
ON SECURITY OF STATISTICAL DATABASES

R. AHLSWEDE AND H. AYDINIAN
DEPARTMENT OF MATHEMATICS

UNIVERSITY OF BIELEFELD
POB 100131, D-33501 BIELEFELD, GERMANY

EMAIL: AHLSWEDE@MATH.UNI-BIELEFELD.DE

AYD@MATH.UNI-BIELEFELD.DE

Abstract.

A statistical database (SDB) is a database that is used to return statistical information derived
from the records to user queries for statistical data analysis. Sometimes, by correlating enough
statistics, confidential data (stored in a SDB) about an individual can be inferred. Examples of
confidential information stored in a SDB might be salaries or data concerning the medical history of
individuals. An important problem is to provide security to SDB against the disclosure of confidential
information. A statistical database is said to be secure if no protected data can be inferred from the
available queries. One of the security-control methods suggested in the literature consists of query
restriction: the security problem is to limit the use of the SDB, introducing a control mechanism, such
that no protected data can be obtained from the available queries. Chin and Ozsoyoglu [7] introduced
a control mechanism, called Audit Expert, where only SUM queries, that is only certain sums of
individual records, are available for the users. This SUM query model leads to several challenging
optimization problems. Assume there are n numeric records {z1, . . . , zn} stored in a database. A
natural problem is to maximize the number of answerable SUM queries, that is the number of subset
sums of {z1, . . . , zn} (possibly with some additional constraints) that can be returned, such that none
of numbers zi (or sums of subsets with the size not exceeding a specified number) can be inferred
from these queries. In this paper we give tight bounds for this number under constraints on size and
dimension of query subsets.
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1. Introduction. The problems of statistical database security have been of
growing concern in recent years [6],[8], [12-16]. A statistical database (SDB) is a
database that is used to return statistical information derived from the records to
user queries for statistical data analysis. Sometimes, by correlating enough statistics,
confidential data (stored in a SDB) about an individual can be inferred. Examples
of confidential information stored in a SDB might be salaries or data concerning the
medical history of individuals. An important problem is to provide security to SDB
against the disclosure of confidential information. A statistical database is said to be
secure if no protected data can be inferred from the available queries. When users are
able to infer protected information in the SDB from responses to queries, the SDB is
said to be compromised.

Security-control methods suggested in the literature (see [9], [10]) are classified
into four general approaches: conceptual, query restriction, data perturbation, and
output perturbation.

We are interested in query restrictions where the security problem is to limit the
use of the SDB, introducing a control mechanism, such that no protected individual
data can be obtained from the available queries. Such a control mechanism for query
restriction, called AUDIT EXPERT, was proposed in Chin and Ozsoyoglu [7], where
only SUM queries, that is only certain sums of individual records, are available for
the users. This model of security leads to several optimization problems which arise
in a natural way.

As an example consider a company N with n employees. Suppose that for each
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member of N is recorded the sex, age, rank, length of her/his employment with N ,
salary etc. The salaries {z1, . . . , zn} of the individual employees are confidential. Sup-
pose that only SUM queries are allowed, i.e. the sum of the salaries of the specified
people is returned. For example one might pose the query: What is the sum of
salaries for males above 50, working with N during the last 10 years?
How large can be the number of SUM queries, preventing compromise (i.e. no in-
dividual salary zi can be inferred using the outcomes from the list of allowed SUM
queries)?

More generally, let z1, . . . , zn be nonzero real numbers which are n confidential
records stored in a database. A possible SUM query for users is SA :=

∑

i∈A zi for
some A ⊂ [n] := {1, . . . , n} with |A| > 1.

A natural problem is to maximize the number of SUM queries, possibly with
some other side constraints, without compromise. This problem was originally stated
in Chin and Ozsoyoglu [7] (see also [14]) and is studied (in different settings) in [6],
[8], [12-16].

In particular, consider the problem (without constraints): Maximize the umber
M of subsets (answerable query sets) A1, . . . , AM ⊂ [n] (or the ratio M/2n called the
usability of SDB) such that the knowledge of the corresponding sums SA1 , . . . , SAM

does not enable one to determine any of records zi.

The problem can be reduced to the following optimization problem. For a subset
A ⊂ [n], its characteristic vector is defined by χ(A) = (x1 . . . , xn), where xi = 1
if i ∈ A and xi = 0, if i /∈ A. Thus each SUM query SA can be represented by
the characteristic vector of A. Let X ⊂ {0, 1}n ⊂ Rn be the set of characteristic
vectors corresponding to a family of query sets A1, . . . , AM avoiding compromise. It
is clear that span(X) 6= Rn, that is dim(span(X)) ≤ n − 1 (otherwise the SDB is
compromised). This means that X lives in an (n− 1)-dimensional subspace U ⊂ Rn.
Suppose now U is defined by U = {(x1, . . . , xn) ∈ Rn : a1x1 + . . . + anxn = 0} where
a1, . . . , an ∈ R. Note then that ai 6= 0 (i = 1, . . . , n), otherwise there exists a unit
vector in span(X), (that is the SDB is compromised).
Thus, we come to the following problem:
Given nonzero real numbers a1, . . . , an, determine the maximum possible number of
subsets with a zero sum, that is determine the maximum number of (0,1)-solutions of
an equation

a1x1 + . . . + anxn = 0 (ai ∈ R \ {0}). (1.1)

Miller et al. [14] solved this problem reducing it to a combinatorial extremal
problem and using symmetric chain decomposition of the Boolean lattice (see [5] or
[11]).

Theorem 1 ([14]). (i) The maximum number of answerable SUM queries without
compromise, from a database of n real entries zi is

(

n
⌊n/2⌋

)

.

(ii) (Griggs [12]) The maximum is achieved iff the set of entries is partitioned
into two parts, of sizes ⌊n

2 ⌋ and ⌈n
2 ⌉, and all query sets have an equal number of ele-

ments from each part. Equivalently, the maximum number of (0,1)-solutions of (1,1),
assumed for ai = −ai+1 (i = 1, . . . , n − 1) , is unique up to permutations of the
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coordinates.

In a series of papers [6], [13-16] Miller et all. introduced and studied other models
of compromise. Among them so called relative compromise where either some record
zi or some difference zi−zj (i 6= j) can be inferred from available queries. This model
leads to the famous Erdös–Moser problem (determine the largest possible number
of subsets of a set of nonzero real numbers {a1, . . . , an} having a common sum of
elements) and its generalizations. In an excellent survey paper by Griggs [12], further
fundamental models of database compromise, group-security, internal-security etc.,
were proposed. It was shown that they lead to challenging combinatorial, number
theoretic, and geometric problems.

All these problems can be formulated in terms of (0,1)–solutions of some linear
equations (over real numbers) with certain restrictions.

In the model called group–security model (see [12]), not only individual data but
also subset sums of subsets I ⊂ [n] with small size, say 0 < |I| ≤ g, must be protected.
By the observation above, this problem is equivalent to the following one.

Problem 1. Determine the maximum number G(n, g) of (0,1)–solutions of equa-
tion (1.1) provided there are no nonzero solutions of Hamming weight less than g +1.
In other words G(n, g) is the maximum number of (0,1)–vectors of an (n − 1)–
dimensional subspase (of Rn) not containing a nonzero (0,1)–vector of weight less
than g + 1.

Problem 2 (with a size restriction on inquired subsets). Assume that the num-
ber of elements in the SUM queries are restricted by the size constraint: only sums of
m (or at most m) elements are considered. This is a natural restriction since in the
applications the size of the data stored in a SDB is usually huge, while the number
of operations could be limited. The problem for g = 1 was considered and solved for
n ≫ m in [8]. An equivalent formulation of the problem is the finding of maximal
number of (0,1)-solutions of weight m (or Problem 2∗: weight not exceeding m) of
equation (1.1), provided there are no (nonzero) solutions of weight less than g + 1.
We denote this quantity by G(n, m, g) (resp. G(n,≤ m, g)).

Theorem 2 (Demetrovich et al. [8]). For integers 1 < m ≤ n and t :=
⌊n/m⌋, holds

(i) G(n, m, 1) = t
(

n−t
m−1

)

, if n ≫ m.

(ii) G(n,≤ m, 1) = t
(

n−t
m−1

)

(1 + o(1)), as n → ∞.

In [8] it was also shown that the bound in (i) is tight if the query sets are from
two consecutive levels m, m− 1. In fact, as we see below, the equality in (i) holds for
all integers 1 < m < n.

Let us consider the following more general problem, which clearly makes sense
theoretically and hopefully also practically.

Problem 3. Under similar restrictions as in Problems 1,2 determine or estimate
the maximal number of (0,1)–solutions of a linear equation

B(x1, . . . , xn)T = 0, (1.2)

where B is a real r × n matrix of rank r.

In particular, for integers 1 ≤ g, k ≤ n let Gk(n, g) denote the maximum number
of (0,1)–solutions of equation (1.2) such that rank(B) = n− k, provided there are no
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solutions of the weight g or less. Clearly the set of SUM queries (with the characteristic
vectors) corresponding to these solutions does not lead to g-group compromise.

This problem was also addressed in [12] as an extention of the group security
problem to higher dimension. Note that G(n, g) := Gn−1(n, g). As a motivation for
study of Problem 3 let us also mention the notion of internal security introduced in
[12]. Let {z1, . . . , zn} be confidential records (say salaries in company N = {1, . . . , n}).
Suppose a coalition K ⊂ N of h − 1 members of the company can produce a linear
combination

∑

i∈I αizi (αi 6= 0), K ⊂ I ⊂ N with |I| = h using allowable SUM
queries A1, . . . , AM ⊂ N . Then they can infer the record (salary) zj where {j} =
I − K. The database is called then h–inside compromised. Griggs [12] observed
that the maximum number of SUM queries avoiding h–inside compromise equals the
maximum number of (0, 1)–solutions of equation (1.2) with h = r and every h columns
of B are linearly independent. Note that in the case when B is a matrix (of rank r)
without zero columns then a coalition of h − 1 members, 1 ≤ h ≤ r − 1, can infer at
most n − r + h protected records.

In this paper we study the group security problems stated above. We give all
exact solutions to Problem 2, thus we determine also G(n, m, g) for all parameters.
Surprisingly the answer is the same as for 1-security, that is G(n, m, g) = G(n, m, 1).
We solve Problem 2* for n ≥ m2 showing that G(n,≤ m, g) = G(n, m, 1). We also
determine G(n, g) (as well as Gk(n, g)), within a constant factor less than 1/2, thus
answering the question raised in Griggs [12] about the usability of AUDIT EXPERT
for the g-group security model (also for the higher dimensional case). For this case
it turns out that for all 1 < g < n

2 the number of answerable queries (without g-
group compromise) decreases less than two times as compared with 1-security, that is
G(n, g) > 1

2G(n, 1). Our main results are stated and proved in Section 2. In Section
3 we discuss the results and some open problems.

2. Main results. We need some notation and definitions. Throughout the paper
we use the abbreviation [m, n] for the interval of integers {m, m+1, . . . , n} and [n] :=

[1, n]. We also use the notation: 2[n] = {A : A ⊂ [n]},
(

[n]
k

)

= {A ⊂ 2[n] : |A| = k},
(

[n]
≤k

)

:= {A ⊂ 2[n] : |A| ≤ k}, En = {0, 1}n ⊂ Rn, and En
k = {x ∈ En : x has k ones}

for n, k ∈ N (k ≤ n).
A family A = {A1, . . . , Am} ⊂ 2[n] is called a chain of size m if A1 ⊂ · · · ⊂ Am.

If m = n + 1 then A is called a maximal chain. A ⊂ 2[n] is called an antichain if
Ai 6⊂ Aj holds for all distinct Ai, Aj ∈ A.

Let us also recall two classical results concerning antichains in 2[n] (see textbooks
[5], [11])

Sperner’s Theorem. Let A ⊂ 2[n] be an antichain, then |A| ≤
(

n
⌊n

2 ⌋
)

and the

maximum is achieved only for A =
( [n]

⌊n

2 ⌋

)

or
( [n]

⌈n

2 ⌉

)

.

LYM inequality (Lubell-Yamamoto-Meshalkin). Let A ⊂ 2[n] be an antichain,
then

∑

A∈A

1
(

n
|A|

) ≤ 1.

Let A ⊂ 2[n] be a maximal family of query sets avoiding compromise for a database
of n records. As we note d above, there exist nonzero real numbers a1, . . . , an such
that for each set A ∈ A ⊂ 2[n] the corresponding subset sum

∑

i∈A ai = 0. Let
X := χ(A) be the set of characteristic vestors corresponding to the members of A,
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that is X is the set of (0,1)-solutions of equation (1.1). Without loss of generality we
may write the equation (1.1) in the following form

a1x1+. . .+aℓxℓ−aℓ+1xℓ+1−. . .−anxn = 0, where all ai > 0 and ℓ ∈ [n−1]. (2.1)

Let the ground set [n] be partitioned into two parts [n] = [ℓ]∪ [ℓ + 1, n]. Observe
that A satisfies the following property (P):

(P) For all A, B ∈ A
(i) A ∩ [ℓ] = ∅ or A ∩ [ℓ + 1, n] = ∅ iff A = ∅
(ii) (A ∩ [ℓ]) ⊆ (B ∩ [ℓ]) implies (A ∩ [ℓ + 1, n]) + (B ∩ [ℓ + 1, n]).

Indeed, (i) is obvious; assuming the opposite in (ii) we get
∑

i∈B ai−
∑

i∈A ai > 0,
a contradiction. Later on we assume, without loss of generality, that 1 ≤ ℓ ≤ n

2 .
Our first result sharpens Theorem 2 and generalizes it to g-group security fo r

arbitrary g. The result is easily derived from a result in [2]. Given n, m, w ∈ N let
F (n, m, w) denote the maximum number of (0,1)–vectors X ⊂ Rn of weight m such
that the span(X) does not contain (0,1)-vectors of weight w. Similarly is defined
the function F (n, w) where again vectors of weight w are forbidden but we have
no restriction on the weights of (0,1)–vectors corresponding to the query sets (the
unrestricted case).

In [2] F (n, m, w) is determined for all parameters 1 ≤ w < m < n. Results for
F (n, w) are presented in [3].

Theorem 3 [2]. For integers 1 ≤ w < m < n and t := ⌊ n
m⌋ we have

F (n, m, w) =

(

t

1

)(

n − t

m − 1

)

. (2.2)

It is clear that F (n, m, 1) = G(n, m, 1) and F (n, 1) = G(n, 1).
However. note that the query (sets corresponding to the (0,1)-vectors) satisfying

the restriction for F (n, m, g) (as well as for F (n, g)) with g ≥ 2 does not necessar-
ily avoid (g − 1)-compromise. Thus, clearly we have F (n, m, g) ≥ G(n, m, g) (and
F (n, g) ≥ G(n, g)). Surprisingly, one has also the following.

Lemma 1. For integers 1 ≤ g < m ≤ n we have F (n, m, 1) = F (n, m, g) =
G(n, m, g).

Proof. Theorem 3 shows that the quantity F (n, m, w) does not depend on w (for
1 ≤ w < m) thus F (n, m, 1) = F (n, m, w).

Note now that the equality in (2.1) is achieved for the set
Y = {(x1, . . . , xn) ∈ E(n, m) : (m− 1)x1 + . . .+(m− 1)xt −xt+1 − . . .−xn = 0}.
Note also that X := span(Y ) ∩ E(n) = {(x1, . . . , xn) ∈ E(n) : (m − 1)x1 + . . . +

(m− 1)xt − xt+1 − . . .− xn = 0} consists only of vectors of weight 0 modulo m. This
implies that G(n, m, g) ≥ F (n, m, g) concluding the result. �

Theorem 4. (i) For integers 1 ≤ g < m ≤ n let t ∈ {⌊n/m⌋, ⌊(n+1)/m⌋}. Then
we have

G(n, m, g) = t

(

n − t

m − 1

)

. (2.3)
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(ii) An optimal set of SUM queries corresponds to the set of (0,1)-solutions of
weight m of equation (m−1)x1+. . .+(m−1)xt−xt+1−. . .−xn = 0 and is unique (up
to the permutations of the elements) if ⌊n/m⌋ = ⌊(n+1)/m⌋. If ⌊n/m⌋ 6= ⌊(n+1)/m⌋,
then there are two optimal configurations with t = ⌊n/m⌋ or t = ⌊n/m⌋+ 1.

Proof. Easy calculation shows that in case ⌊n/m⌋ 6= ⌊(n + 1)/m⌋, that is for
n = (t1 + 1)m − 1, where t1 := ⌊n/m⌋, we have

t1

(

n − t1
m − 1

)

= (t1 + 1)

(

n − t1 − 1

m − 1

)

. (2.4)

Thus, we have only to prove the second part of the theorem. Given a partition
[n] = [ℓ]∪ [ℓ+ 1, n] , let us represent the elements of 2[n] by pairs (A1, A2) := A1 ∪A2

where A1 ⊆ [ℓ] and A2 ⊆ [ℓ + 1, n].
Let A ⊂ 2[n] be an antichain satisfying property (P). That is for every (A1, A2), (B1, B2) ∈

A either A1 and B1 or A2 and B2 form an antichain.
Then one has the following generalization of the LYM inequality.
Lemma 2 [2].

∑

(A1,A2)∈A

1
(

ℓ
|A1|

)(

n−ℓ
|A2|

) ≤ 1. (2.5)

The proof exploits Lubell’s argument (for the LYM inequality). For completeness
we present it here.

Proof. Consider the set of all direct products σ := {C1 × C2}, where C1 and
C2 are maximal chains in [ℓ] and [ℓ + 1, n] respectively. Note that |σ| = ℓ!(n − ℓ)!.
Given A ∈ 2[n] there are |A1|!(ℓ − |A1|)!|A2|!(n − |A2|)! members of σ containing
A and each member of σ contains at most one element from A. Hence the proba-
bility that a randomly chosen member of σ meets an element from our family A is
∑

(A1,A2)∈A |A1|!(ℓ − |A1|)!|A2|!(n − |A2|)!/ℓ!(n − ℓ)! ≤ 1, which implies (2.5). �

Clearly (2.5) implies

|A|

max (A1,A2)∈A

(

ℓ
|A1|

)(

n−ℓ
|A2|

) ≤
∑

(A1,A2)A

1
(

ℓ
|A1|

)(

n−ℓ
|A2|

) ≤ 1. (2.6)

For A ⊂
(

[n]
m

)

we can rewrite (2.5) as

∑

(A1,A2)∈A

1
(

ℓ
|A1|

)(

n−ℓ
m−|A1|

) ≤ 1. (2.7)

Hence we also have

|A|

max 1≤ℓ<n
1≤i≤m−1

(

ℓ
i

)(

n−ℓ
m−i

) ≤
|A|

max 1≤i≤m−1

(

ℓ
i

)(

n−ℓ
m−i

) ≤
∑

(A1,A2)∈A

1
(

ℓ
|A1|

)(

n−ℓ
m−|A1|

) ≤ 1.

(2.8)
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For ℓ fixed (2.8) implies that |A| ≤ max1≤i<m

(

ℓ
i

)(

n−ℓ
m−i

)

. Moreover it is easy to
show (see [2]) that given integers 0 < ℓ, m < n we have

max
1≤i<m

(

ℓ

i

)(

n − ℓ

m − i

)

=

(

ℓ

s

)(

n − ℓ

m − s

)

, where s := ⌈
ℓm

n + 1
⌉ (2.9)

Thus |A| and hence G(n, m, g) is upper bounded by max
(

ℓ
i

)(

n−ℓ
m−i

)

taken over all
1 ≤ ℓ < n and 1 ≤ i ≤ m − 1. It is proved in [2] that

max
1≤ℓ<n

1≤i≤m−1

(

ℓ

i

)(

n − ℓ

m − i

)

=

(

t

1

)(

n − t

m − 1

)

. (2.10)

For the proof of (2.10) it was shown that for 1 ≤ i ≤ m − 1 one has

max
1≤ℓ<n

(

ℓ

i

)(

n − ℓ

m − i

)

=

(

ℓi

i

)(

n − ℓi

m − i

)

, where ℓi := ⌊
(n + 1)i

m
⌋, (2.11)

and for 2 ≤ i ≤ m − 2 holds

(

t

1

)(

n − t

m − 1

)

>

(

ℓi

i

)(

n − ℓi

m − i

)

. (2.12)

Remark 1. In [2] is also remarked that using the same approach as for the proof

of (2.10) one can show that for n ≥ m2

2 holds

max
1≤ℓ<n

i≤j≤m−j

(

ℓ

j

)(

n − ℓ

m − j

)

=

(

ℓi

i

)(

n − ℓi

m − i

)

, where ℓi := ⌊
(n + 1)i

m
⌋. (2.13)

From (2.11) and (2.12) we conclude that the maximum in (2.10) is achieved if and
only if i = 1 and t ∈ {⌊n/m⌋, ⌊(n + 1)/m⌋}. If now |A| = G(n, m, g) then all inequal-
ities in (2.8) must hold with equalities. This together with the previous observation
implies that |A ∩ [ℓ]| = 1 for all A ∈ A and ℓ = t. �

Clearly Lemma 1 together with Theorem 2(ii) implies the following.
Corollary 1. Given integers 1 ≤ g < m we have

G(n,≤ m, g) = t

(

n − t

m − 1

)

(1 + o(1)) as n → ∞. (2.14)

Note that (2.14) follows from the fact that (for m fixed) the order of magnitude of
G(n, m, g) is nm while G(n,≤ m, g)−G(n, m, g) < G(n, m−1, g)+ . . .+G(n, g +1, g)
has the order of magnitude nm−1.

Remark 2. Suppose a query family B ⊂ 2[n] consists of two consecutive levels,

that is B ⊂
(

[n]
m

)

∪
(

[n]
m−1

)

. Observe then that in view of property (P) B is an antichain.
Therefore we can repeat all arguments above and extend Theorem 4 to two consecu-
tive levels. Moreover, we are able to describe all optimal query sets.

Theorem 4*. (i) For integers 1 ≤ g < m−1 < n let t1 := ⌊ n
m⌋ and t2 := ⌊ n

m−1⌋.
Then
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G(n, {m − 1, m}, g) = max

{

t1

(

n − t1
m − 1

)

, t2

(

n − t2
m − 2

)}

. (2.15)

(ii) Let A ⊂ (
(

[n]
m

)

∪
(

[n]
m−1

)

) be an optimal query family, that is |A| = G(n, {m −

1, m}, g). If A ⊂
(

[n]
m

)

or A ⊂
(

[n]
m−1

)

then it is determined by Theorem 4. All optimal
families are described below.

(a) If n ≥ 2m then A ⊂
(

[n]
m

)

.

(b) If n ≤ 2m − 2 then A ⊂
(

[n]
m−1

)

(and is unique).

(c) If n = 2m − 1 then there are exactly four optimal query sets:

ℓ = 1: A ⊂
(

[n]
m

)

(and is unique),

ℓ = 2: A ⊂
(

[n]
m

)

(and is unique),

ℓ = 2: A ⊂
(

[n]
m−1

)

(and is unique),

ℓ = 2: A = A1 ∪ A2 with A1 = {A ∈
(

[n]
m

)

: A ∩ [2] = {1}}, A2 = {A ∈
(

[n]
m−1

)

:
A ∩ [2] = {2}}.
In other words A corresponds to the set of solutions X ⊂ (E(n, m)∪ (E(n, m− 1)) of
equation (m − 1)x1 + (m − 2)x2 − x3 − . . . − xn = 0.

Proof. Part (i) directly follows from (2.5).

Suppose A ⊂ (
(

[n]
m

)

∪
(

[n]
m−1

)

) is an optimal query family. The cases (a) and (b)
follow by easy calculations for the maximum in (2.11). Suppose now n = 2m− 1. By
Theorem 4 we have |A| =

(

2m−2
m−1

)

= 2
(

2m−3
m−1

)

and ℓ = 1 or 2. Moreover, in view of (2.6),

for every A, B ∈ A we must have
(

ℓ
|A∩[ℓ]|

)(

n−ℓ
m−|A∩[ℓ]|

)

=
(

ℓ
|B∩[ℓ]|

)(

n−ℓ
m−|B∩[ℓ]|

)

=
(

2m−2
m−1

)

,

otherwise A is not optimal. If ℓ = 1 then 1 ∈ A and |A ∩ [2, n]| = m − 1 for each

A ∈ A, thus A ⊂
(

[n]
m

)

. If ℓ = 2 then by the observation above |A ∩ [2]| = 1 for every
A ∈ A. Define Ai = {A ∈ A : i ∈ (A ∩ [2])} so that A = A1 ∪A2. Note that (in view
of optimality of A) |A1| = |A2| =

(

2m−3
m−1

)

. Now Sperner’s Theorem implies that for

every A, B ∈ Ai holds |A∩ [2, n]| = |B ∩ [2, n]|. which means that Ai ⊂
(

n
m−1

)

or
(

n
m

)

(i=1,2). This completes the proof of part (ii). �

Remark 3. We already mentioned that F (n, g) ≥ G(n, g), note however that
F (n, g) 6= G(n, g). For example, observe that F (n, n − 1) ≥ |{0, 1}n−2 × {(0, 0)}| =
2n−2, while clearly G(n, n − 1) = 1.

Our next goal is a sharpenning of Corollary 1.

Let [n] = [ℓ]∪ [ℓ+1, n] and let F ⊂ 2[n] satisfy property (P). Let us represent the
elements of 2[n] by pairs (F1, F2) where F1 ⊆ [ℓ], F2 ⊆ [ℓ + 1, n].

We say that F is a homogeneous family if (F1, F2) ∈ F implies {(E1, E2) ∈ 2[n] :
|E1| = |F1|, |E2| = |F2|} ⊆ F .

Lemma 3. Given integers 1 ≤ ℓ ≤ n − 1 there exists an optimal homogeneous
family F ⊂ 2[n] satisfying property (P).

Proof. Let A ⊂ 2[n] be an optimal family satisfying property (P). Let now σ be
the set of maximal product chains defined in the proof of Lemma 2. For each C ∈ σ and
A = (A1, A2) ∈ A define the family FC,A = {(F1, F2) ∈ 2[n] : |F1| = |A1|, |E2| = |A2|},
if A ∈ C and FC,A = ∅ if A /∈ C. It is clear that FC,A ∩ FC,B = ∅ for every distinct

A, B ∈ A and |FC,A| =
(

ℓ
|A1|

)(

n−ℓ
|A2|

)

for each nonempty family FC,A. Define also the

family FC,A =
⋃

A∈A FC,A. Observe that each FC,A is a homogeneous family satisfying

8



property (P). Indeed, if for some A, B ∈ A the family FC,A ∪ FC,B does not satisfy
(P) then clearly property (P) is violated for A and B. Since for each A ∈ A

there are exactly |A1|!(ℓ − |A1|)!|A2|!(n − ℓ − |A2|)! members of σ containing A,
it follows that |

⋃

C∈σ FC,A| = ℓ!(n − ℓ)!. Recall also that |σ| = ℓ!(n − ℓ)!. Therefore
the average number of elements contained in a family FC,A is

1

ℓ!(n − ℓ)!

∑

C∈σ

|FC,A| =
1

ℓ!(n − ℓ)!

∑

A∈A

|
⋃

C∈σ

FC,A| = |A|.

Thus, there exists a homogeneous family F satisfying property (P) with |F| ≥ |A|. �

A homogeneous family F can be described by the set of pairs I(F) = {(i, j) ∈
[0, ℓ] × [0, n − ℓ] : ∃ (F1, F2) ∈ F such that |F1| = i, |F2| = j}. Let us introduce a
partial ordering: for (i1, j1), (i2, j2) ∈ [0, ℓ] × [0, n − ℓ] we write (i1, j1) < (i2, j2) if
i1 < j1 and i2 < j2.

Let F ⊂ 2[n] satisfy property (P). For convenience of description later on we
assume (w.l.o.g.) that ∅ /∈ F . Let now F ⊂

(

n
≤m

)

be a homogeneous family satisfying

property (P), so that I(F) ⊂ [ℓ] × [n − ℓ]. Then clearly every two pairs in I(F) are
comparabl e. That is I(F) = {(i1, j1), . . . , (ik, jk)} for some k ≤ m

2 where (i1, j1) <
. . . < (ik, jk) and ik + jk ≤ m.

Suppose now F is optimal. Note then that all pairs in I(F) are consecutive, that
is (ir+1, jr+1) = (ir +1, jr +1), r = 1, . . . , k−1. Indeed, if, say, ir+1 ≥ ir +2, then the
replacement of (ir+1, jr+1) by (ir+1 − 1, jr+1) or (ir, jr) by (ir + 1, jr) in I(F) gives
us a larger family. Therefore we have the following

Corollary 2. For an optimal family F ⊂
(

[n]
≤m

)

satisfying property (P) we have

|F| = max

min{k−1,s−1}
∑

i=0

(

ℓ

k − i

)(

n − ℓ

s − i

)

, (2.16)

where the maximum is taken over all integers 1 ≤ ℓ ≤ n
2 and k, s ≥ 1 with k + s ≤ m.

Lemma 4. Given integers m, ℓ, n; 1 ≤ ℓ, m < n
3 and r := min{⌊m

2 ⌋, ⌊
ℓ
2⌋}, let

F ⊂
(

[n]
≤m

)

be an optimal family satisfying property (P). Then

|F| = max
1≤k≤r

k−1
∑

i=0

(

ℓ

k − i

)(

n − ℓ

m − k − i

)

. (2.17)

Proof. By Lemma 3 we may assume that F is homogeneous and (in view of

Corollary 2) |F| =
∑min{k−1,s−1}

i=1

(

ℓ
k−i

)(

n−ℓ
s−i

)

for some k and s. Note first that k+s =
m, otherwise we can replace (k−i, s−i) by (k−i, s−i+1) or (k−i, s−i) by (k−i+1, s−i)
in I(F) getting a larger family. Thus, we have only to show that k ≤ min{⌊m

2 ⌋, ⌊
ℓ
2⌋}.

Suppose first that k > ℓ
2 . Then we replace (k, m−k) and (k−1, m−k−1) in I(F) by

(k− 1, m− k+1) obtaining a new set I ′ ⊂ [ℓ]× [n− ℓ]. Note now that the new family
F ′ associated with I ′ satisfies property (P). Moreover, we claim that |F ′| > |F|, or
equivalently

(

ℓ

k

)(

n − ℓ

m − k

)

+

(

ℓ

k − 1

)(

n − ℓ

m − k − 1

)

<

(

ℓ

k − 1

)(

n − ℓ

m − k + 1

)

. (2.18)

The LHS of (2.18) is not greater than
(

ℓ
k−1

)

(
(

n−ℓ
m−k

)

+
(

n−ℓ
m−k−1

)

) =
(

ℓ
k−1

)(

n−ℓ+1
m−k

)

and simple calculations show that
(

n−ℓ+1
m−k

)

<
(

n−ℓ
m−k+1

)

for n ≥ 3m. This contradiction

implies that k ≤ ℓ
2 .
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Suppose now that k > m
2 . Then we replace (k − i, m − k − i) in I(F) by

(m − k − i, k − i) (i = 0, . . . , m − k − 1) getting a larger family, a contradiction
to the optimality of F . �

Let P (n,≤ m) denote the maximum size of a family F ⊂
(

[n]
≤m

)

satisfying property

(P). Clearly Lemma 4 implies that for n ≥ 3m (1 ≤ ℓ ≤ n
2 )

G(n,≤ m, g) ≤ P (n,≤ m) = max
1≤k≤ m

2

2k≤ℓ≤ n

2

k−1
∑

i=0

(

ℓ

k − i

)(

n − ℓ

m − k − i

)

. (2.19)

Theorem 5. For integers m ≥ 8, n ≥ m2, t := ⌊ n
m⌋ one has

G(n,≤ m, g) = t

(

n − t

m − 1

)

. (2.20)

Proof. We need two simple lemmas.
Lemma 5.

(

t
1

)(

(m−1)t+r
m−1

)

max 1≤ℓ<n
2≤j≤m−2

(

ℓ
j

)(

n−ℓ
m−j

) >
1

2

(

1 +
m − 2

(m − 1)(t − 1)

)t−1

. (2.21)

Proof. Let n = tm+r, 0 ≤ r ≤ m−1, and let α(j) := ⌊j(r+1)/m⌋, 1 ≤ j ≤ m−1.
In view of (2.13 )

max
1≤ℓ<n

2≤j≤m−2

(

ℓ

j

)(

n − ℓ

m − j

)

=

(

2t + α(2)

2

)(

(m − 2)t + r − α(2)

m − 2

)

, (2.22)

where α(2) = ⌊2(r + 1)/m⌋ ∈ {0, 1, 2}. Further we have
(t

1)(
(m−1)t+r

m−1 )
(2t+α(2)

2 )((m−2)t+r−α(2)
m−2 )

= 2t
2t+α−1 · (m−1)t+r

(m−1)(2t+α(2)) · (m−1)t+r−1
(m−1)(t−1)+r · (m−1)t+r−2

(m−1)(t−1)+r−1 ·

. . . · (m−2)t+r−α(2)+1
(k−2)(t−1)+r−α(2)+1 .

Simple calculation shows that for α(2) = 1, 2 the product of the first three factors
(in the RHS of the last equation) is not less than 1/2. The same holds for the first
two factors when α(2) = 0. Therefore,

(t

1)(
(m−1)t+r

m−1 )
(2t+α(2)

2 )((m−2)t+r−α(2)
m−2 )

> 1
2 ( (m−1)t+r−1

(m−1)(t−1)+r )t−1 = 1
2 (1 + m−2+r

(m−1)(t−1)+r )t−1 ≥ 1
2 (1 +

m−2
(m−1)(t−1) )

t−1. �

Corollary 3. Let us denote the RHS of (2.21) by ϕ(t). Calculations show that
ϕ(t) > 1 for n ≥ m2 (with m ≥ 6). In particular for m ≥ 8 we have ϕ(t) > 1.22.

Lemma 6. For integers 1 ≤ ℓ ≤ n/2, 1 ≤ k ≤ ℓ
2 , m ≤ n

1
2 holds

k−1
∑

i=0

(

ℓ

k − i

)(

n − ℓ

m − k − i

)

<
n

n − m

(

ℓ

k

)(

n − ℓ

m − k

)

. (2.23)
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Proof. Let us show first that for i = 0, . . . , k − 1 holds

(

ℓ
k−i

)(

n−ℓ
m−k−i

)

(

ℓ
k−i−1

)(

n−ℓ
m−k−i−1

) >
n

m
. (2.24)

One can easily verify that
( ℓ

k−i)(
n−ℓ

m−k−i)
( ℓ

k−i−1)(
n−ℓ

m−k−i−1)
= (ℓ−k+i+1)(n−m−ℓ+k+i+1)

(k−i)(m−k−i) ≥ (k+1)(n−k−m+1)
k(m−k) > n−k−m+1

m−k > n
m .

Now in view of (2.24) we infer

k−1
∑

i=0

(

ℓ

k − i

)(

n − ℓ

m − k − i

)

<

(

ℓ

k

)(

n − ℓ

m − k

)(

1+
m

n
+. . .+

mk−1

nk−1

)

<
n

n − m

(

ℓ

k

)(

n − ℓ

m − k

)

.

�

Let now F ⊂
(

[n]
≤m

)

, n ≥ m2 be an optimal family satisfying property (P). In
view of Lemmas 4 and 6, for some 1 ≤ k ≤ m

2 we have

|F| =

k−1
∑

i=0

(

ℓ

k − i

)(

n − ℓ

m − k − i

)

<
n

n − m

(

ℓ

k

)(

n − ℓ

m − k

)

. (2.25)

On the other hand for k ≥ 2 Lemma 5 together with Corollary 3 implies

t

(

n − t

m − t

)

> 1.2

(

ℓ

k

)(

n − ℓ

m − k

)

>
n

n − m

(

ℓ

k

)(

n − ℓ

m − k

)

. (2.26)

This completes the proof of Theorem 5. �

Remark 4. We notice that Theorem 5 holds also for 4 ≤ m ≤ 7 when n ≥ cm2

for some constant c (this follows directly from the proof of Theorem 5). Moreover by
direct calculations one can show that it holds also for n ≥ m2.

We consider now the group security model without restriction on the size of a
query set. We determine G(n, g) within a constant factor less than 1/2 for arbitrary
parameters n and g.

Theorem 6. (i) For 2 ≤ g < n/2 we have

n + 1

n − 1

(

n − 1
n−3

2

)

≤ G(n, g) < 2

(

n − 1
n−3

2

)

, if 2 ∤ n, (2.27)

n + 2

2n − 2

(

n
n−2

2

)

≤ G(n, g) <

(

n
n−2

2

)

, if 2 | n. (2.28)

(ii) For n/2 ≤ g < n we have

g + 1

n

(

n

g + 1

)

< G(n, g) ≤

(

n

g + 1

)

. (2.29)
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Proof. (i): Since G(n, g) ≥ G(n, m, g), Theorem 4 implies that for m =
⌊n/2⌋ and g ≤ m − 1 we have G(n, g) ≥ G(n, m, g)= 2

( n−2
⌊n−2

2 ⌋

)

. The latter equals
n+1
n−1

(n−1
n−3

2

)

, if 2 ∤ n and n+2
2n−2

(

n
n−2

2

)

, if 2 | n, thus obtaining the lower bound.

For the upper bound we use the following result from [1].
Lemma 7 [1]. Let a1, . . . , an ∈ R r {0}, b ∈ R and |ai| 6= |aj | for some i, j ∈

[1, n].
Let Y be the (0,1)–solutions of the equation a1x1 + . . . + anxn = b.
Then

|Y | ≤

{

2
(n−1

n−3
2

)

, if 2 ∤ n
(

n
n−2

2

)

, if 2 | n.
(2.30)

Let now X ⊂ E(n) be the set of (0,1)-solutions of equation (2.1). Note then that for
g ≥ 2 there exist i ∈ [ℓ] and j ∈ [ℓ + 1, n] such that ai 6= aj , for otherwise X contains
a vector (x1, . . . , xn) of weight 2 with xi = xj = 1. This together with Lemma 2
completes the proof of case (i).

(ii): Let the ground set [n] be partitioned into [ℓ]∪ [ℓ+1, n] and let A ⊆
(

[n]
≥g+1

)

,

with n/2 ≤ g + 1 ≤ n, be a family satisfying property (P ). Now using the same
argument as for Corollary 2 we get the following equality

|A| = max
∑

i=0

(

ℓ

k + i

)(

n − ℓ

g + 1 − k + i

)

, (2.31)

where the maximum is taken over all 1 ≤ ℓ ≤ n
2 , 1 ≤ k ≤ g.

Clearly the RHS of (2.31) is less than
(

n
g+1

)

. Since G(n, g) ≤ |A| we get the simple

upper bound G(n, g) ≤
(

n
g+1

)

.

For the lower bound in (2.29) note that G(n, g) ≥ G(n, g + 1, g). Since g + 1 > n
2

Theorem 4 implies that G(n, g + 1, g) =
(

n−1
g

)

= g+1
n

(

n
g+1

)

. �

We turn now to Problem 3. Let A ⊂ 2[n] be a family of query sets avoiding
g-group compromise under restrictions like in Problems 1,2. The only difference we
have now is that dim(spanχ(A)) ≤ k for given integers 1 ≤ k ≤ n − 1. Note that
w.l.o.g. we may assume that dim(spanχ(A)) = k since every subspace U ⊂ Rn of
dimension less than k can be embedded in a k-dimensional subspace V such that
U ∩ E(n) = V ∩ E(n).

It is not hard to see that |A| is upper bounded by 2k (even if A is compromised).
The following statement is based on that simple fact.

Proposition. For integers 1 ≤ k, g < n holds Gk(n, g) = 2k if and only if
n ≥ k(g + 1).

Proof. Let us denote X = χ(A) and let P = {b1, . . . , bk} be a basis of a k-
dimensional space V ⊇ span(X). We assume that P is represented as row vectors of
a k × n matrix. W.l.o.g. we may also assume that P has the echelon form (Ik|M)
(where Ik is the k × k identity matrix ). It is clear that all linear combinations of P
giving (0,1)-vectors must have (0,1)-coefficients which implies that |X | ≤ 2k. If now
|X | = 2k, then clearly each column-vector of M is either a unit vector or an all-zero
vector. Note also that each row of P contains at least g + 1 ones, otherwise A is
g-compromised. This clearly implies that n ≥ k(g + 1). �

The next result is a generalization of Theorem 1.
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Theorem 7. (i) For integers n
2 ≤ k < n we have

Gk(n, 1) =

(

2k − n + 2

⌊ 2k−n+2
2 ⌋

)

2n−k−1 (2.32)

(ii) An optimal set of SUM queries corresponds to the following set of vectors
X = X1 × X2 ⊂ {0, 1}n with X1 := {(x1, . . . , x2k−n+2) : x1 + . . . + x⌊ s

2 ⌋
− x⌊ s

2 ⌋+1 −

. . . − xs = 0} and X2 := {00, 11}n−k−1, where s := 2n − k + 2.
The optimal construction is unique, up to the permutations of the coordinates,

if 2|n. If 2 ∤ n there is another optimal configuration with s = 2n − k + 3 and
X2 := {00, 11}n−k−2 × {0}.

Proof. Observe that |X | =
( 2k−n
⌈ 2k−n

2 ⌉

)

2n−k and dim span(X) = k. Moreover

span(X) has no vectors of weight less than 2. The upper bound directly follows
from a result in [4], where it is proved that the maximum number of (0,1)-solutions
of equation (1.2), where r = n − k and B does not contain zero columns, is upper
bounded by the RHS of (2.32). The description of all optimal constructions is also
easily derived from that result. �

Note that in case k = n − 1 we have G(n, 1) =
(

n
⌊n/2⌋

)

(Theorem 1).

Theorem 8. For 2g < n < (g + 1)k we have

1

2
Gk(n, 1) < Gk(n, g) ≤ Gk(n, 1). (2.33)

Proof. Consider first the case n ≥ 2k. Define the set X = {01, 10}k−1 ×
{1n−2k+2}. Clearly |X | = 2k−1 and all vectors of X have weight n − k + 1 > n

2 > g.
Note also that dim span(X) = k. Finally observe that span(X) ∩ En = X ∪
{0n}, that is span(X) contains no other nonzero (0, 1)-vectors besides those that
are in X . Thus, the set of queries A ⊂ 2[n] corresponding to vectors X ∪ {0n} is
not g-group compromised. Moreover |A| = 2k−1 + 1 > 1

2Gk(n, 1). Let now n ≤

2k. Define the set X = E2k−n
t × {01, 10}n−k, where t = ⌈(2k − n)/2⌉. Note that

|X | =
( 2k−n
⌈ 2k−n

2 ⌉

)

2n−k and dim span(X) = k. Note also that all vectors of X have

weight ⌈n
2 ⌉. Moreover, span(X) ∩ En contains only vectors of weight 0 modulo

⌈n
2 ⌉. This (together with Theorem 7) implies Gk(n, g) ≥ |X | =

( 2k−n
⌈ 2k−n

2 ⌉

)

2n−k >

1
2

( 2k−n+2
⌊ 2k−n+2

2
⌋

)

2n−k−1 = 1
2Gk(n, 1). �

3. Concluding remarks. We considered combinatorial problems in connection
with a security control mechanism in statistical databases under SUM query restric-
tions. We gave tight bounds for the maximum number of answerable queries without
g-group compromise.

One of our objectives in this paper was to demonstrate how useful for applications
is the subject called Extremal Problems under Dimension Constraints which was in-
troduced in [1] and studied in a series of papers mentioned in [1]. Quite surprisingly,
the results presented above are either direct consequences of results in those papers
or can be easily derived using methods and tools developed in them.

It should be mentioned that the fact 1
2G(n, 1) < G(n, g) < G(n, 1) (a weaker

form of Theorem 6) seems to be somewhat surprising. It shows that providing g–
group security costs almost nothing as compared with the simplest case g = 1 (that
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is just prevention of compromise)! The same we have for arbitrary dimension as is
shown in Theorem 7.

Finding exactly G(n, g) seems to be more difficult. The first open case is g = 2.
A good candidate for SUM query sets is the family A corresponding to the set of
(0,1)–solutions of equation (1.1) where a1 = . . . = at = 2, at+1 = . . . = an = −1
with t := ⌊n/3⌋ (which can be shown to be superior to the lower bound in Theorem
6). Note that the (0,1)–solutions of this equation consist only of vectors of weight 0
modulo 3 and |A| =

∑t
i=0

(

t
i

)(

n−t
2i

)

. A similar construction seems to be ”good” for
g = 3 (with t := ⌊n/4⌋, a1 = . . . = at = 3, at+1 = . . . = an = −1). We believe that
these two constructions are optimal. In particular we have

Conjecture. For an integer n ≥ 3 and t := ⌊n/3⌋ holds

G(n, 2) =

t
∑

i=0

(

t

i

)(

n − t

2i

)

. (3.1)

Another question is to clarify how sharp is the restriction n ≥ m2 in Theorem 5.
Problem 1 (as well as Problems 2,3) can be viewed as a coding problem: we seek

for a largest binary code C ⊂ En ⊂ Rn of length n such that (span(C)) ∩ En does
not contain (nonzero) vectors of Hamming weight less than g + 1. Note however that
unlike the classical error correcting codes (we assume w.l.o.g. that the code contains
the zero vector), the minimum weight here does not equal the minimum Hamming
distance, unless g = 1. The restriction on minimum distance may lead to other
interesting problems for further research.
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