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Network Coding

Network Coding has emerged as a new paradigm
that has influenced Information and Coding The-
ory, Networking, Wireless Communications, Com-
puter Science, Graph Theory etc. (see Network
Coding Homepage http://www.ifp.uiuc.edu/ koet-
ter/NWC/) The basic idea of Network Coding
(stated by Ahlswede, Cai, Li and Yeung, 2000) is to
allow the intermediate nodes to process the received
information before forwarding them.

Ahlswede et al. showed that by Network Coding
one can achieve the multicast capacity in informa-
tion networks with a single source. Cai et al. (2002)
showed that Linear Coding suffices to achieve the
min-cut bound. Sanders et al. (2003) gave a poly-
nomial time algorithm to construct linear codes for
single source multicast. The existence of such algo-
rithms is remarkable since the maximum rate with-
out coding can be much smaller and finding the max-
imum rate routing solution is NP-hard.
Network coding is believed to be highly applicable
to communication through real networks, the pri-
mary example being the Internet (the most widely
known application is the Avalanche program by Mi-
crosoft for file distribution protocols). In addition
to throughput gain, many other benefits such as
minimization of delay, minimization of energy per
bit, robustness, adaptability etc. of Network
Coding have been discovered during the last years.

Research in Network Coding is growing fast (more
than 250 papers appeared since 2002). Microsoft,

IBM and other companies have research teams who
are investigating this new field. A few American
universities (Princeton, MIT, Caltech and Berkeley)
have also established research groups in Network
Coding.
The holy grail in Network Coding is to plan and or-
ganize (in an automated fashion) network flow (that
is to allow to utilize network coding) in a feasible
manner.

Our main contribution is to provide new links
between Network Coding and Combinatorics. We
showed that the task of designing efficient strate-
gies for information network flow (Network Coding)
is closely linked to designing error correcting codes.
This link is surprising since it appears even in net-
works where transmission mistakes never happen!
Recall that traditionally error correction is mainly
used to reconstruct messages that have been scram-
bled due to unknown (random) errors. We use error
correcting codes when channels are assumed to be
error-free. Thus error correcting codes can be used to
solve network flow problems even in a setting where
errors are assumed to be insignificant or irrelevant.

Identification Entropy

Classical transmission concerns the question “How
many messages can we transmit over a noisy chan-
nel?” One tries to give an answer to the ques-
tion “What is the actual message from M =
{1, . . . , M}?” On the other hand in Identification it
is asked “How many possible messages can the re-
ceiver of a noisy channel identify?” One tries to give
an answer to the question “Is the actual message
i?”. Here i can be any member of the set of possible
messages N = {1, 2, . . . , N}.
On the Source Coding side we introduced the con-
cept of identification entropy, namely the function
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We proved that LC(P, P ) =
P

u∈U

Pu LC(P, u) ≥

HI,q(P ) and thus also that

L(P ) = min
C

max
u∈U

LC(P, u) ≥ HI,q(P )

and related upper bounds, which demonstrate the
operational significance of identification entropy
in Noiseless Source Coding similar as Boltz-
mann/Shannon entropy does in Noiseless
Data Compression.
This theory initiated other research areas like Com-
mon Randomness, Authentication in Cryptology,
and Alarm Systems. It also led to the discovery of
new methods which became fruitful also for the clas-
sical theory of transmission, for instance in studies
of robustness like arbitrarily varying channels, opti-
mal coding procedures in case o f complete feedback,
novel approximation problems for output statistics
and generation of common randomness, the key is-
sue in Cryptology.

Connectors in Communication Networks

The study of connectors started with pioneering
works by Shannon (1950), Slepian (1952), and Clos
(1953), in connection with practical problems in
designing switching networks for telephone traffic.
Later they were also studied as useful architectures
for parallel machines.
An (n, N, d)–connector is an acyclic digraph with
n inputs and N outputs in which for any injective
mapping of input vertices into output vertices there
exist n vertex-disjoint paths of length d joining each
input to its corresponding output.
Problem: Construction of sparse (n, N, 2)-is lower
bounded by t+1, for all possible syndromes, in pres-
ence of t (or less) faults. Then the degree of sequen-
tial diagnosability of the system t(G) ≥ t.
-connectors (depth 2 connectors) when n ≪ N .
Such connectors are of particular interest in the de-
sign of sparse electronic switches. Also they may be
useful as building blocks in multistage connectors.
The probabilistic argument (Baltz, Jäger, and Sri-
vastav 2003) shows the existence of (n, N, 2)–
connectors of size (number of edges) O(N), if n ≤
N1/2−ε, ε > 0.
Our main results are
Explicit constructions: For integers t > 2, n ≥
tt, N = Ω(nt) construction of (n, N, 2)-connectors

of size Nn
1

t
(1+o(1)). In particular, for all n and

N > N(n) construction of connectors of size
2N log n/(1 + o(1)) log log n.
Existence results: Given n ≥ 2 and N ≥ N(n)
there exist (n, N, 2)–connectors of size 2N(1 + o(1))
and this is asymptotically optimal.
For the size of an (Nα, N, 2)–connector with 1/2 ≤
α < 1 we have lower and upper bounds: Ω(Nα+1/2)
and O(Nα+1/2 log N) respectively.

Fault Diagnosis in Large Multiprocessor
Networks

Preparata, Metze, and Chien (1967) introduced a
graph theoretical model for system-level(see a survey
[29]) diagnosis, in which processors perform tests on
one another via links in the system. Fault-free pro-
cessors correctly identify the status of tested proces-
sors, while the faulty processors can give arbitrary
test results. The goal is to identify faulty processors
based on the test results. A system is said to be t-
diagnosable if faulty units can be identified, provided
the number of faulty units present does not exceed
t.
We described an efficient Diagnosis Algorithm (DA)
for fault identification in large interconnection net-
works. The algorithm has best known performance:
it is linear in time and can be used for sequential
diagnosis strategy, as well as for incomplete diagno-
sis in one step. The algorithm applied to arbitrary
topology based interconnection systems G with N
processors has sequential diagnosability tDA(G) ≥

⌈2N
1

2 ⌉ − 3, which is optimal in the worst case.
For any integer N there are connected graphs on

N vertices and maximal degree k ≤ N
1

2 with diag-

nosability ⌈2N
1

2 ⌉ − 3. In particular there are such
k–trees.
Example: Let k = N

1

2 be an integer and let G be
a diagnostic graph on N vertices

Each set of vertices Ci with |Ci| = k − 1, (i =
1, . . . , k) represents a union of some connected com-
ponents (denoted by circles). G is not sequentially

(2N
1

2 − 2)–diagnosable. However, using DA any

t ≤ 2N
1

2 − 3 faulty nodes can be sequentially iden-
tified.

Unconventional Error-Correcting Codes

When using amplitude modulation for error-
correcting block codes, in several communication
systems the magnitude of an error signal is small
while the range of error signals can be large. In this
case it is impractical to use known classical error-
correcting codes. This is a motivation for the devel-
opment of codes correcting errors of a limited
magnitude (introduced by Ahlswede et al, 2002).
We studied q-ary codes correcting all unidirectional
errors (UEC-codes) of a given magnitude. Tight up-
per and lower bounds for the cardinality of those
codes are obtained and their asymptotic growth rate
is determined. For arbitrary code length and alpha-
bet size q, near optimal constructions for UEC-codes
capable of correcting all errors of a given magnitude
are obtained. An infinite class of perfect codes, for
arbitrary code length, is constructed. Recently these
codes have been shown to be applicable for design of



reliable Multilevel Flash memories. Several physical
effects that limit the reliability and performance of
Multilevel Flash memories induce errors that have
low magnitude and are dominantly unidirectional.

Parallel Error-Correcting Codes

In 2002 Ahlswede, Balkenhol, and Cai introduced
a new code concept for multiple-access chan-
nels (MAC) with a special error control mecha-
nism. A communication channel consists of several
sub-channels transmitting simultaneously and syn-
chronously. The senders encode their messages into
codewords of the same length over the same alpha-
bet and transmit them in parallel. When an error
occurs in a line at time T , then with a relatively
high probability, an error also occurs in its neighbor
lines. A parallel t-error-correcting code is a code ca-
pable of correcting all t or less errors of this type.
Our main results are constructions of optimal paral-
lel codes with simple decoding schemes. Nontrivial
bounds and efficient constructions for such codes for
Z–channels have been obtained. The model of par-
allel error-correcting codes described above is useful
for the design of network error-correcting codes in
real networks.

Weighted Constrained Error-Correction

The Rényi-Berlekamp-Ulam game is a model for de-
termining the minimum number of queries to find an
unknown member in a finite set when up to a finite
number of the answers may be erroneous. Questions
with q many possible answers are allowed. Errors in
the answer are constrained by a bipartite graph with
edges weighted by 0, 1, 2, . . . (the “channel”).

The channel Γ is an arbitrary, though fixed, assign-
ment stipulating the cost of the different possible
errors, i.e., of each answer j 6= i when the correct
answer is i by Γ (i, j). It is also assumed that a max-
imum cost e (sum of the cost of all wrong answers)
can be afforded by the responder. We provided a
tight asymptotic estimate for the number of ques-
tions needed to solve this problem.

Buffer Management Strategies

We consider the model of an input-queued network
switch (m input ports with a buffer of B each; one
output port). Data packets have unit length and
value. We equip an online algorithm with a looka-
head of ϕ.
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We define a class SFODϕ of work-conserving al-
gorithms, which always transmit a packet from a
non-empty buffer which would overflow next if not
served. If the next overflow is unknown, i.e., it does
not fall within the lookahead, SFODϕ-algorithms
behave arbitrarily.

We proved an upper bound on the competitive ra-
tio of algorithms in SFODϕ that implies optimality
(c = 1) for ϕ = B · (m− 1) and the known bound of
c ≤ 2− 1

m
for all work-conserving algorithms without

lookahead.

If the lookahead grows linearly with B and m with
factor 0 ≤ p ≤ 1, the bound c ≤ 2

1+p
follows.

We report now about the subjects: Connectors in communication networks, Diagnosis
in multiprocessor networks, Unconventional error-correcting codes, Parallel error-
correcting codes studied jointly with H. Aydinian, the main collaborator in all “Förderzeiträume
des Schwerpunktprogramm.“

1 Connectors in communication networks

An (n,N)– communication network is defined here as a directed acyclic graph with n distinguished
vertices called inputs and N other distinguished vertices called outputs. All other vertices are called
links. A route in a network is a directed path from an input to an output. The size of a network is
the number of edges, and the depth is the length of the longest route in it. An (n,N, d)–connector,
also called a rearrangeable network, is a network of depth d (n ≤ N), such that for every injective
mapping of the set of input vertices into a set of output vertices there exist n vertex disjoint



paths joining each input to its corresponding output. Usually the size, in some approximate sense,
corresponds to the cost and the depth corresponds to the delay of a communication network.
Therefore ,for the networks intended for a certain communication task it is preferable to have
small size and small depth.

The study of connectors started in the n1950s with works [44], [45], [22], [17], in connection with
practical problems in designing switching networks for telephone traffic. Later they were also stud-
ied as useful architectures for parallel machines (see [30] for a survey). Connectors are also related to
expander graphs, a rapidly developing subject in the last three decades, which have found extensive
applications (see [29]) in computer science, error correcting codes, cryptography etc.

Symmetric connectors, i.e. connectors with n = N , are well studied. Shannon [44] showed that
the size of an (n, n,∞)–connector (unlimited depth) is lower bounded by Ω(n log n). Later Beneš
[17] gave constructions of (n, n, log n)–connectors of size O(n log n). In applications it is important
to have connectors of a limited depth. Pippenger and Yao [39] obtained lower and upper bounds
for the size of an (n, n, d)–connector: Ω(n1+1/d) and O(n1+1/d(log n)1/d), respectively. The best
known explicit construction for odd depth 2i+1 has size O(n1+1/(i+1)) and is due to Pippenger [38].
Hwang and Richards [30] and Feldman, Friedman, and Pippenger [25] gave explicit constructions
for depth 2 connectors of size O(n5/3). The latter can be used for construction of connectors of
depth 2i and size O(n1+2/(3i−1)).

For asymmetric connectors Oruc [37] gave constructions for depth Ω(log2 N +log2
2 n) of size O(N +

n log2 n).

Explicit constructions for (n,N, 2)–connectors of size (1+ o(1))N
√

n for n ≤
√

N (and N= square
of a prime) are given in [30] (see also [40]).

Asymmetric connectors of depth two are of particular interest in the design of sparse electronic
switches. They are also useful as building blocks in multistage connectors.

Baltz, Jäger, and Srivastav [15] gave construction of (1 + o(1))N
√

3n/4 size connectors for all

n ≤
√

N , and have shown, by a probabilistic argument, the existence of (n,N, 2)–connectors of
size O(N), if n ≤ N1/2−ε, ε > 0.

A challenging problem is to construct linear–sized (n,N, 2)–connectors (even for some restricted
values of n and N).

Construction of asymmetric connectors

We describe here a simple combinatorial construction in [2] of sparse asymmetric connectors. But
first we need some preliminaries.

For integers a < b we denote [a, b] = {a, a + 1, . . . , b} and for [1, b] we use the abbreviation [b]. We
denote S(k, q) := {(x1, . . . , xk) : xi ∈ [0, q]} and for q = ∞ we use the notation [0,∞] := {0} ∪ N

and S(k,∞).

We define now a partial ordering on elements of S(k, q) as follows.
For x, y ∈ S(k, q) we say that x ≤ y if either xi = yi or xi = 0 for all i = 1, . . . , k. Define also r(x) =
the number of nonzero coordinates of x ∈ S(k, q) (note that r(x) is usually called the Hamming
weight of x).

Thus S(k, q) is a partially ordered set ordered by ≤ with the rank function r(x) defined for each
element x ∈ S(k, q). In the literature S(k, q) is usually called the product of stars (see e.g. [24]).
By Sr(k, q) we denote the elements of rank r, that is Sr(k, q) = {x ∈ S(k, q) : r(x) = r}. Thus
S(k, q) = S0(k, q)∪̇S1(k, q)∪̇ · · · ∪̇Sk(k, q), where |Si(k, q)| =

(

k
i

)

qi, i = 0, 1, . . . , k.

Given integers 1 ≤ l < r ≤ k and q (or q = ∞), the l-th shadow of x ∈ Sr(k, q) is defined by
∂lx = {y ∈ Sr−l : x ≥ y}. Correspondingly for X ⊂ Sr(k, q), ∂lX = {∂lx : x ∈ X}.
Next we define a linear order on S(k, q). Define first x(t) = {i ∈ [k] : xi = t}, x ∈ S(k, q).
Recall also the colexicographic order on the subsets of [k]. For A,B ⊂ [k] we say A ≺col B iff
max((A \ B) ∪ (B \ A)) ∈ B. Now for x, y ∈ S(k, q) we define the linear ordering ≺L as follows:
x ≺L y iff x(t) ≺col y(t), where t is the greatest number such that x(t) 6= y(t).
For a subset X ⊂ S(k, q) let C(m,X) denote the set of the first m elements of X with respect to
the ordering ≺L.

In our construction we use the following



Lemma 1 For integers 1 ≤ l < r ≤ k, q and a subset A ⊂ Sr(k,∞) with |A| ≤ qr
(

k
r

)

we have

|∂lA| ≥ |A|
(

r
l

)

(

k−r+l
l

)

ql
. (1.1)

In particular, for A ⊂ Sk(k,∞) with |A| ≤ ⌊k/l⌋k we have

|∂lA| ≥ |A|. (1.2)

The lemma is a consequence of the following result due to Leeb.

Theorem L [34] For integers 1 ≤ r ≤ k, m and a subset A ⊂ Sr(k,∞) with |A| = m holds

∂lC(m,Sr(k,∞)) ⊆ C(|∂lA|, Sr−1(k,∞)). (1.3)

One of standard approaches for construction of connectors is the concatenation of a connector with
a concentrator. An (N,L, c)–concentrator is an (N,L)–network such that for every set of j ≤ c
inputs there exist j disjoint routes containing these inputs. For concentrators of depth one (that is
for bipartite graphs) this is equivalent to the property that every j ≤ c input vertices have at least
j neighbors, that is Hall’s matching condition is satisfied for every set of j ≤ c input vertices.
Depth-one concentrators, also called crossbar concentrators, are useful devices in designing of com-
munication networks.
We are prepared now to describe our construction. Let the vertex set V = I ∪ L ∪ O of a graph
G = (V,E) be partitioned into input vertices I with |I| = n, link vertices L with |L| = L and
output vertices O with |O| = N . Consider a network satisfying the following two conditions.
C1: I and L form a depth one connector which clearly is a complete bipartite graph.
C2: O and L form an (N,L, n)-concentrator.
It is easy to see that G is an (n,N, 2)–connector.
Given t > 2 and n ≥ tt, let k be the minimum integer such that n ≤ tk. Suppose k = tl + r where
0 ≤ r < t. Thus tk−1 < n ≤ tk. Let also, for ease of calculations, N = qk (in general, N = Ω(qk))

for some integer q >
(

k
l

)1/l
.

We construct the following network satisfying conditions C1, C2:
O := C(N,Sk(k, q)), L := ∂lC(N,Sk(k, q)), L := |L|, and n := |I| = Θ(tk).
The edge set E is defined in a natural way: for x ∈ O and y ∈ L we have an edge (x, y) ∈ E iff
y ∈ ∂l(x). In view of Lemma 1, for any subset X ⊂ O with |X| ≤ n we have |Γ (X)| ≥ |X|. Hence
O and L form an (N,L, n)-concentrator.
The size of the connector

|E| = Ln + N

(

k

l

)

= qk−l

(

k

l

)

Θ(tk) + qk

(

k

l

)

.

We choose any q ≥ tt. Easy calculations show that we have a (Θ(tk), ttk)–connector with

|E| ≤ 2N

(

k

l

)

= 2Nn
1

t
(1+o(1)).

In particular, for l = 1, n ≤ kk ≤ q we get |E| ≤ 2N log n/(1 + o(1)) log log n.
Thus we have

Theorem 1 [2] For all integers t > 2, n ≥ tt, and N = Ω(nt) the construction above gives

(n,N, 2)-connectors of size Nn
1

t
(1+o(1)). In particular, for all n and N > N(n) we get connectors

of size 2N log n/(1 + o(1)) log log n.

Fault–Tolerant Connectors

An important task in designing of communication networks is reliability. Therefore it is natural to
consider connectors which are robust under edge or node failures. An (n,N, 2)–connector is called



t–edge fault–tolerant if in spite of deletion of any t or less edges (edge failures) the resulting graph
is an (n,N, 2)–connector. Correspondingly, it is called t– fault–tolerant if this property holds after
deletion of any t or less link vertices (vertex failures), which also implies t–edge fault–tolerance.
Note also that for any t–edge fault–tolerant connector, t is less than its minimum degree of in-
put/output vertices.
Constructions of sparse fault-tolerant (n,N, 2)–connectors of size (1+o(1))N log2 n are given in [1].
The construction is similar to the construction described above. Here we use the Boolean lattice
of finite subsets of [N ], N ⊂ N, and output vertices are associated with the k–sets of [N ].

Theorem 2 [1] For all N and n = O
(

N1/
√

log
2

N
)

there exist explicitly constructible (n,N, 2)–
connectors of size (1 + o(1))N log2 n which are (k − 1)– fault–tolerant, where k = Θ(log2 n) is the
degree of output vertices.

Existence results

As we mentioned above the existence of linear sized (n,N, 2)–connectors for n ≤ N1/2−ε, with
ε > 0 is shown in [15]. A simple probabilistic argument gives also exact upper bound for the size
of an (n,N, 2)-connector.

Theorem 3 [2] For all n ≥ 2 and N ≥ N(n) there exist (n,N, 2)–connectors of size 2N(1 + o(1))
and this is asymptotically optimal.

It is natural to ask for the size of (n,N, 2)–connectors with N1/2 ≤ n < N . Construction of such
connectors of size O(N3/4n) are given in [30], [15].

Theorem 4 [2] For the size of an (Nα, N, 2)–connector with 1/2 ≤ α < 1 we have lower and
upper bounds: Ω(Nα+1/2) and O(Nα+1/2 log N) respectively.

The proof follows from the following observation. Let G1 and G2 be (n1, N, 2) and (n2, N, 2)–
connectors respectively and let G1 ∗G2 be the (n1 + n2, N, 2)–network obtained by identifying the
outputs of G1 and G2 by any one-to-one mapping. It is easy to see that G1∗G2 is an (n1+n2, N, 2)–
connector and the size of the resulting connector equals to the sum of sizes of G1 and G2.
Suppose there exists an (Nα, N, 2)–connector G of size Ω(Nx) with 1/2 ≤ α ≤ 1. We construct
an (N,N, 2)–connector from G ∗ . . . ∗G, taking sufficiently many copies of G and then deleting all
but N input vertices of the resulting network. The constructed connector has size Ω(N1−αNx).
This, together with the lower bound Ω(N3/2) in [25] for an (N,N, 2)-connector, implies that G has
size Ω(N1/2+α). Similarly the existence of linear-sized (N δ, N, 2)–connectors for any 0 < δ < 1/2
implies also the existence of (Nα, N, 2)– connectors of size O(N1+α−δ) with 1/2 ≤ α ≤ 1. This
can be used to obtain upper bounds for the size of (Nα, N, 2) in particular, connectors of size
O(Nα+1/2 log N).

Open problems

A challenging open problem is an explicit construction of linear-sized depth two (or at least limited
depth) asymmetric connectors.
In our construction we used posets of star products. Can we improve the construction using other
posets?
In fact, our approach above reduces to construction of sparse concentrators of depth one. In general,
we have the following combinatorial optimization problem which has been extensively studied in
various settings (see [29],[53], [41]) : Given N, l, c determine
E(N, l, c):= the minimum possible size of a depth-one (N, l, c) –concentrator.
This, however seems to be a difficult problem.
Note that in terms of the adjacency matrix A of a bipartite graph G = (V,E) E(N, l, c) is
the minimum number of 1’s of an l × N (0,1)–matrix A such that the boolean sum of every j
columns, j = 1, ..., c, has at least j ones. Equivalently, no set of j columns, j = 1, ..., c, contains an
(l − j + 1) × j all zero submatrix.



A weakened version of the problem is as follows: Minimize the number of 1’s of an l×N (0,1)–matrix
A such that it does not contain an (l − n + 1) × n all zero submatrix.
This problem (exchanging 0 ⇆ 1) is equivalent to Zarankiewicz’s problem (1951):
Given integers k,m, a, b; 0 ≤ a ≤ k, 0 ≤ b ≤ m, determine
Za,b(k,m) := maximum number of 1’s in an k × m (0,1)– matrix which does not contain an a × b
all one submatrix.
The problem is widely open, even for the case a = b = 2. Kövari, Sós, and Turán (see [19], pp.
309-326) obtained the following upper bound: Za,b(k,m) ≤ (a−1)1/b(m− b+1)k1−1/b +(b−1)k.

2 Fault diagnosis in large multiprocessor networks

With the continuing development of semiconductor technologies, large multiprocessor systems such
as VLSI have been of growing concern. A multiprocessor system may contain a huge number
of processors proceeding simultaneously at very high speed. The uninterrupted processing is an
important task in designing of reliable multiprocessors systems. An integral part of reliability is
the identification of faulty processors.
The concept of system–level diagnosis was introduced by Preparata, Metze, and Chien [42] to per-
form automatic fault diagnosis in multiprocessor systems. In their graph theoretical model, called
PMC model, a system S is composed of independent units u1, . . . , un connected by communication
links. The system is represented as an undirected graph G = (V,E), where the vertices are units
and edges are interconnection links. In the PMC model diagnosis is based on a suitable set of
tests between units. A unit ui can test uj iff the vertices corresponding to ui and uj in the graph
G = (V,E) of the system S are adjacent. The outcome of a test in which ui tests uj is denoted by
aij , where aij = 1 if ui finds uj to be faulty and aij = 0 if ui finds uj to be fault-free.
The basic conditions of the PMC model are the following:

– The fault-free units give correct test outcomes.
– The answers of faulty units are unreliable.
– The number of faulty units t is bounded.

The set of tests for the purpose of diagnosis is represented by a set of directed edges where the
presence of oriented edge (ui, uj) means that ui tests uj . Given a faulty set of units F ⊂ V the
set of all test outcomes {aij} is called syndrome. The task is to identify the faulty units based on
a syndrome produced by the system. In [42] two different kinds of strategies were introduced for
implementing the diagnosis approach.
One-step diagnosis (or diagnosis without repair): a system is called t-fault diagnosable (or shortly
t-diagnosable) in one step, if all faulty units can be uniquely identified from any syndrome, pro-
vided the number of faulty units does not exceed t.
Sequential diagnosis (or diagnosis with repair): a system is called sequentially t-diagnosable if it
can identify at least one faulty unit from any syndrome, provided the number of faulty units does
not exceed t. Under a sequential diagnosis strategy a system can locate a faulty unit, repair it and
then repeat the process until all faulty units are repaired.
The degree of diagnosability, or simply diagnosability, of a system graph G is defined (for both
kinds of strategies) as the maximum t such that the system is t-diagnosable.
The PMC model has been widely studied (see [16] for a good survey). It is known that the max-
imum degree of diagnosability of a one-step diagnosis algorithm for any system is bounded from
above by the minimum vertex degree of the interconnection graph. However, the real commercial
multiprocessor systems are based on topologies of graphs with small average vertex degree (like
grids, hypercubes, cube-connected cycles, trees etc).
Sequential diagnosis is a much more powerful strategy than one-step t-fault diagnosis. On the other
hand the sequential diagnosis has the disadvantage of repeated execution of diagnosis and repair
phases and may be time consuming for large systems.
That was the motivation for developing diagnosis algorithms (see [20]) which are able to diagnose
in one step the status of a large fraction of the system units (i.e. if a ”large” subset F ′ of the actual
fault set F can be identified from any syndrome, provided |F | ≤ t). This approach is referred to
as incomplete diagnosis in one step.



Further we concern with sequential diagnosis problems. In fact there are two main problems (for
both strategies). Theoretical: determination of diagnosability of a given system and Algorithmic:
development of algorithms for fault identification.
Note that the problem of determining the sequential diagnosability of a system is shown to be
co-NP complete [46].
The diagnostic graph DG of a system graph G = (V,E), corresponding to a given syndrome,
consists of bidirectional arcs, between every two neighbors of the original graph G, labelled by 0
or 1. Let {u, v} ∈ E(G), then the presence of oriented edges (u, v) and (v, u) with auv = 1 and
avu = 0 implies that v is faulty. Thus, in the worst case analysis, we assume that the outcomes of
any two neighbors coincide. Therefore, a diagnostic graph is represented as an undirected graph
where each edge is labelled by a 0 or a 1.
Given a syndrome, a subset F of the vertex set V is called a consistent fault set if the assumption
that the vertices in F are faulty and those in V \F are fault–free is consistent with the syndrome.
The following simple facts are useful for obtaining upper and lower bounds for the diagnosability
of a system graph.

Proposition 1 Given a syndrome, let F1, . . . , Fk be a collection of consistent fault sets with |Fi| ≤

t for i = 1, . . . , k. Then G is not sequentially t-diagnosable if
k
⋂

i=1

Fi = ∅ and
k
⋃

i=1

Fi = V .

Given a diagnostic graph DG, define the subgraph G0 consisting of edges labelled only by 0 (0-
edges). The connected components of the graph G0 are called 0-components of DG.

Proposition 2 (i) All vertices of a 0-component in a diagnostic graph DG have the same status:
“faulty” or “fault-free”.
(ii) Suppose the size of a largest 0-component K ⊂ in G0 is greater than the fault bound t. Then
all vertices of K can be identified as fault-free.

Two extremal problems on graphs

Motivated by a problem (Dijkstra’s critical section problem) arising in parallel computation for
unreliable networks, Ahlswede and Koschnick [13] considered the following extremal problems for
graphs.

Problem 1 Given a connected graph G = (V,E), let λ(G, c) denote the maximal number such
that removal of any λ(G, c) or less vertices results in a graph with a connected component of size
at least c. Determine or estimate λ(G, c).

Problem 2 Removing edges instead of vertices, define analogously the function µ(G, c) and deter-
mine or estimate µ(G, c).

Define also the function λ∗(G, c) (resp. µ∗(G, c)) = minimal number with the property that there
exist λ∗(G, c) vertices (resp. µ∗(G, c) edges) whose removal results in a graph with a maximal
connected component of size ≤ c. Observe that λ∗(G, c)=λ(G, c+1)+1 and µ∗(G, c)= µ(G, c+1)+1.
In fact, these functions are measures of connectivity in a graph, which generalize the known notion
of edge/vertex connectivity in graphs.
It is not hard to show that both problems are NP-hard.
We note that both functions λ(G, c) and µ(G, c) are useful for diagnosis problems in multiprocessor
systems. In fact the following derived quantity is essential. For a graph G define m(G) = max{x :
λ(G, x + 1) ≥ x}.
Now Proposition 2 implies

Proposition 3 For every interconnection graph G, the diagnosability t(G) ≥ m(G).

Note, however, that in general m(G) can be much smaller than the degree of sequential diagnos-
ability. Consider, for example, a star graph G on N = 2k + 1 vertices. It is not hard to observe
that the sequential diagnosability of this graph t(G) = k while m(G) = 0.



Khanna and Fuchs [32], and also Caruso et al. [20], studied the function m(G) and gave algorithms
for fault identification for some regular structures. In [32] a sequential diagnosis algorithm (referred
to as PARTITION) applied to arbitrary interconnection graph on N vertices has diagnosability

Ω(N
1

3 ). Yamada et al [54] described a sequential diagnosis algorithm (referred to as HYBRID) for
an interconnection graph G on N vertices with diagnosability tHY BRID(G) ≥ ⌈

√
N − 1 ⌉ − 1.

Next we describe an efficient diagnosis algorithm DA [4] which can be used for sequential diagnosis
as well as for incomplete diagnosis in one step. In particular, the algorithm applied to arbitrary
topology based interconnection systems has the best performance.

Diagnosis Algorithm DA

Given a connected graph G = (V,E) and a syndrome, that is, a diagnostic graph DG = (V,E′),
where each edge of E is labelled by a 0 or 1.
Step 1 Partition the vertices of DG into 0-components K1, . . . ,Kℓ; K := {K1, . . . ,Kℓ}.
Step 2 Construct the contracted graph Gc = (Vc, Ec) as follows.
Each component Ki contracts to vertex ai ∈ Vc and {ai, aj} ∈ Ec iff there is an edge {u, v}
(labelled with 1) in E with u ∈ Ki and v ∈ Kj . To each vertex ai of Vc assign the weight wt(ai) =
|Ki|. Thus Gc is an undirected graph with weights on vertices. Clearly

∑

a∈Vc

wt(a) = |V |. The

weight of a subgraph G′ ⊂ Gc is defined by wt(G′) =
∑

b∈V ′

wt(b), where V ′ is the vertex set of G′.

Step 3 Find a spanning tree TGc of Gc.
Step 4 Partition the vertex set of TGc into subsets T1, . . . , Tp, each containing at least two vertices,
such that the induced subgraph of each subset Ti forms a star Si, i = 1, . . . , p. Denote by zi the
center of Si, i = 1, . . . , p and put

wi := min
{

wt(zi), wt(Si r {zi})
}

, αi := max
{

wt(zi), wt(Si r {zi})
}

, i = 1, . . . , p,

w̄ := w1 + · · · + wp, ᾱ := α1 + · · · + αp.

Step 5 Determine ∆ = max1≤i≤p{αi + w̄ − wi}. Suppose ∆ = αr + w̄ − wr; r ∈ [1, p]. Suppose
also the number of actual faults t ≤ ∆ − 1.
Step 6 If wt(zr) = wr, then the vertex zr is labelled as “faulty”. The component Kir

⊂ K corre-
sponding to zr is diagnosed as faulty set.
If wt(zr) = αr, then zr is labelled as “non-faulty” and the remaining vertices of Sr are labelled as
”faulty”. The components corresponding to vertices S r {zi} are diagnosed as faulty sets.

The described algorithm allows to identify the status of at least one vertex if the number of faulty
units t < min ∆(t,G), where the minimum is taken over all syndromes produced by all faulty sets
F ⊂ V with |F | ≤ t.
The status of remaining vertices is identified iteratively applying the “diagnosis and repair” pro-
cedure.

Theorem 5 [4] Given interconnection graph G = (V,E),
(i) the overall running time of the diagnosis algorithm DA is O(|E|),
(ii) it requires at most d(G) (diameter of G) iterations, to identify all faults,
(iii) and given a lower bound m∗(G) for m(G), the diagnosability of the algorithm

tDA(G) ≥ max{m∗(G), 2|V | 12 − 3}.

Corollary 1 For an arbitrary interconnection graph G on N vertices the diagnosability of the
algorithm tDA(G) ≥ ⌈2N

1

2 ⌉ − 3.

In fact, the algorithm is optimal for ”bad graphs”: there exist infinitely many interconnection
graphs G = (V,E) with sequential diagnosability ⌈2|V | 12 ⌉− 3. In particular there are such k–trees.

Example Let k = N
1

2 be an integer and let DG be a diagnostic graph on N vertices shown in
Figure 1.
DG: each set of vertices Ci with |Ci| = k−1, (i = 1, . . . , k) represents a union of some 0–components
(denoted by circles), where the edges incident with vertices u1, . . . , uk are labelled by 1’s. We denote



Fig. 1.

U = {u1, . . . , uk}. and define then the faulty sets F1, . . . , Fk as Fi = (U \ {ui}) ∪ Ci, i = 1, . . . , k.
Note that |Fi| = 2k − 2. All these sets are consistent fault sets (their intersection is empty and the

union is the vertex set of G). Therefore, G is not sequentially (2N
1

2 − 2)–diagnosable.

Bounds for λ(Hn, c) in Hamming graphs Hn

Lower bound
Let Hn = {0, 1}n denote the binary Hamming space and let d(x, y) denote the Hamming distance
between any two vectors x, y ∈ Hn, defined as the number of coordinates in which they differ.
We associate Hn with the Hamming graph G(Hn) where two vertices x, y ∈ Hn are adjacent iff
d(x, y) = 1. Let us denote Nn,k+1 =

(

n
n

)

+ · · · +
(

n
k+1

)

,

Theorem 6 (i) For n ≥ 2k we have

λ∗(n,Nn,k+1) =

(

n

k

)

(ii)

λ(n,Nn,k+1) =

{(

n
k

)

, if n > 2k
(

n
k

)

+ 1 , if n = 2k, k ≥ 3.

The proof is based on Harpers vertex isoperimetric theorem [28].

Upper bound
We describe a regular separation of the vertices of the Hamming graph G(Hn). For convenience of
the description, we identify Hn with the set of vectors H∗

n := {−1, 1}n ⊂ R
n using 1 → −1 and

0 → 1 exchange of the coordinates. Thus we can speak about an identical graph G(H∗
n). Note that

the Hamming distance between any x, y ∈ H∗
n can be evaluated by their inner product 〈x, y〉, that

is, d(x, y) = 1
2 (n − 〈x, y〉).

The idea is to separate the elements of H∗
n into equal sized parts by mutually orthogonal hyperplanes

of R
n. It is known that for any n = 2k there exist Hadamard matrices of order n. Recall that a

(+1,−1)–matrix H of size n×n is called a Hadamard matrix of order n, if HHT = nIn. Hadamard

matrices Hn of order n = 2k can be constructed as k-th Kronecker power of matrix H2 =

[

1 1
1 −1

]

.

Note that the corresponding (0,1)-matrix without all-zero column can be viewed as the simplex
code of length 2k −1 (well known in Coding Theory [36]) with a generator matrix of size k×2k −1
consisting of all-nonzero column vectors.
Given a set of n vectors v1, . . . , vn ∈ H∗

n, let 〈v1〉, . . . , 〈vn〉 be the hyperplanes defined by 〈vi〉 =
{x ∈ R

n : 〈vi, x〉 = 0}, i = 1, . . . , n.
Given an integer 1 ≤ r ≤ n let us define the set of sign sequences Σ := {+,−}r. Let x ∈ H∗

n and let
(σ1, . . . , σr) ∈ Σ. We say that Sign(x) = (σ1, . . . , σr) if Sign〈x, vi〉 = σi, i = 1, . . . , r, (where for a
real number a, like 〈x, vi〉, Sign a is defined in the natural way). Let Σ1, . . . , Σ2r be the elements of
Σ in some fixed order. Define the sets Bi = {x ∈ H∗

n : Sign(x) = Σi}; i = 1, . . . , 2r. Clearly these
sets are disjoint. Denote the set of remaining elements of H∗

n by Sr, that is, Sr = {x ∈ 〈vi〉 ∩ H∗
n:



1 ≤ i ≤ r}. The hyperplanes 〈v1〉, . . . , 〈vr〉 separate the points of R
n into classes which have

different signs. Therefore we have the following.

Lemma 2 Sr is a vertex separating set for B1, . . . , B2r , that is, any path between the vertices of
two distinct classes Bi and Bj contains a vertex of Sr.

Theorem 7 Given integers n = 2k and 1 ≤ r ≤ k, we have

λ(n, 2n−r − |Sr|/2r) ≤ |Sr|. (2.12)

Corollary 2 For positive integers n and r ≤ ⌊log n⌋.

λ(n, 2n−r) = O(r2n/
√

n). (2.13)

Conjecture For n = 2k and 1 ≤ r ≤ k

λ(n, 2n−r − |Sr|/2r) = |Sr|. (2.14)

Note that (in view of Theorem 6) the conjecture holds for r = 1.

Diagnosability of the n-cube

Theorem 6 has several consequences. Suppose the number of faulty sets
(

n
k−1

)

< t ≤
(

n
k

)

, (k ≤ n/2),
then there exists a set of vertices A ⊂ Hn with |A| ≥ Nn,k+1 that can be identified as ”fault-free”
and the vertices ΓA can be identified as ”faulty”. Thus the status of at least |σ(A)|=|A ∪ ΓA|
elements can be identified in one step.

Corollary 3 (i) Let t be the number of faulty vertices and let
(

n
k−1

)

< t ≤
(

n
k

)

, k ≤ n/2. Then the
status of at least Nn,k vertices can be identified in one step. In particular, for k = n/2, the status
of at least Nn,n/2 = 2n−1 +

(

n−1
n
2
−1

)

vertices can be identified.

(ii) Given integer n ≥ 3 we have m(Hn) ≥
(

n
⌊n

2
⌋

)

and hence the degree of sequential diagnosability

of the n-cube t(Hn) >
(

n
⌊n

2
⌋

)

An important parameter in sequential diagnosis is the number of test and repair iterations needed
to locate all the faulty units within the system (see [20], [48]). Thus, reducing the number of
iterations is an important task in implementation of a diagnosis scheme. It was shown in [48] that
this number for n-cubes is upper bounded by Θ(n). As a direct consequence of Theorem 6 we also
get

Corollary 4 Let
(

n
k−1

)

< t ≤
(

n
k

)

, k ≤ n/2, then the number of iterations needed for sequential
diagnosis is at most k.

Theorem 7, in turn, can be used to obtain an upper bound for the sequential diagnosability of
the n-cube. The following upper bound obtained by Yamada et al. [54] can be easily derived from
(2.13).

Theorem 8 [54] t(Hn) = O(2n log n/
√

n).

Diagnosis under pessimistic strategy: t|s-diagnosis

In both, one-step and sequential diagnosis strategies, it is assumed that only those processors that
where truly faulty were replaced. Therefore, the strategy may be called precise diagnosis strategy.
Friedman [26] proposed a strategy under which up to s or less processors containing all (t or less
faulty processors) and possibly some processors of unknown status were identified and replaced.
This strategy is called pessimistic diagnosis strategy or shortly t|s–diagnosis. A system is called
t|s–diagnosable if for a given syndrome all faulty units can be isolated within a set of at most s
units, provided the number of faulty units does not exceed t.



The motivation for the study of such strategy is to increase the “diagnosability” of a given multipro-
cessor networks. Suppose all t− 1 neighbors of a processor are faulty. Then under precise diagnosis
strategy the status of this isolated processor cannot be determined. Under the pessimistic strategy
such an isolated processor is treated as potentially faulty and replaced. Therefore the diagnosability
under pessimistic strategy can be much higher.

Definition 1 Given integer r ≥ 0 the degree of t|t + r–diagnosability of a system is defined as the
maximum t for which the system is t|t + r diagnosiable.

Kavianpour and Kim [31] showed that t|t– diagnosability of the n-cube is 2n − 2 for n ≥ 4 (Note
that the diagnosability of the n–cube under one-step strategy is n.). The next theorem gives exact
answer for all 0 ≤ r ≤ 2n − 4.

Theorem 9 The degree of t|t + r diagnosability of the n–cube is
(

n
2

)

−
(

n−r−2
2

)

+ 1 for 0 ≤ r ≤ n − 2; n ≥ 4, and is
(

n
2

)

+
(

n−2
2

)

−
(

2n−r−4
2

)

+ 1 for n − 1 ≤ r ≤ 2n − 4; n ≥ 6.

Open problems

Close the gap between upper and lower bounds (or give better estimates) for the sequential diag-
nosability of n–cube systems.
A closely related problem is to give good estimates for m(Hn) and λ(Hn, c).
Consider these problems (and the t|s–diagnosis problem) for other popular topology based systems.

3 Unconventional error–correcting codes

In the binary symmetric channel it is assumed that for both symbols of the alphabet the probability
of an error is the same. However in many digital systems such as fiber optical communications and
optical disks the ratio between probability of errors of type 1 → 0 and 0 → 1 can be large.
Practically one can assume that only one type of errors, called asymmetric, can occur in those
systems. This binary channel is referred to as Z–channel. Similarly, asymmetric errors are defined
for a q-ary alphabet Q = {0, . . . , q − 1}. For every input symbol i the receiver gets a symbol only
from {i, . . . , q − 1}. Thus for any transmitted vector (x1, . . . , xn) the received vector is of the form
(x1 + e1, . . . , xn + en) where ei ∈ Q and xi + ei ≤ q − 1, i = 1, . . . , n. For more information on
asymmetric/unidirectional error correcting codes and their applications see [18], [33], [51].
When using amplitude modulation (in multilevel transmission) for error correcting block codes, in
several communication systems the magnitude of an error signal (i.e. the correlation between an
input and the output signal) is small while the range of error signals (i.e. the number of errors
occurred in a block) can be large (even close to the block length). In this case it is impractical
to use known classical error correcting codes. This is a motivation for the development of codes
correcting /detecting asymmetric errors of a limited magnitude. These codes were first introduced
and studied in Ahlswede et al [5],[8].
Recently these codes have been shown to be applicable for design of reliable Multilevel Flash
memories [21]. Several physical effects that limit the reliability and performance of Multilevel Flash
memories induce errors that have low magnitude and are dominantly asymmetric. Flash Memory is
a NonVolatile Memory (NVM) technology that is both electrically programmable and electrically
erasable. This property, together with high storage densities and high speed programming, has
made Flash Memory the dominant NVM technology and a prominent enabler for many portable
applications and technologies. It is a technology that is primarily used in memory cards and USB
flash drives, which are used for general storage and transfer of data between computers and other
digital products.
We consider a special type of asymmetric errors in a q-ary channel, where the magnitude of each
component of e satisfies 0 ≤ ei ≤ ℓ for i = 1, . . . , n. We refer to ℓ as level. Correspondingly we say
that a unidirectional error of level ℓ has occurred, if the output is either x + e or x – e (in the
latter case, it is of course required that xi ≥ ei for all i).



If the error vector e has Hamming weight t, then we say that t errors of level ℓ have occurred. Thus
the general coding problem can be formulated as follows.
Given n, ℓ, t, q construct q-ary codes of length n capable of correcting t errors of level ℓ. Of course we
wish the size of a code to be as big as possible. We consider q-ary codes correcting all asymmetric
errors of given level ℓ, (that is t = n) for which we use the abbreviation ℓ-AEC code, and ℓ-UEC
codes that correct all unidirectional errors of level ℓ.
For given ℓ, let Aa(n, ℓ)q and Au(n, ℓ)q denote the maximum number of words in a q-ary AEC
code, or UEC code respectively, of length n. Clearly Au(n, ℓ)q ≤ Aa(n, ℓ)q.

Distances and error-correcting capabilities

Definition 2 For x = (x1, x2, . . . , xn) ∈ Qn and y = (y1, y2, . . . , yn) ∈ Qn,

dmax(x,y) = max{|xi − yi| : i = 1, 2, . . . , n}

du(x,y) =

{

dmax(x,y) if x ≥ y or y ≥ x,
2dmax(x,y) if x and y are incomparable,

where x ≥ y means that xi ≥ yi for all i.

Later on for short we will write d(x,y) for dmax(x,y).
Note that du does not define a metric: take x=(0,2), y=(1,0) and z=(1,2). Then du(x,y) = 4 >
1 + 2 = du(x, z) + du(z,y).

Proposition 4 A code C ⊂ Qn is an ℓ-AEC code iff d(x,y) ≥ ℓ + 1 for all distinct x,y in C.

Proposition 5 A code C ⊂ Qn is an ℓ-UEC code if and only if du(x,y) ≥ 2ℓ + 1 for all distinct
x, y in C.

ℓ-AEC and ℓ-AUC codes

Theorem 10 For all integers n and each ℓ ∈ Q, Aa(n, ℓ)q =
⌈

q
ℓ+1

⌉n

.

The code C =
{

(x1, x2, . . . , xn) ∈ Qn : xi ≡ 0 mod (ℓ + 1) for i = 1, 2, . . . , n
}

obviously is an
ℓ-AEC code that achieves equality in Theorem 10. A received vector can be decoded by component-
wise rounding downwards to the nearest multiple of ℓ+1.
We study Au(n, ℓ)q, the maximum number of words in a q-ary ℓ-UEC code of length n. As any
ℓ-UEC code is an ℓ-AEC code, Theorem 10 implies that

Au(n, ℓ)q ≤ Aa(n, ℓ)q =

⌈

q

ℓ + 1

⌉n

. (3.1)

We give two constructions for q-ary ℓ-UEC codes valid for all pairs (q, ℓ). We denote by Qℓ+1 all
integers in Q = [0, q − 1] that are multiples of ℓ + 1, that is

Qℓ+1 = {m ∈ {0, 1, . . . , q − 1} : m ≡ 0 (mod ℓ + 1)} = {a(ℓ + 1) : 0 ≤ a ≤ b − 1}, (3.2)

where

b = |Qℓ+1| =

⌈

q

ℓ + 1

⌉

.

It is clear that d(x,y) ≥ ℓ + 1 for any two distinct words x,y in Qn
ℓ+1.

Construction 1 “Taking a subset of Qn
ℓ+1”

For each j let

C(j) = {(x1, x2, . . . , xn) ∈ Qn
ℓ+1 :

n
∑

i=1

xi

ℓ + 1
= j}.

Any two distinct words from C(j) clearly are incomparable and so C(j) is an ℓ-UEC code. It is
clear that

|C(j)| = |{(y1, y2, . . . , yn) ∈ {0, 1, . . . , b − 1}n :
n

∑

i=1

yi = j}|.

This construction leads to the following



Theorem 11 For each integer q and ℓ ∈ Q, there is a constant c > 0 such that for each n,

Au(n, ℓ)q ≥ c
1√
n
⌈ q

ℓ + 1
⌉n .

Construction 2 “Adding tails to words from Qn
ℓ+1”

Proposition 6 Let X ⊂ Qn be an ℓ-AEC code. For x ∈ X, let S(x) denote the sum of its
entries, and let s1, s2 be such that for each x ∈ X, s1 ≤ S(x) ≤ s2. Let φ : [s1, s2] → Qm be such
that for all a, b ∈ [s1, s2] with a > b, there is an i ∈ {1, 2, . . . ,m} such that (φ(a))i < (φ(b))i. Then
C = {(x, φ(S(x)) : x ∈ X} ⊂ Qn+m is an ℓ-UEC code.

Theorem 12 For each q and ℓ, there exists a positive constant K such that for each n,

Au(n, ℓ)q ≥ Kbnn− 1

2
logq b, where b = ⌈ q

ℓ + 1
⌉ .

ℓ-UEC codes of Varshamov-Tennengolts type

In [49] Varshamov and Tennengolts gave the first construction of nonlinear codes correcting asym-
metric errors. Given n ∈ N and an integer a, the Varshamov–Tennengolts code (VT code ) C(n, a)
is defined by

C(n, a) =
{

xn ∈ {0, 1}n :

n
∑

i=1

ixi ≡ a mod (n + 1)
}

. (3.3)

Code C(n, a) is capable of correcting all single asymmetric errors. Moreover it was shown that
|C(n, 0)| ≥ |C(n, a)| and

|C(n, 0)| ≥ 2n

n + 1
, (3.4)

thus exceeding the Hamming upper bound for the size of binary single symmetric error correcting
codes.
We study VT-type ℓ-UEC codes. Note, however, that unlike the VT-codes, the codes we introduce
here are defined by means of some linear equation (rather than a congruence) over the real field.
Namely given Q = [0, q − 1] ⊂ R and a0, . . . , an−1, a ∈ Z let

X = {(x0, . . . , xn−1) ∈ Qn :

n−1
∑

i=0

aixi = a}. (3.5)

Note that X defines an ℓ-UEC code iff for each distinct x,y ∈ X holds x − y /∈ [−ℓ, ℓ]n and
x − y /∈ [0, 2ℓ]n.
Thus an obvious sufficient condition for the set of vectors X ⊂ Qn to be an ℓ-UEC code is that
the hyperplane H defined by

H =

{

(x0, . . . , xn−1) ∈ R
n :

n−1
∑

i=0

aixi = 0

}

does not contain vectors from [−ℓ, ℓ]n ∪ [0, 2ℓ]n, except for the zero vector.

An ℓ-UEC code of VT type may have the advantage of a simple Encoding and Decoding
procedure. In particular, let C be a code given by (3.5) where for i = 0, 1, . . . , n − 1, ai = (ℓ + 1)i.
Suppose for the received vector y = (y0, . . . , yn−1) we have

n−1
∑

i=0

(ℓ + 1)iyi = a′

with a′ ≥ a. Then the transmitted vector (x0, . . . , xn−1) = (y0 − e0, . . . , yn−1 − en−1), where the
error vector (e0, . . . , en−1) is just the (ℓ + 1)-ary representation of the number a′ − a. Similarly, if



a′ ≤ a, then (x0, . . . , xn−1) = (y0 − e0, . . . , yn−1 − en−1), where (e0, e1, . . . , en−1) is the (ℓ + 1)-ary
representation of a − a′.
For given ℓ, q and n, we define LAu(n, ℓ)q = the maximum size of an ℓ-UEC code, over the alphabet
[0, q − 1], defined by a linear equation (3.5).
Correspondingly we use LAa(n, ℓ)q for ℓ-AEC codes.

Theorem 13 (i) For all n, q and ℓ, LAa(n, ℓ)q = LAu(n, ℓ)q.
(ii) For all integers q, n and ℓ satisfying q > ℓ + 1 we have

ℓ

q − 1

(

q

ℓ + 1

)n

≤ LAu(n, ℓ)q ≤ ⌈ q

ℓ + 1
⌉n−1.

Construction of optimal codes

We call a VT-type ℓ-UEC code VT-type optimal (or shortly optimal) if it attains the upper bound
in Theorem 20.

Given integers ℓ ∈ [1, q − 1], n, r we define

Cn(r) =

{

(x0, . . . , xn−1) ∈ Qn :

n−1
∑

i=0

(ℓ + 1)ixi = αSn + r

}

, (3.6)

where Sn :=

n−1
∑

i=0

(ℓ + 1)i =
(ℓ + 1)n − 1

ℓ
, and α := ⌊q − 1

2
⌋. (3.7)

It can be seen that Cn(r) is an ℓ-UEC code for all n and r.

We use the notation 〈x〉y to denote the integer in [0, y − 1] that is equivalent to x modulo y.

Theorem 14 Let u1, u2, . . . and v1, v2, . . . be sequences of integers such that:
(i) 0 ≤ u1 + α ≤ v1 + α ≤ q − 1,
and for each n ≥ 2
(ii) ⌈ 1

ℓ+1 (un + α − (q − 1))⌉ ≥ un−1,

(iii) ⌊ 1
ℓ+1 (vn + α)⌋ ≤ vn−1, and

(iv) ℓ + 1 divides q, or for each r ∈ [un, vn], 〈α + r〉ℓ+1 < 〈q〉ℓ+1.
Then for each n ≥ 1 and r ∈ [un, vn] we have |Cn(r)| = ⌈ q

ℓ+1⌉n−1.

Theorem 15 Let ℓ and q be such that ℓ + 1 divides q. Let u1 = −α, v1 = α, and for n ≥ 2,
un = (ℓ + 1)un−1 + α and vn = (ℓ + 1)vn−1 − α. In other words, for n ≥ 1, vn = −un =
α
ℓ

[

(ℓ − 1)(ℓ + 1)n−1 + 1
]

.
Then for each n ≥ 1 and r ∈ [un, vn], we have

|Cn(r)| = LAu(n, ℓ)q =

(

q

ℓ + 1

)n−1

.

Theorem 16 Let q = (b−1)(ℓ+1)+d, where the integers b, d and ℓ are such that 1 ≤ b−1 < d ≤ ℓ.
Then for each n

LAu(n, ℓ)q =

⌈

q

ℓ + 1

⌉n−1

.

Open problems

Give constructions for asymmetric/unidirectional codes, capable of correcting/detecting t errors of
a given magnitude, with efficient coding and decoding schemes.
For practical application of those codes [21] (e.g. in multi-level flash memories), it is important to
have efficient constructions of systematic codes (that is codes having systematic encoders), that
are advantageous in high-speed memory architecture.
Give constructions of AEC/UEC-codes of a limited magnitude, correcting bursts of errors.



4 Parallel error–control codes

In [11] Ahlswede, Balkenhol and Cai introduced a new code concept for multiple-access channels
(MAC) with a special error control mechanism. A communication channel consists of several sub–
channels transmitting simultaneously and synchronously. The senders encode their messages into
codewords of the same length over the same alphabet and transmit them in parallel. When an
error occurs in a line at time T with a relatively high probability, an error also occurs in its
neighbor lines. A parallel t-error correcting code is a code capable of correcting all t or less errors
of this type. A parallel code is called independent, if the encoders proceed independently, that is,
the code in this case is the Cartesian product of the codes used by the senders. As an example
consider a parallel port of a computer device, where the message from the computer to the device
is transmitted in parallel over a set of lines. A magnetic influence from outside produces errors
during the transmission. However, the time instances when errors occur in the different lines are
related. Thus we have a model for a coding problem for a MAC.
The model of parallel error correcting codes described above can be useful for the design of network
error correcting codes in real networks. For instance, if we model a large link as several parallel
links, an error of a link may cause the error for all associated links.
For blocklength n, messages are encoded by q-ary r×n matrices. In the channel considered in [11]
the errors are of the additive type. To each row-vector in a code matrix M the same error vector
e is added, that is, the r × n matrix E, called error matrix, with identical row vectors e is added.
In [9] we introduce a new model of a one-way channel, which is again based on parallel subchannels
and again has the same error vectors, however, the errors are produced by the binary Z-channels
(Boolean sums) now. We therefore call it Parallel Error Z-channel (PEZ-channel).
Recall that the binary Z-channel, has the property that only 0 → 1 (or 1 → 0) type of errors can
occur during the transmission. This type of errors are called asymmetric. Here we consider errors
of type 0 → 1.
In case errors are not correlated, but are produced letterwise again by Z-channels, we speak about
the Parallel Z-channel (PZ-channel). We study it under the constraint: all letterwise errors occur
in at most t columns.
A code C, called (r × n)-code, is a set of r × n (0, 1)–matrices. We say that t parallel asymmetric
errors have occurred in a sent matrix M , also called code matrix, if in some t columns of M all
zero entries turn into ones. The received word M ′ can be written as M ′ = M ⊕E, where the error
matrix E is an r × n matrix with each column consisting of all ones or all zeros and ⊕ means the
Boolean sum of (0, 1)-matrices. The weight w(E) is defined as the number of nonzero columns in
E.
We say that an (r × n)–code C is capable of correcting t (parallel asymmetric) errors if any trans-
mitted code matrix can be uniquely reconstructed at the receiving end in the presence of t or less
errors. In other words, for every two codematrices M1,M2 and error matrices E1, E2 of weight not
greater than t we have

M1 ⊕ E1 6= M2 ⊕ E2. (4.1)

We also say that C is capable of detecting t errors if

M1 ⊕ E 6= M2 (4.2)

holds for all E with w(E) ≤ t. Such a code is called t–parallel asymmetric error correcting/detecting
code (shortly (r × n, t) PEZ-code).
Similarly we define error correcting/detecting codes for the PZ-channel. The 0 → 1 errors can
occur now in at most t columns. That is, an error E now is an r × n matrix of weight w(E) ≤ t
(the weight of E is defined as above). Codes capable of correcting/detecting such type of errors
are called here (r × n, t) PZ-codes. More precisely, a t error correcting (resp. detecting) (r × n)
PZ-code is a code that satisfies the condition (3.1) (resp. condition (3.2)).

Construction of error correcting/detecting codes for PEZ-channel

For an r × n (0, 1)-matrix M the columns of M can be viewed as elements of the alphabet Q =
{0, 1, . . . , q − 1} (q = 2r) using an arbitrary one-to-one mapping ϕ : {0, 1}r → Q. Thus any matrix



M can be represented as an n-tuple (a1, . . . , an) ∈ Qn. A natural way is to consider each column
as the binary expansion of the corresponding number from Q. Our PEZ-channel can be illustrated
now as a q-ary channel (with q = 2r) called here q-ary Z-channel (shortly Zq-channel) shown in
Figure 1. In case q = 2 this is simply the Z-channel.

0 0

1 1

...

q-1 q-1

�
�

�
��

















Figure 1: q-ary Z-channel

Thus, the PEZ-channel is a special case of the Zq-channel when q = 2r. Therefore, in general it
makes sense to study this channel for arbitrary q. The notion of t-error correcting/detecting codes
is extended to any Zq-channel in a natural way. Such codes are called here Zq-code capable of
correcting/detecting t errors.

Optimal error-detecting codes. Recall the notion of S(n, q− 1) introduced in Section 1 and let
Wi := |Si(n, q − 1)| =

(

n
i

)

(q − 1)n−i, i = 0, 1, . . . , n. A ⊂ S(n, q − 1) is called an antichain if any
two distinct members of A are incomparable.

Lemma 3 Let A ⊂ S(n, q). Then the following two conditions are equivalent.
(i) A is a Zq-code capable of detecting t errors.
(ii) If an, bn ∈ A are two codewords such that an ≻ bn then w(an) − w(bn) ≥ t + 1.

Note, in particular, that A ⊂ S(n, q − 1) is a Zq-code capable of detecting all errors iff A is an
antichain.

Theorem 17 Given integers n, a ≥ 1, and 1 ≤ t < n we have
(i) For arbitrary a ∈ [0, t] the code Ca defined by

Ca = {x ∈ Si(n, q − 1) : i ≡ a mod (t + 1)} (4.3)

is a Zq-code capable of detecting t errors.
(ii) The code Ca∗ with |Ca∗ | = max{|Ca| : a ∈ [0, t]} is an optimal t error detecting code.

Note that

|Ca∗ | = max
a∈[0,t]

∑

i≥0

Wa+i(t+1) >
qn

t + 1
. (4.4)

In particular, for Wk := max{Wi : 0 ≤ i ≤ n} the theorem says that Sk(n, q − 1) is an optimal
Zq-code capable of detecting all errors. Next we consider
Error–correcting Zq-codes. We define first asymmetric distance dA between elements of Qn. To
this end we define two distances d0 and d1 between an, bn ∈ Qn:
d1(a

n, bn) := #{i : ai 6= bi and ai, bi 6= q − 1}, d0(a
n, bn) := max{δ(an, bn), δ(bn, an)}, where

δ(an, bn) := #{i : ai 6= bi and ai = q − 1} and δ(bn, an) := #{j : aj 6= bj and bj = q − 1}.

Definition 3 For an, bn ∈ Qn the distance dA(an, bn) is defined by

dA(an, bn) = d0(a
n, bn) + d1(a

n, bn). (4.5)

We can describe now error correcting capabilities of a Zq-code via asymmetric distance dA.

Proposition 7 A Zq-code C ⊂ Qn is capable of correcting t errors iff for every distinct an, bn ∈ C
holds

dA(an, bn) ≥ t + 1.



Note that for q = 2 we have dA = d0, and codes with minimum distance dA = t + 1 are simply
binary codes capable of correcting t asymmetric errors.
Clearly any code capable of correcting t symmetric errors is a t error correcting Zq-code. It is also
clear that for vectors an, bn ∈ Qn the Hamming distance dH(an, bn) ≥ dA(an, bn). Thus, a t error
correcting Zq-code is capable of detecting t or less symmetric errors. Therefore, an upper bound
for a code with the minimum distance dH = t + 1 is a trivial upper bound for a t error correcting
Zq-code.
Let us, in particular, consider the case when n ≤ q+1 and let C be a Zq-code correcting t errors. The
minimum Hamming distance of this code dH(C) ≥ t + 1 and the Singleton bound |C| ≤ qn−t (see
[36]) is a trivial upper bound for C. Note also that in case of prime power q we can use MDS codes
(codes attaining the Singleton bound, see [36], Ch.11), with the minimum distance dH = 2t + 1
and size qn−2t, as t error correcting Zq-codes. However one can do better.
Consider in particular single-error correcting Zq-codes. Then an MDS code with the minimum
distance dH = 3 has cardinality qn−2. On the other hand the following parity check code has a
greater size.

Proposition 8 Given q the code C ⊂ Qn defined by

C = {(x1, . . . , xn) ∈ S0(n, q) :

n
∑

i=1

xi ≡ a mod q − 1} (4.6)

is a single error correcting Zq-code of cardinality |C| = (q − 1)n−1.

One can extend the construction to t-error correcting Zq-codes. In view of Proposition 7 it is
sufficient to construct a code C of length n and minimum distance dH(C) = t + 1 over alphabet
Q∗ := [0, q − 2].

Proposition 9 For n ≤ q + 1 one can construct a Zq-code C of length n capable of correcting
1 ≤ t < n errors, with

|C| ≥ (q − 1)n

qt

Note that |C| is greater than qn−2t, the size of a corresponding MDS code correcting t symmetric
errors.

Remark The described codes can be viewed as codes correcting erasures with the erasure symbol
q − 1. The erasure channel, in which each alphabet symbol is lost with a fixed probability (that
is, turned into an erasure symbol “∗ ”), was introduced by P. Elias [23]. Erasure correcting codes
(Fountain codes, Lt codes etc) are widely used for reliable networks (see e.g. [52]), and recently in
Network Coding problems.
Formally, a t error correcting Zq- code can be viewed as a code, capable of correcting t erasures, in
which the erasure symbol is also used for the transmission.
Thus, erasure correcting codes can be used as Zq-codes. Note however that the size of a t–error
correcting Zq-code can be much larger than the size of a corresponding optimal erasure code over
an alphabet of size q−1. To show that, we describe a more general construction of t–error correcting
Zq-codes.

Construction: Let C be a binary code of length capable of correcting t asymmetric errors. Let
also D = {Dm}; m = 1, . . . , n be a set of codes of length m capable of detecting t symmetric
errors (i.e. a code with minimum Hamming distance t + 1) over the alphabet Q∗. Note that some
of Dm could be trivial codes containing only one codeword (by convention the minimum distance
in a trivial code is ∞). Given a codeword vn ∈ C of Hamming weight wtH(vn) = r let {i1, . . . , ir}
be nonzero coordinates of vn and let {j1, . . . , jn−r} = [1, n] \ {i1, . . . , ir} where j1 < . . . < jn−r.
Define then
D(vn) = {(x1, . . . , xn) ∈ Qn : xi1 = . . . = xir

= q − 1 and (xj1 , . . . , xjn−r
) ∈ Dn−r}.

Define now the code C = C ◦ D where

C ◦ D :=
⋃

vn∈C

D(vn). (4.7)



Proposition 10 Given integers 1 ≤ t ≤ n and q > 2 the code C = C ◦ D is a t error correcting
Zq- code of length n over alphabet Q = [0, q − 1].

Notice that given n and q, the size of an optimal Zq-code C ◦ D capable of correcting t errors is
greater than the size of an optimal code C′ of length n, over an alphabet (say Q∗) of size q − 1,
capable of correcting t erasures. Indeed, let C (the code in our construction) contain the all zero
vector 0n. Then clearly C′ ⊂ C ◦ D.
Next we apply the described approach for construction of single error correcting Zq-codes for
arbitrary n and q.
We use Varshamov-Tennengolts codes (VT codes) for construction of q–ary single–error correcting
Zq-codes.
Given integers n ≥ 1 and q > 2 (Q = [0, q − 1], Q∗ = [0, q − 2]) let C(n, a) be a VT code.
For m = 1, . . . , n and α ∈ Q∗ we define now D = {D1(α), . . . ,Dn(α)} with

Dm(α) := {xm ∈ Q∗m :

m
∑

i=1

xi ≡ α mod q − 1}. (4.8)

Each code Dm(α) has size |Dm(α)| = (q − 1)m−1 and minimum Hamming distance 2 (m ∈ [1, n] ,
α ∈ [0, q − 2]). In view of Proposition 7 the code

C(n, a, α) := C(n, a) ◦ D

is a single-error correcting Zq-code.
Let A0(n, a), A1(n, a), . . . , An(n, a) be the weight distribution of C(n, a), that is Ai(n, a) := #
{codewords of Hamming weight i}.
Then it can be easily seen that |C(n, a, α)| =

∑n−1
i=0 Ai(n, a) · (q − 1)n−i−1 + An(n, a). Since

|C(n, a, α)| = |C(n, a, 0)| we simplify the notation denoting C(n, a) = C(n, a, 0). Thus we have
proved the following

Theorem 18 For integers 0 ≤ a ≤ n and q ≥ 3 the code C(n, a) is a q–ary single–error correcting
Zq-code with

|C(n, a)| =

n−1
∑

i=0

Ai(n, a) · (q − 1)n−i−1 + An(n, a). (4.9)

Example. n = 8, q = 4 (r = 2), a = 0.
Let Ai denote the number of codewords of weight i in the VT code C(8, 0). We have A0 = A8 = 1,
A1 = A7 = 0, A2 = A6 = 4, A3 = A5 = 6, A4 = 8.
Our construction gives us a single–error correcting (2 × 8, 1) Zq-code C(8, 0) with
|C(8, 0)| = A0·37+A2·35+A3·34+A4·33+A5·32+A6·3+A8 = 37+4·35+6·34+8·33+6·32+4·3+1 =
3928.
Note that the size of a single symmetric error correcting code of length 8 (over an alphabet of size
4) is upper bounded (Hamming bound) by ⌊216/(3 · 8 + 1)⌋ = 2621.
Next we give an upper bound for a single–error correcting Zq–code

Theorem 19 Let C(n)q be a single–error correcting Zq-code of length n. Then

|C(n)q| <

n−1
∑

k=0

(

n
k

)

(q − 1)n−k−1

k + 1
. (4.10)

Codes for PZ-channels

Let M(r × n) be the set of all r × n (0, 1)–matrices. Recall that C ⊂ M(r × n) is a t-error
correcting/detecting PZ-code if C is capable of correcting/detecting all asymmetric errors in t or
less columns. We call such codes for short (r × n, t)–codes.
Note that any t-error correcting/detecting PZ-code C ⊂ M(r × n) is also a t–error correct-
ing/detecting PEZ code.
We discuss first the error detection problem.
For A ∈ M(r × n) the Hamming weight wH(A) is the number of nonzero entries in A.



Theorem 20 Given integers 1 ≤ t ≤ n, 1 ≤ r

A :=
{

A ∈ M(r × n) : wtH(A) ≡ ⌊rn

2
⌋ mod (tr + 1)

}

(4.11)

is a t-error detecting PZ-code.

Code A defined in (3.13) is optimal for r = 1, however, this is not the case in general.

Theorem 21 Given integers 1 < r and 1 ≤ t < n, let A(r × n, t) be an optimal t-error detecting
PZ code. Then

2rn

tr + 1
≤ |A(r × n, t)| ≤ 2rn

√
tr

. (4.12)

The lower bound in (3.14) follows from the code construction in Theorem 13.
We consider now the error correction problem for the simplest case t = 1.
Every matrix M ⊂ M(r × n), with columns b̄1, . . . , b̄n, is associated with the sequence (b1, . . . , bn)
where b̄i (i = 1, . . . , n) is the binary representation of bi. For a subset S ⊂ Qn, Q := [0, 2r − 1] we
denote by S(r × n) ⊂ M the set of matrices corresponding to the elements of S.
We say that there exists a k–factorization of Z

∗
m ( Z

∗
m := Zm \{0}) if there exists a subset A ⊂ Z

∗
m

such that each element of Z
∗
m can be uniquely represented as a product i · a where i ∈ {1, . . . , k}

and a ∈ A.

Theorem 22 Given integers n, r ≥ 2 let m := n(2r − 1) + 1 and let there exist a (2r − 1)–
factorization of Z

∗
m by a subset A = {a1, . . . , an}. For a ∈ Zm let B ⊂ Qn be defined by

B = {(x1, . . . , xn) ∈ Qn :

n
∑

i=1

aixi ≡ a mod m}. (4.13)

Then B(r × n) is a single-error correcting PZ-code with

|B(r × n)| ≥ 2rn

n(2r − 1) + 1
. (4.14)

Example Let n = 12, r = 2, and hence n(2r − 1) + 1 = 37. One can check that there exists
a 3–factorization of Z

∗
37 by the set A = {2, 9, 12, 15, 16, 17, 20, 21, 22, 25, 28, 35}. That is Z

∗
37 =

A ∪ 2A ∪ 3A where iA := {ia mod 37 : a ∈ A}, i = 2, 3. Therefore, the code B(2 × 12) defined
by (4.14) is a single-error correcting PZ-code with cardinality |B(2 × 12)| ≥ 412/37 exceeding the
Hamming bound for a quaternary single symmetric error correcting code of length 12.
We give now a construction of single-error correcting PZ-codes with a very simple decoding algo-
rithm.
Code construction: For integers 1 < r ≤ n, let E(r×n) denote the set of all r×n (0, 1)-matrices
with even row weights. Thus |E(r × n)| = 2(n−1)r. For an r × n (0, 1)-matrix M let hi(M) denote
the Hamming weight of its i-th column. Let also p be the smallest prime such that p ≥ n + 1. We
define now the code C(r × n) as follows.

C(r × n) = {M ⊂ E(r × n) :

n
∑

i=1

i · hi(M) ≡ a mod p}. (4.15)

Theorem 23 (i) C(r × n) is capable of correcting all asymmetric errors in a single column.
(ii) There exists 0 ≤ a ≤ p − 1 such that

|C(r × n)| ≥ 2(n−1)r

p
. (4.16)

Decoding algorithm

For a received word M ′ ∈ M(r × n)
1. Determine the column vector



(ε1, . . . , εr)
T := M ′ · (1, . . . , 1)T mod 2.

2. Compute t := wH(ε1, . . . , εr).
If t = 0 then M ′ is a code matrix, otherwise

3. Compute b :=
∑n

i=1 i · hi(M
′) mod p.

4. Compute k := b−a
t mod p .

5. Evaluate the error matrix E ∈ M(r × n) with the k-th column (ε1, . . . , εr)
T and with

zero
entries elsewhere.
6. Determine the transmitted code matrix M = M ′ − E.

Open problems

A challenging combinatorial optimization problem is construction of optimal or near optimal t–error
detecting codes for PZ–channels (even for t = 1).
Constructions of “good” t–error correcting codes (for both channels) with efficient decoding algo-
rithms is another problem for further research
We considered only errors occurring in a restricted set of columns. Consider codes for correc-
tion/detection clusters of errors.

5 Interaction with other projects

There have been intense connections to other projects in the DFG Schwerpunktprogramm
1126 Algorithmik großer und komplexer Netzwerke, which were supported by several workshops.
We have explained this above in great detail for Connectors in Communication Networks
(see related work [15]) for the Kiel research group, project: “Entwurf effizienter Architekturen und
Algorithmen für Multicast-ATM-Netzwerke“ Prof. Dr. Anand Srivastav, Prof. Dr. Klaus Jansen
(Institut für Informatik, Christian-Albrechts-Universität zu Kiel).
In the poster you find connections for Network Coding to work of the project: “Algorithm En-
gineering für große Graphen und Speicherhierarchien” by P. Sanders and U. Meyer and for Buffer
Management to work of the project: “Effiziente Algorithmen für die Ressourcenverwaltung in
großen Netwerken”, by S. Albers.

6 Further reports and research

The work not reported here concerns the subjects:

– Network coding,
– Identification entropy,
– Weighted constrained error-correction, and
– Buffer management strategies.

However, contributions to these subjects can be found in the books “General Theory of Information
Transfer and Combinatorics” (Eds. R. Ahlswede et al.), Lecture Notes in Computer Science, Vol.
4123, Springer Verlag, 2006 and “Lectures on Advances in Combinatorics” (R. Ahlswede and V.
Blinovsky), Universitext, Springer Verlag, 2008, the Special Issue “General Theory of Information
Transfer and Combinatorics” (Eds. R. Ahlswede et al.) of Discrete Applied Mathematics, Vol. 156,
No. 9, 2008, and in the 2006 Shannon Lecture “ Towards a General Theory of Information Transfer”
(R. Ahlswede), Shannon Lecture at ISIT in Seattle 13th July 2006, IEEE Inform. Theory Society
Newsletter, Vol. 57, No. 3, 6-28, 2007.
Their investigation will be continued in the three DFG projects:

– Information Flows in Networks,
– General Theory of Information Transfer, and
– Advances in Search and Sorting.

More extensive reports are planed at the end of these projects.
Finally, Network Coding received attention in the article of Scientific American “Breaking Network
Logjams”, 78-85, June 2007 and its translation “Staufrei fahren auf der Datenautobahn” in the
article of Spektrum der Wissenschaft, 88-95, March 2008.
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