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Abstract— Motivated by iterative decoding techniques for
the binary erasure channel Hollmann and Tolhuizen intro-
duced and studied the notion of generic erasure correcting
sets for linear codes. A generic (r, s)–erasure correcting set
generates for all codes of codimension r a parity check
matrix that allows iterative decoding of all correctable
erasure patterns of size s or less. The problem is to
derive bounds on the minimum size F (r, s) of generic
erasure correcting sets and to find constructions for such
sets. In this paper we continue the study of these sets.
We derive better lower and upper bounds. Hollmann and
Tolhuizen also introduced the stronger notion of (r, s)–sets
and derived bounds for there minimum size G(r, s). Here
also we improve these bounds. We observe that these two
conceps are closely related to intersecting codes, an area,
in which G(r, s) has been studied primarily with respect to
ratewise performance. We derive connections. Finally, we
observed that hypergraph covering can be used for both
problems to derive good upper bounds.

I. INTRODUCTION

Iterative decoding techniques, especially when applied to
low-density parity-check codes, have recently attracted
a lot of attention. It is known that the performance
of iterative decoding algorithms in case of a binary
erasure channel depends on the sizes of the stopping sets
associated with a collection of parity check equations
of the code [11]. Let H be a parity–check matrix of
a code C, defined as a matrix whose rows span the
dual code C⊥. A stopping set is a nonempty set of
code coordinates such that the submatrix formed by
the corresponding columns of H does not contain a
row of weight one. Given a parity-check matrix H , the
size of the smallest nonempty stopping set, denoted by
s(H), is called the stopping distance [27] of the code
with respect to H . Iterative decoding techniques, given
a parity check matrix H , allow to correct all erasure
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patterns of size s(H) or less. Therefore, for better
performance of iterative erasure decoding it is desired
that s(H) be as large as possible. Since the support of
any codeword (the set of its nonzero coordinates) is a
stopping set, we have s(H) ≤ d(C) for all choices of H .
It is well known that the equality can always be achieved,
by choosing sufficiently many vectors from the dual code
C⊥ as rows in H . This motivated Schwartz and Vardy
[27] to introduce the notion of stopping redundancy of
a code. The stopping redundancy of C, denoted by ρ(C),
is the minimum number of rows in a parity-check matrix
such that s(C) = d(C).

Schwartz and Vardy [27] derived general upper and
lower bounds, as well as more specific bounds for Reed–
Muller codes, Golay codes, and MDS codes. Improve-
ments upon general upper bounds are presented in [13],
[14]. The stopping redundancy of Reed–Muller codes
was further studied by Etzion [12]. Hehn et al. [15]
studied the stopping redundancy of cyclic codes.
Recall that a binary linear code C is capable of cor-
recting those and only those erasure patterns that do
not contain the support of a non-zero codeword. These
patterns are called correctable for C. All other erasure
patterns are called uncorrectable. Note that the size of
a correctable erasure pattern for a code can be greater
than its minimum distance and it is upper bounded by
the codimension of the code.

Hollmann and Tolhuizen [17] observed that given a
linear code C, any correctable erasure pattern can be it-
eratively decoded provided a chosen parity check matrix
contains sufficiently many rows. This motivated them
[17] to introduce the notion of generic erasure correcting
sets for binary linear codes. A generic (r, s)–erasure
correcting set, generic (r, s)–set for short, generates
for all codes of codimension r a parity check matrix
that allows iterative decoding of all correctable erasure
patterns of size s or less. More formally, a subset A of a
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binary vector space Fr
2 is called generic (r, s)–set if for

any binary linear code C of length n and codimension
r, and any parity check r × n matrix H of C, the set
of parity check equations HA = {aH : a ∈ A} enables
iterative decoding of all correctable erasure patterns of
size s or less.
Weber and Abdel–Ghaffar [30] constructed parity check
matrices for the Hamming code that enable iterative
decoding of all correctable erasure patterns of size at
most three. Hollmann and Tolhuizen [16] [17] gave a
general construction. They also established upper and
lower bounds for the minimum size of generic (r, s)–
sets.
Throughout the paper we use the following notation. We
use [n, k, d]q for a linear code C (of length n, dimension
k, and minimum Hamming distance d) over Fq . The
Hamminng weight of a vector a is denoted by wt(a). We
denote by [n] the set of integers {1, . . . , n}. A k–element
subset of a given set is called for short a k–subset. Fk×m

q

denotes the set of all k×m matrices over the finite field
Fq . For integers 0 ≤ k ≤ m,

[
m
k

]
q

stands for the q-
ary Gaussian coefficient, defined by

[
m
0

]
q

= 1 and[
m
k

]
q

=
∏k−1

i=0

(qm−i − 1)
(qk−i − 1)

for k = 1, . . . ,m. It is

well known that
[

m
k

]
q

is the number of k–dimensional
subspaces in Fm

q . A k–dimensional subspace is called for
short a k–subspace. A coset of a k–subspace in Fm

q is
called a k–dimensional plane or shortly k–plain. Recall
that there are qm−k

[
m
k

]
q
k–plains in Fm

q . A k–plain
which is not a subspace is called a k–flat. Later on we
will omit q in the notation above for the binary case.

In this paper we continue the study of generic erasure
correcting sets. Let F (r, s) denote the minimum size of
a generic (r, s)–set. The bounds for F (r, s) presented
below are due to Hollmann and Tolhuizen. The following
is the best know constructive bound

Theorem 1: [17] For 2 ≤ s ≤ r we have

F (r, s) ≤
s−1∑
i=1

(
r − 1
i

)
. (I.1)

It is clear that any upper bound for F (n − k, d − 1)
is an upper bound for the stopping distance ρ(C) of an
[n, k, d] code, thus ρ(C) ≤ F (n − k, d − 1) Therefore,
for an [n, k, d] code C one has the bound

ρ(C) ≤ F (n− k, d− 1) ≤
d−2∑
i=1

(
n− k − 1

i

)
, (I.2)

which turns to be also the best constructive bound for
the stopping redunduncy.
We notice that the best known nonconstructive upper
bounds for the stopping redundancy of a linear code are
given in Han and Siegel [13] and in Han et al [14].

Theorem 2: [13] For an [n, k, d] code C with r = n− k
we have

ρ(C) ≤ min{t ∈ N :
d−1∑
i=1

(
n

i

)(
1− i

2i

)t

< 1}+r−d+1.

(I.3)

A closed form expression derived from this bound is as
follows

Corollary 1: For an [n, k, d] code C with r = n− k we
have

ρ(C) ≤
log
∑d−1

i=1

(
n
i

)
− log

(
1− d−1

2d−1

) + r − d+ 1. (I.4)

(where log is always of base 2). Further improvements
upon the probabilistic upper bound are given in [14].

There is a big gap between the lower and upper bounds
for F (r, s).

Theorem 3: [16] For 1 ≤ s ≤ r the following holds

r ≤ F (r, s) ≤ rs

− log(1− s
2s )

. (I.5)

The upper bound is derived by a probabilistic approach.

In [16] introduced and studied a related notion of (r, s)-
good set. A subset A ⊆ Fr is called (r, s)-1 good if for
any s linearly independent vectors v1, . . . ,vs ∈ Fr

2 there
exists a c ∈ A such that the inner product (c,vj) =
1 for j = 1, . . . , s. A is called (r, s)-good if for any
linearly independent vectors v1, . . . ,vs ∈ Fr

2 and for
arbitrary (x1, . . . , xs) ∈ {0, 1}s there exists c ∈ A such
that (c,vj) = xj for j = 1, . . . , s.

We denote by G1(k, s) the minimum cardinality |A|
for which there exists a (k, s)-1 good set A. The
corresponding notation for (r, s)–good sets is G(r, s).
Hollman and Tolhuizen [16] observed that adding the
zero vector to an (r, s)-1 good set we get an (r, s)–good
set and G1(r, s) = G(r, s)−1. So these two notions are
essentially the same.
Later on we consider only (r, s)-1 good sets and call
them for short just (r, s)–sets. Obviously every (r, s)–
set is a generic (r, s)–set, thus G1(r, s) ≥ F (r, s).

Theorem 4: [16]. For 1 ≤ s ≤ r the following holds

2s−1(r−s+2)−1 ≤ G1(r, s) ≤ rs− log s!
− log(1− 2−s)

. (I.6)

The upper bound is obtained again by a probabilistic
argument.

The paper is organized as follows.
In Section 2 we obtain some properties of generic (r, s)–
erasure correcting sets and (r, s)–sets which we use later.
In Section 3 we show that the problem we study here
is closely related to s–wise intersecting codes studied in
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the literature.
In Section 4 we focus on bounds for F (r, s) and
G1(r, s). We improve the bounds (1.5) and (1.6) in
Theorems 11–15. In particular, we show that for 2 ≤
s < r we have

3·2s−2(r−s)+5·2s−2−2 ≤ G1(r, s) ≤ (r − s+ 1)s+ 2
− log(1− 2−s)

,

F (r, s) > max{2s−1 + r − s,G1(k − ds/2e, bs/2c)},

F (r, s) <
rs− log s!

− log(1− s2−s)
.

Note that the upper bound for G1(r, s) improves the
lower bound for the rate of s–wise intersecting codes.
In Section 5 we show that hypergraph covering can be
used to obtain in a simple way good upper bounds for
generic erasure correcting sets, (r, s)–sets, and stopping
redundancy of a linear code.

II. PROPERTIES OF GENERIC (r, s)–SETS

Hollmann and Tolhuizen obtained the following charac-
terization of generic (r, s)–sets.

Proposition 1: [17] A subset A ⊂ Fr is generic (r, s)–
set if and only if for every full rank matrix M ∈ Fr×s

there exists a ∈ A such that wt(aM) = 1.

We extend this characterization as follows

Proposition 2: A subset A ⊂ Fr is a generic (r, s)–set
if and only if for every full rank matrix M ∈ Fr×s the
set {x ∈ Fs : x = aM,a ∈ A} contains a hyperlane not
passing through the origin.

Proof: For integers 1 ≤ t ≤ s < r and a set of
linearly independent vectors S = {v1, . . . ,vt} ⊂ Fs,
let A ⊂ Fr be a subset satisfying the following property
with respect to {v1, . . . ,vt}:
(P) For every full rank matrix M ∈ Fr×s there exists a
vector a ∈ A such that aH = vi for some i ∈ [t].
We claim then that A satisfies this property with
respect to every linearly independent set of vectors
{x1, . . . ,xt} ⊂ Fs.

Let E and X be the matrices formed by the row vectors
v1, . . . ,vt and x1, . . . ,xt respectively. To prove the
claim, we have to show that given a full rank matrix
M ∈ Fr×s, there exists a ∈ A such that aM = xi for
some i ∈ [t]. Let P ∈ Fs×s be an invertible matrix such
that PE = X . Then, in view of the property (P) of A,
there exists a ∈ A such that a(MP−1) = vi for some
i ∈ [t] and hence aM = viP = xi. Let now t = s and
let S be the set of s unit vectors in Fs. Then the claim
together with Proposition 1 gives the following analogue
of Proposition 1.

Proposition 1∗ A set A ⊂ Fr is generic (r, s)–set if and
only if for any given set of linearly independent vectors
{v1, . . . ,vs} ⊂ Fs and every full rank matrix M ∈ Fr×s

there exists a ∈ A such that aM = vi for some i ∈ [s].

Note also that for |S| = t = 1 we have (r, s)–sets and the
claim implies the following condition (shown in [16]):
A ⊂ Fr is an (r, s)–set if and only if for every full rank
matrix M ∈ Fr×s the set {x ∈ Fs : x = aM,a ∈
A} contains all nonzero vectors. This condition clearly
means that A meets every (r − s)–flat.

Let now A be a generic (r, s)–set and let M ∈ Fr×s be
a matrix of rank s. Let also u1, . . . ,us ∈ Fs be such that
{aM : a ∈ A} ∩ {u1, . . . ,us} = ∅. Then Proposition
1∗ implies that the dimension dimspan{u1, . . . ,us} ≤
s−1. Thus, Fs\span{u1, . . . ,us} contains a hyperplane
not passing through the origin. Suppose now U ⊂
{aM : a ∈ A} is an (s − 1)–flat. Then for every
linearly independent vectors u1, . . . ,us ∈ Fs we have
{u1, . . . ,us} ∩ U 6= ∅.

Let A ∈ Fr be a generic (r, s)–set. Let us represent A
by an |A| × r matrix A where the rows are the vectors
of A. Let also N ∈ Fr× be an invertible matrix. Then
we get the following.

Corollary 2: (i) In every set of s columns of AN there
is a subset of s− 1 columns that contains each (s− 1)–
tuple.
(ii) A hits at least 2s−1

[
r

r−s

]
(r − s)–flats.

(iii) |A| ≥ 2s−1 + k − s.

Proof: (i) Note first that the rows of AN also define
a generic (r, s)–set. Indeed, in view of Proposition 1, for
every full rank matrix M ⊂ Fr×s (and hence for NM )
the matrix A(NM) = (AN)M contains a row of weight
one. Now the statement follows from Proposition 2.
(ii) Proposition 2 implies that if A ⊂ Fr is a generic
(r, s)–set, then A hits at least 2s−1 cosets of every (r−
s)–subspace in Fr. This implies the statement.
(iii) Without loss of generality we may assume that A
contains r unit vectors. Now the statement follows since
there exists s− 1 columns of A that contain all (s− 1)
nonzero tuples and k − s+ 1 zero tuples.

III. RELATION TO OTHER PROBLEMS

In this section we show the relationship between (r, s)–
sets and intersecting codes studied in the literature.

Intersecting Codes: A linear [n, k]q code C over a field
Fq is called intersecting if any two nonzero codewords
have a common nonzero coordinate. Intersecting codes
have been studied by several authors [20], [25], [7], [9],
[8]. A [n, k]q code C is called s-wise intersecting (s ≥ 2)
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if for any s independent vectors in C there is a coordinate
where all the vectors have a nonzero element.

Problem 1 Given integers 2 ≤ s ≤ k, determine nq(k, s)
(in case q = 2 we write n(k, s)), the minimum length n
of an s-wise intersecting [n, k]q–code.

Proposition 3: Every (k, s)–set A ⊆ Fk
2 with |A| = n is

equivalent to an s-wise intersecting [n, k] code and vice
versa. As a consequence we have G1(k, s) = n(k, s).

Proof: . Let A ⊆ Fk
2 be a (k, s)–set and let n = |A|.

Let us represent A as an |A|×k matrix A where the rows
correspond to the vectors a1, . . . ,an ∈ A, and denote
G = AT . Note that G ∈ Fk×n

2 and rank(G) = k. Let
v1, . . . ,vs ∈ F2

k be linearly independent vectors and
let u1 = v1G, . . . ,us = vsG. Clearly u1, . . . ,us ∈ Fn

2

are linearly independent. By the definition of a (k, s)–
set, there exists ai ∈ A such that (a,vj) = 1 for j =
1, . . . , s, that is all vectors u1, . . . ,us have a one in the
i-th coordinate. This clearly means that the [n, k] code
with the generator matrix G is an s–wise intersecting
code. Similarly we have the inverse implication.

Let us give another equivalent formulation for the prob-
lem of construction of s–wise intersecting (n, k)–codes,
respectively (k, s)–sets, as a covering problem.

Problem 1∗ Determine the minimal size n(k, s) of a set
of vectors in Fk, called a transversal or a blocking set,
that meets every (k − s)–dimensional flat.

Consider also the dual version of the problem: Find
the minimal number of hyperplanes H1, . . . ,Hn, not
passing through the origin, such that every (s − 1)–flat
(equivalently every set of s linearly independent vectors
in Fk

2) is contained in some Hi.

Remark 1 We note that in case s = 1 we have a triviality
and n(k, 1) = k. Another trivial case is s = k. In this
case we clearly have n(k, k) = 2k− 1. It is also easy to
see that n(k, k − 1) = 2k − 2. The first nontrivial case
is s = 2.

Remark 2 The notion of a (k, s)–set can be extended to
arbitrary spaces Fk

q in a natural way. However, notice
that Proposition 3 is not true for the nonbinary case.
Consider an MDS [n, k, d = n − k + 1]q–code C. Such
a code exists for all 1 ≤ k ≤ n ≤ q + 1 (see [24]).
Observe that for d > s−1

s · n (that is n > s(k − 1)) we
have an s–wise intersecting code, but the columns of a
generator matrix of C do not form a (k, s)–set for s ≥ 2.

It is worth to mention that the problem of finding the
minimal size of a set of nonzero vectors in Fk

q that meets
all (k − s)–dimensional subspaces is much easier. This
problem was solved by Bose and Burton [6].

Theorem 5: [6] Let A be a set of points of Fk
q that mits

every (k−s)–space of Fk
q . Then |A| ≥ (qr+1−1)/(q−1),

with equality if and only if A consists of the points of
an (r + 1)–subspace of Fk

q .

Covering arrays: A k × N array with entries from
an alphabet of size q is called a t-covering array, and
denoted by CA(N, k, t)q , if the columns of each t×N
subarray contain each t-tuple at least once as a column.
The problem is to minimize N for which there exists a
CA(N, k, t)q . Covering arrays were first introduced by
Renyi [26]. The case t = 2 was solved by Renyi [26] (for
even k) and independenty by Katona [19] and Kleitman
and Spencer [21] (for arbitrary k). Covering arrays have
applications in circuit testing, digital communication,
network designs, etc. Construction of optimal covering
arrays has been the subject of a lot of research (see a
survey [10]).

The following fact follows directly from Proposition 3.

Proposition 4: An [n, k] code C is s–wise intersecting
if and only if every generator matrix of C (together with
the zero column) is an s–covering array.

Let us also mention another extensively studied related
notion. A code C of length n is called (t, u)–separating,
if for every disjoint pair (U, T ) of subsets of C with
|T | = t and |U | = u the following holds: there exists a
coordinate i such that for any codeword (c1, . . . , cn) ∈ T
and any codeword (c′1, . . . , c

′
n) ∈ U , ci 6= c′i. Separating

codes were studied by many authors in connection with
practical problems in cryptography, computer science,
and search theory. The relationship between intersecting
codes and separating codes is studied in [9].

A. Some known results about intersecting codes

We present some known results on intersecting codes
which can be used for our problems. Given a vector
v = (v1, . . . , vn) ∈ Fn

q , the set I = {i ∈ [n] : vi 6= 0}
is called the support of v and is denoted by supp(v).
Given a code C of length n and I = {i1, . . . , i|I|}, denote
by C(I) the restriction (projection) of the code on the
coordinate set I , that is the code obtained by deletion of
the coordinates Ī , {1, . . . , n} \ I .

Lemma 1: Let C be an s-wise intersecting [n, k] code
and let v ∈ C be a codeword with wt(v) = w and with
supp(v) = I . Then
(i) [9] C(I) is an [w, k]-code. If {u1, . . . ,uk−1,v} is
a base of C(I) then the code C∗(I) generated by the
vectors {u1, . . . ,uk−1} is an (s− 1)–wise intersecting
[w, k − 1] code.
(ii) C(Ī) is an (s − 1)–wise intersecting [n − w, k − 1]
code.
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The proof of (i) is easily derived from the definition
of an s–wise intersecting code. Note that both (i) and
(ii) follow from Proposition 4. (The lemma was also
observed in [16] in terms of (r, s)–sets).
The lemma implies simple estimates for the minimum
and maximum distances of intersecting codes. It shows
that s-wise intersecting codes have strong distance prop-
erties which means that in general construction of such
optimal codes is a difficult problem. The next two results
are used for construction of infinite families of s-wise
intersecting binary codes with positive rate.

Theorem 6: (Cohen–Zemor)[8] The punctured, dual
of the 2-error-corecting BCH code with parameters
[22s+1 − 2, 4s+ 2, 22s − 2s − 1], is s-wise intersecting.

Lemma 2: [8] Let C1 be an [n1, k1, d1]q code with q =
2k2 and d1 > n1(1 − 21−s). Let C2 be an [n2, k2, d2]
binary s-wise intersecting code. Then the concatenation
C1 ◦C2 is a binary s-wise intersecting [n1n2, k1k2, d1d2]
code.

Theorem 7: [8] There is a constructive infinite sequence
of s-wise intersecting binary codes with rate arbitrary
close to

R =
(

21−s − 1
22s+1 − 1

) 2s+ 1
22s − 1

= 22−3s(s+ o(s)).
(III.1)

The result is obtained by concatenating algebraic-
geometric [n, k, d]q codes in Tsfasmann [29] satisfying
d > n(1−21−s) with q = 24s+2 and with a rate arbitrary
close to 21−s−1/(

√
q−1), with [22s+1−2, 4s+2, 22s−

2s − 1] code of Theorem 6.

Another approach for constructing intersecting codes is
to use ε-Biased Codes. A binary linear code of length
n is called ε–biased if the weight of every non-zero
codeword in C lies in the range (1/2 − ε)n ≤ w ≤
(1/2 + ε)n. Biased codes can be constructed using
pseudo-random graphs known as expanders (expander
codes).

Theorem 8: (Alon et al.) [5] For any ε > 0, there exists
an explicitly specified family of constant-rate binary
linear ε–biased codes.

Lemma 3: (Cohen–Lempel) [7] Let d and D denote
respectively the minimum and the maximum distance
a binary code C. Then C is s–wise intersecting if d >
D(1− 21−s).

The next statement follows directly from the lemma.

Corollary 3: An ε–biased linear code is s–wise inter-
secting if ε < 1/(2s+1 − 2).

The following nonconstructive lower bound for the rate
of an s–wise intersecting [n, k] code is due to Cohen
and Zemor.

Theorem 9: [8] For any given rate R < R(s)

R(s) = 1− 1
s

log(2s − 1) (III.2)

and n → ∞ there exists an s–wise intersecting [n, k]
code of rate R.

Using recursively the upper bound due to McEliece-
Rodemich-Rumsey-Welch [24] together with Lemma 1
(i) one can get upper bounds for the rate of s–wise
intersecting codes.

Theorem 10: (Cohen et al.) [9] The asymptotic rate
of the largest s–wise intersecting code is at most Rs,
with R2 ≈ 0.28, R3 ≈ 0.108, R4 ≈ 0.046, R5 ≈
0.021, R6 ≈ 0.0099.

For the case s = 2, the best known bounds on the
minimal length n(k, 2) of an [n, k]- intersecting code
are as follows

c1(1 + o(1))k < n(k, 2) < c2k − 2, (III.3)

where c1 = 3.53 . . . , c2 = 2
2−log 3 .

The lower bound is obtained by Katona an Srivastava
[20]. The upper bound is due to Komlós (see [20], [25],
[7]). Note that it coincides with the upper bound in
Theorem 2 ([16]) for s = 2.

IV. IMPROVING BOUNDS FOR G(k, s) AND F (k, s)

In this section we derive new bounds for G(k, s) and
F (k, s).

Theorem 11: For 2 ≤ s < k we have

G1(k, s) ≥ 3 · 2s−2(k − s) + 5 · 2s−2 − 2. (IV.1)

Proof: To prove this bound we need the following
consequence of Lemma 1.

Lemma 4: For an s–wise intersecting [n, k, d] code C
we have

n ≥ 2 · n(k − 1, s− 1) +D(C)− d+ 1.

Proof: Let v be a codeword of minimal weight d,
with the support set I , that is wt(v) = |I| = d, and let
G be a generator matrix of C(I). We may assume that all
rows of G except for the first one have a zero in the first
coordinate. Hence by Lemma 1 the code C∗(I) has the
support size d−1, that is d ≥ n(k−1, s−1)+1. Lemma
1 implies also that D(C) ≤ n − n(k − 1, s − 1), which
together with the previous inequality gives the result.

Recall that for s < k we have n(k, s) < 2k − 1.
Then the lemma in particular implies the inequality
n(k, s) ≥ 2n(k − 1, s − 1) + 2. This follows from the
simple observation that there is no a constant weight
[n, k, d] code with n < 2k − 1 and hence D(C) > d
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(the inequality also follows from the fact that in case
n(k, s) < 2k − 1 we have n ≥ 2d). Since C∗(I) is an
[d, k, d′] code, there is a codeword u ∈ C of weight
at most d′ in the support set I of v. Observe that this
implies 2d − 2d′ ≤ D(C) ≤ n − n(k − 1, s − 1) and
hence n ≥ n(k − 1, s − 1) + 2d − 2d′, where d′ is the
minimum weight of C(I). Note that d′ ≤ d− k+ 1 and
thus n ≥ n(k− 1, s− 1) + 2k− 2. This in particular for
s = 2 (together with n(k − 1, 1) = k − 1) implies that
n(k, 2) ≥ 3k− 3. We have now the relation G1(k, s) ≥
2G1(k−1, s−1)+2 with G1(k, 2) = n(k, 2) ≥ 3k−3.
Using induction on s we get the required result.

Note that the bound is tight for s = k−1. Indeed, for this
case we have G(k, k−1) ≥ 3·2k−3+5·2k−3−2 = 2k−2.

On the other hand observe that any set of 2k−2 nonzero
vectors is a (k, k − 1)–set. Note that the corresponding
(k−1)–wise intersecting set is a punctured simplex code
of length 2k − 2.

Theorem 12: For 2 ≤ s < k we have
G1(k, s) ≤

min
N∈N

{
N :

N∏
j=1

(
1− 2k−s

2k − j

)
(2s − 1)

[
k

s

]
< 1
}
. (IV.2)

Proof: Our problem is to find a blocking set
of (minimum) size N with respect to the (k − s)-
dimensional flats in Fk

2 . Let U be a (k − s)–flat and
let B = Fk

2 \U . The subset B with |B| = 2k−1−2k−s

does not contain a blocking set. Thus, for every fixed
U there are

(
2k−2k−s

N

)
bad N–sets (N–sets which are

not blocking sets) in B. The number of all (k− s)–flats
is (2s − 1)

[
k

k−s

]
. Therefore, the number of bad sets of

size N is less than
(
2k−1−2k−s

N−k

)
(2s − 1)

[
k

k−s

]
. If now(

2k−1−2k−s

N

)
(2s − 1)

[
k

k−s

]
<
(
2k−1

N

)
(the number of

all N–subsets of F \ {0}) then there exists a blocking
set of size N . The latter inequality is equivalent to the
following

N∏
j=1

(
1− 2k−s

2k − j

)
(2s − 1)

[
k

s

]
< 1. (IV.3)

This gives the result.

Note that Theorem 12 improves the upper bound in
Theorem 4. A closed form expression derived from (4.2)
is as follows.

Corollary 4: For 2 ≤ s < k we have

G1(k, s) <
(k − s+ 1)s+ 2
− log(1− 2−s)

. (IV.4)

Proof: We use the following known estimate for
the gaussian coefficients which is not hard to verify:[

n
m

]
< 2m(n−m)

∏m
i=1

1
(1−2−i) < 2m(n−m)+2. The left

hand side of (4.3) is less than
(

1− 2k−s

2k

)N

2s(k−s+1)+2.

The latter implies that N ≥ (k−s+1)+2
− log(1−2−s) , hence the

result.

Note also that Theorem 12 improves also the bound in
Theorem 9. Indeed, Corollary 4 in terms of the rate of
an s–wise intersecting code gives the following

Corollary 4∗: For integers 2 ≤ s < k with α = s−2
k ,

there exists an s–wise intersecting [n, k] code of rate

R >
1

1− α
(1− 1

s
log(2s − 1)) (IV.5)

(with an improved factor 1/(1− α)).
Proof: Denote the right hand side of (4.4) by g(k, s).
Note now that − log(1− 2−s) = s(1− 1

s log(2s− 1)) =
sR(s). Therefore, in view of Corollary 4, we have

R >
k

g(k, s)
=

ks

(k − s+ 1)s+ 2
·R(s) ≥

k

k − s+ 2
·R(s) =

1
1− α

.

Theorem 12 can be improved as follows. We know that
(in view of equivalence between (k, s)–sets and s–wise
intersecting codes) for any set E ⊂ Fk of k linearly
independent vectors there exists an optimal (k, s)–good
set A ⊂ Fr such that E ⊂ A. Thus, without loss of
generality we may assume that the set of k unit vectors
E = {e1, . . . , ek} is contained in an optimal (k, s)–
good set A. Next we calculate how many (k − s)–flats
hits E (in fact, every set of k independent vectors hits
the same number of flats).

Lemma 5: The number of (k − s)–flats which the set
E = {e1, . . . , ek} hits equals

β(k, s) ,
k−s+1∑

i=1

(−1)i−12i(k−s+1−i)

[
k − i
s− 1

](
k

i

)
.

(IV.6)

Proof: . Note that each nonzero vector hits
2k−s

[
k−1
k−s

]
(k−s)–flats. Indeed, the number of (k−s)–

flats containing a given vector e equals to the number
of (k− s)–subspace not containing e which is

[
k

k−s

]
−[

k−s
k−s−1

]
(the number of (k−s)–subspaces containing e)

= 2k−1
[

k−1
k−s

]
. Also it is not hard to observe that each

i–subset of E hits exactly 2i(k−s+1−i)
[

k−i
s−1

]
common

(k − s)–flats (we leave the proof to the reader). To get
the result we use now the inclusion-exclusion principle.

We can repeat now the arguments in the proof of
Theorem 12 with respect to remaining 2k − k vectors
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to show that the number of bad (N − k)–sets is less
than(

2k − k − 2k−s

N − k

)(
(2s − 1)

[
k

s

]
− β(k, s)

)
. (IV.7)

Hence, if the latter quantity is less than
(
2k−k
N−k

)
then

there exists a blocking set of size N . Thus, we have the
following

Theorem 13: For integers 2 ≤ s < k we have

G(k, s) ≤ min
N∈N

{
N :

N−k−1∏
j=0

(
1− 2k−s

2k − k − j

)
×

(
(2s − 1)

[
k

s

]
− β(k, s)

)
< 1
}
. (IV.8)

Next we derive bounds for F (k, s). We start with a
lower bound. Recall that in view of Corollary 3 we have
F (k, s) ≥ 2s−1 + k − s.

Theorem 14: For integers 4 ≤ s ≤ k − 1 and t ∈ N
we have

F (k, s) ≥ min
2≤t≤s

max{G(k, t− 1), G(k − t, s− t)}.
(IV.9)

Proof: Let A ⊂ Fr be a generic (k, s)–set with
|A| = N and let A ∈ Fk×N be a matrix where the
columns are the vectors of A. Let also C ⊂ FN be the
[N, k] code generated by A. Suppose now that t is the
smallest number such that there exists a subset B ⊂ C
of t linearly independent vectors which is not t–wise
intersecting. Thus, C is (t− 1)–wise intersecting but not
t–wise intersecting. Clearly, without loss of generality,
we may assume that the rows of A contain the vectors of
B. Let us denote by A′ the (k− s)×N submatrix of A
obtained after removing all row vectors of B. We claim
now that the code C′ generated by A′ is an (s − t)–
wise intersecting [N, k − t] code. Suppose this is not
the case, and let D ⊂ C′ be a set of s − t linearly
independent vectors which are not (s−t)–wise intersect-
ing. Observe then that the set B ∪D of s independent
vectors does not contain an (s − 1)–wise intersecting
subset, a contradiction. This implies that given t, we
have F (k, s) ≥ max{G(k, t − 1), G(k − t, s − t)} and
hence the result.

Corollary 5: Given integers 4 ≤ s ≤ k − 1 we have

F (k, s) ≥ G(k − ds/2e, bs/2c). (IV.10)

Proof: We have G(k − t, s − t) ≥ G(k −
ds/2e, bs/2c) for 1 ≤ t ≤ ds/2e. In case t > ds/2e we
have G(k, t − 1) > G(k − ds/2e, bs/2c). This implies
that min2≤t≤s max{G(k, t − 1), G(k − t, s − t)} ≥
G(k − ds/2e, bs/2c).

Note that this improves the lower bound F (k, s) ≥ k .
Using, for example the lower bound (1.6) for G(k, s) we
get F (k, s) ≥ G(k−ds/2e, bs/2c) ≥ 2b

s
2 c−1(k−s+2).

Thus, we have

F (k, s) ≥ max{2s−1 + k − s, 2b s
2 c−1(k − s+ 2)}.

In particular, note that for s = 4 we get F (k, 4) ≥
G(k − 2, 2) ≥ 3(k − 3).

Theorem 15: For integers 2 ≤ s < k we have

F (k, s) ≤

min
N∈N

{
N :

N∏
j=1

(
1− s2k−s

2k − j

) 1
s!

s−1∏
i=0

(2s − 2i)
[
k

s

]
< 1
}
.

(IV.11)

Proof: To each (k − s)–subspace U ⊂ Fk we put
into correspondence a fixed generator matrix H ∈ Fs×k

of the dual space V ⊥, that is U = {x ∈ Fk : xHT =
0}. For example, taking the set of all s × r matrices
of rank s in reduced row echelon form, we get one–
one correspondence between these matrices and the set
of all (k − s)–subspaces of Fk. Now each coset of U
denoted by Ub is uniquely defined by the pair (H,b)
where b ∈ Fs and Ub = {x ∈ Fr : HxT = bT }. We
say that the cosets Ub1 , . . . , Ubt are linearly independent
if the vectors b1, . . . ,bt are linearly independent. Let
B(U) denote the set of all cosets of U . We look for an
N–subset of Fk which is a generic (k, s)–set.

In view of Corollary 2, a subset A ∈ Fr is a generic
(k, s)–set iff for each (k − s)–subspace U , it contains
a vector from every collection of s linearly indepen-
dent cosets of U . We estimate now the number of
bad sets of size N . We remove from B(U) a set of
s independent cosets and denote the union of these
cosets by S. Thus, |S| = s2k−s. Then any N–subset
of Fk \ S is a bad set. The same holds with re-
spect to the cosets of every (k − s)–subspace. The
number of distinct bases in Fs is 1

s!

∏s−1
i=0 (2s − 2i).

Therefore, the number of all bad N–subsets is less
than

(
2k−1−s2k−s

N

)
1
s!

∏s−1
i=0 (2s − 2i)

[
k

k−s

]
. If now this

number is less than
(
2k−1

N

)
, the number of all N–subsets

of Fk \{0}, then there exists a generic (k, s)–set of size
N . The latter is equivalent to

N∏
j=1

(
1− s2k−s

2k − j

) 1
s!

s−1∏
i=0

(2s − 2i)
[
k

s

]
< 1.

This implies the result.

A closed form expression derived from (4.10 ) is as
follows.

Corollary 6: For 2 ≤ s < k we have

F (k, s) <
sk − log s!
− log(1− s

2s )
. (IV.12)
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Proof: Simple calculations show that the left hand
side of (4.13) is less than (1− s

2s )N2sk/s!.

V. BOUNDS DERIVED BY A HYPERGRAPH COVERING

In this section we show, that hypergraph covering can
be employed to get good upper bounds for (r, s)–sets,
generic erasure correcting sets and stopping redundancy
of a linear code. Let H = (V, E) be a hypergraph
with a vertex set V and an edge set E . Let us denote
by dV = minv∈V deg(v) (minimal vertex degree) and
by DV = maxv∈V deg(v) (maximal vertex degree) of
H. Analogously we define the minimal edge degree
dE and the maximal edge degree DE . The following
simple lemma was found in 1971 and published in larger
contexts in [1] (see also [3]).

Covering Lemma 1: For every hypergraph (V, E) there
exists a covering (of the vertices by an edge set) C ⊂ E
with

|C| ≤ |E|
dV

log |V|. (V.1)

For most parameters a slightly better result was pub-
lished in [18],[28], and [23].

Covering Lemma 2: For every hypergraph (V, E) there
exists a covering of edges (by a vertex set) C ⊂ V with

|C| ≤ |V|
dE

(1 + lnDV). (V.2)

We apply now these resuts to our problems.

(r, s)–sets or s–wise intersecting codes:

We first apply Covering Lemma 1. Consider the dual
version of Problem∗. The vertex set is the the set of
all (s − 1)–flats in Fr and the edge set is the set of
all (r − 1)–flats, that is the set of all hyperplanes not
passing through the origin. Recall that the number of
all (s − 1)–flats is (2r−s+1 − 1)

[
r

s−1

]
Thus, we have

a regular uniform hypergraph (V, E) with |V| = 2r − 1
and |E| = (2r−s+1−1)

[
r

s−1

]
. Observe that the number

of hyperplanes in E containing a given (s − 1)–flat is
dV = 2r−s. In view of the lemma there is a covering C
with

|C| ≤ 2r − 1
2k−s

(
r−s+1+log

[
r

s− 1

])
< 2s(r−s+1)s+2).

Corollary 7: For integers 2 ≤ s ≤ r we have

G1(r, s) < 2s((r − s+ 1)s+ 2). (V.3)

Recall that the upper bound in Theorem 4 is approxi-
mately 2s ln 2(rs− log s!).

Next we apply Covering Lemma 2. The vertex set V is
the set of nonzero vectors in Fr and the edge set E is

the set of all (r − s)–flats. The number of all (r − s)–
flats is (2s− 1)

[
r

r−s

]
. Thus, we have a regular uniform

hypergraph whith |V| = 2r−1 and |E| = (2s−1)
[

r
r−s

]
.

Each (r − s)–flat has size 2r−s, that is dE = 2r−s.
The number of (r − s)–flats in Fr

2 containing a given
vector is 2r−s

[
r−1
s−1

]
. Thus, the vertex degree is dV =

2r−s
[

r−1
s−1

]
. In view of the lemma there is a covering C

with

|C| ≤ 2r − 1
2r−s

(
1 + ln

(
2r−s

[
r − 1
s− 1

]))
<

2s(1 + (r − s)s ln 2 + 2 ln 2).

Corollary 8: For integers 2 ≤ s ≤ r we have

G1(r, s) < 2s(s(r − s) ln 2 + 2 ln 2 + 1). (V.4)

Next we show that there are ”good” (r, s)–sets with an
interesting structure: a union of s–subspaces of Fr. To
this end we need the following simple fact.

Lemma 6: A set of vectors A ⊂ Fr is (r, s)–set if for
every (r − s)–space V ⊂ Fr there exists an s–space
U ⊂ A such that V ∩ U = 0.

Proof: The proof is straightforward. Given an (r−
s)–space V , the fact that the direct sum V + U = Fr

implies that U hits every coset of V .

Consider a bipartite graph G = (U ∪ V, E) with biparti-
tion U ∪ V . Define V to be the set of all s–subspaces,
and V to be the set of all (r− s)–subspaces of Fr. Thus
|U| = |W| =

[
r
s

]
. For U ∈ U and V ∈ V we have an

edge (U, V ) ∈ E if and only if U ∩ V = 0. It is easy
to see that given an s–subspace U , the number (r− s)–
subspaces avoiding U is 2s(r−s). Hence, the degree of
every vertex in G is 2s(r−s). The problem now is to find
a minimal cover C ⊂ U of the vertices V . This clearly
gives us an (r, s)–set.

Every hypergraph can be represented as a bipartite graph
(or an incidence matrix) and vice versa. Given a bipartite
graph G = (U ∪ V, E), let dV be the minimal degree of
V and let DU be the maximal degree of U . The bipartite
graph version of the Covering Lemma 2 is as follows.
There exists a covering C ⊂ U of V with

|C| ≤ |U|
dV

(1 + lnDU ). (V.5)

Applying this to our problem we get

|C| ≤
[

r
s

]
2s(r−s)

(1 + ln 2s(r−s)) < 4(1 + s(r − s) ln 2).

This yields the following result.

Theorem 16: There exists an (k, s)–set (resp. an s–
wise intersecting [n, k] code) consisting (resp. with a
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generator matrix whose columns consist) of a union of
less than 4(s(k− s) ln 2 + 1) subspaces of dimension s.

Generic erasure corecting sets:

The vertex set V our hypergraph (V, E) is the set of
nonzero vectors in Fr. A subset E ⊂ V is an edge in
E if and only if E is a union of s linearly independent
cosets (defined in the proof of Theorem 15) of an (r−s)–
subspace. Thus, the degree of each edge is s2r−s. The
degree of each vertex is

[
r−1
s−1

]∏s−1
i=1 (2s−2i)/(s−1)!. It

is clear that a minimal edge covering C gives an optimal
generic (r, s)–set, that is |C| = F (r, s). Applying now
Covering Lemma 2 we get

F (r, s) = |C| ≤ 2r − 1
s2r−s

(
1+ln

∏s−1
i=1 (2s − 2i)

[
r−1
s−1

]
(s− 1)!

)
<

2s(r ln 2− ln s).

Stopping redundancy of a binary linear code:

Let C be an [n, k, d] code and C⊥ be its dual code. Let
also r = n − k and s = d − 1. The vertex set V of
our hypergraph is the set of all nonzero vectors of C.
Given a set of coordinates K ⊂ [n] with |K| ≤ s, let
C⊥K be the set of all vectors in C⊥ which have weight
one in K. Note that |C⊥K | = |K|2r−|K| ≥ s2r−s. Our
edge set is defined as E = {C⊥K : K ⊂ [n], 1 ≤ |K| ≤ s}
Let C ⊂ V a minimum vertex cover of the hypergraph
(V, E). It is easy to see that if C is a parity check
matrix, that is span(C) = C⊥, then ρ(C) = |C|.
Note that dim span(C) ≥ s. Therefore, adding at most
r − s independent vectors to C we get a parity check
matrix. Thus, we have ρ(C) ≤ |C| + r − s. Observe
now that a vector u ∈ C⊥ of weight wt(u) covers
α(u) = wt(u)

∑s
i=1

(
n−wt(u)

i−1

)
edges. Let t = wt(u) be

the weight for which α(u) is maximal over all choices of
u ∈ C⊥. Thus, (V, E) is a hypergraph with the minimal
edge degree dE = s2r−s and maximal vertex degree
DV = t

∑s
i=1

(
n−t
i−1

)
. Therefore, applying the Covering

Lemma 2 we get

|C| < 2r − 1
s2r−s

(
1 + ln

(
t

s∑
i=1

(
n− t
i− 1

)))
<

2s

s

(
1 + ln

s∑
i=1

(
n

i

))
.

Corollary 9: For an [n, k, d] code C with d ≥ 3 we have

ρ(C) < 2d−1

d− 1

(
1 + ln

d−1∑
i=1

(
n

i

))
+n− k − d+ 1.

Notice that although we do not always get the best
known constants, however we achieve the same order
of magnitude for the upper bounds. Since this simple

approach gives almost the results above, it should be
followed further by finding better covering results using
for example Maximal Code Lemma ([2], p.238) or ideas
and methods described in ([4], ch.3).
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