis a function for thei-th letter Messages and the Hamming Bound is 1. For every given
which depends on the message we want to transmit and &l ¢ it is shown that there exists am, such that for all
(i — 1) letters which have been received before. In the bagic= "o all code strategies with feedback are perfect or quasi-
model one assumes that the noise changes less thanbols. perfect. And the code strategies are known. Without feddbac
We generalized this model in the following way. We assunfg" all » > 1 perfect codes are only known fay < 3.
that for each pair of code symbols;,c, € Q, there is a 1hese are the following cases. Hamming Codeseor 1,
fixed amount of nois& (cy, c,) that has to be produced by theRepetition Codes foe = 7= (n odd), the binary Golay-
channel in order to changg into c,. Moreover, we assume C0d€ (23,12, 7), and the two ternary Golay-Codgs1, 6,5)
that the channel can produce a maximum amount of noise §&d (23,11, 5). Another good comparison of error-correcting
codeword sent. This amount is defined by the parameter codes with and without feedback is the capacity error fiamcti
The noise functionl’ characterizing the channel can bé’» the supremum of the rates achievable forras 7 and all
represented as @ x ¢ matrix, where the entry in thé-th large n. This problem without feedback is still open for the
column andj-th row denotes the value (i, j). For example binary case. It is completely known for the binary case with

the channel with binary input and output alphabet and badindé&edback ([6], [21]) and almost known for theary case ([4]).
1 In all these cases the capacity error function with feedléagck

number of errors corresponds to the maffix={ | | |. s bigger than the capacity error function without feedbétk
The goal of the paper is to find upper and lower boundsr all = > 0, if Cy > 0.

for M(q,e,T',n), which denotes the maximal number of The new idea of a game with a channel was developed

messages, which can be transmitted overaaty channel with during the project “General Theory of Information Transfer

feedback described by the functibhand the total cost bound and Combinatorics” at the ZIF (Center for Interdisciplipar

e with a blockcode of length. Research) in Bielefeld from 2001-2004 (see [2]). During thi
We show in this paper that given e, andI” asymptotically project the papers [9] and [3] were written. In [9] the author
in n we have analyzed the special case where the channel satisfies figr eve

grtlelvl ke Q |{{,k):T(j,k) =w,j € Q} = dand the cardinality
M(q,e,T,n) = Fin(l +o(1)). of the search space is a powerfi.e. M = ¢™. Upper and
| |(L€/wJ) lower bounds were given. However, there is a problem with

We also give a strategy, which achieves this bound. Furthéne lower bound of [9]. In fact, it only holds i is a divisor
more, this strategy does not use the full feedback.shebe of e (in this case the bound is tight) and unfortunately this is



not stated in the formulation of the main theorem in [9].
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