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1. INTRODUCTION

Quite surprisingly, it seems that the minimal shadow problem for the word-subword relation
introduced here has not been studied before, whereas its analogs for sets [1-4], sequences [5], and
vector spaces over finite fields [6] are well known.

For an alphabet X = {0,1,...,q — 1}, we consider the set Xk of words ¥ = z129... 21 oOf
length k. For a word ab = ajas...a; € X% we define its left shadow
shadl(a*) = ay ... az, (1)
i.e., the subword resulting from deleting the first letter a; in a¥, and its right shadow
shadf(a¥) = a1 ... ap_1, (2)
i.e., the subword resulting from deleting the last letter ay, in a*. Note that shad”(a¥) = shad®(a¥) if
andonlyifak =aa...a,a € X, because asag...ar = a10s...a,_1 impliesa; = as = a3 = ... = ay.
We define the shadow of a* by
shad(a¥) = shad”(a*) U shad®(a¥). (3)

Unless a* has identical letters, shad(a*) consists of two elements.
Now for any subset A C X* we define its left shadow

shad®(A) = U shad® (a®), (4)
akeA
right shadow
shad®(A) = U shadf(a¥), (5)
akeA
and shadow
shad(A) = shad’(A) Ushadf®(A). (6)
We are interested in finding the minimal shadow of N-sets A C X*. i.e., the function
Ak(g, N) = min{|shad(A)| : A C X*, |A| = N}. (7)

We write for short Ag(N) if ¢ is fixed, and A(N) if k is also fixed. We also use the functions
AE(N) and AB(N) (respectively, AZ(N) and AF(N)), where the minimization is over left and
right shadows, respectively.
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32 AHLSWEDE, LEBEDEV
2. PRELIMINARY RESULTS

We denote by ab the concatenation of words a and b (the length of this word is the sum of
lengths of a and b). Denote by AB the set of all words ab where a € A and b € B. For example,
the set XbX consists of ¢? words that have any symbols in the first and last positions and have the
word b in the middle.

Consider the following configurations:

(i) Words zzx ...z, x € X, whose number is ¢ = |X|. Their shadow has cardinality 1.
(ii) Words

af =cded. .. cd, & is oven
bk = dede. .. de ven
and analogously
d*=cd...c, .., .
B — de. d if k is odd.

Shadows of these words have cardinality 2.
(iii) In the set X BX, all the ¢ words of the form xby, where x is a fixed element, b € B, and y € X,
have identical right shadows. Similarly for left shadows.

Note that for all these configurations we have A(N) < N; let us prove this in general.
First consider the binary case.

Lemma 1. For g =2 and k > 3 we have
A(N)<N, foral N <2F

Proof. Write N in the form N = 4M + p, where 0 < p < 4.

Case p = 0. Choose any B C X*~2 with |B| = M; then A = XBAX is of cardinality N. It is
easily seen that

|shad(A)| = |XYBUBX| < |BX|+|XB| =4M = N.

Case 3 > p > 1. Choose B C X*~2\ {0*72} with |[B|] = M and A, = XBX U C,, where
Cy = {00720}, Cy = {00%720,00*21}, and C3 = {00¥720,00*21,10¥720}. It is clear that
|shad(Ap)| <4M +p. A

For a g-ary case, we have the following fact.

Lemma 2. Consider X ={0,1,...,q—1}, k>3, and N < ¢*. Write N = ¢ M+p, 0 < p < ¢>;
then

0 if p=0,
A(N) <2¢M + 4 [y/p1+ Lyp] =1 if [ypllvp] =2 p>0, (8)
2[y/p] -1 otherwise
and
9 9 0 if p=0,
A(N) < qN— p+ 9 el+Lypl =1 if /pllyp] 2p>0, (9)
2[/p] -1 otherwise.

Proof. Case p = 0. Choose any B C X*~2 with |B| = M and A = XBX. Then |shad(A)| <
2qM, and we obtain (8).

Case ¢* —1 > p > 1. Choose B C X¥=2\ {0¥~2} with |[B] = M and A, = XBX U D,, where D,
is a balanced subset of X0*~2X with p elements. This means that we take D, = V0+=2)' where
the difference |[{Y\ '} U {)’"\ V}| between || and |)’| is the minimum possible. Then

shad(Ap)| < 2¢M +2[/p] -1,
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SHADOWS UNDER THE WORD-SUBWORD RELATION 33

and (8) is proved. From this, an easy computation yields (9). A

Remark 1. For ¢ = 2 bound (8) is equal to N. Hence, Lemma 2 implies Lemma 1.

1
Remark 2. For N = ¢° < ¢* we may choose A = X*~10*~X to obtain [shad(A)| = (Z - )qé =
(2 - 12)N, which is better than (8). For ¢ = 2 we get A(2f) < 325.
q q

3. CONCEPT OF BASIC SETS

In Section 2 we have obtained our first upper bounds on minimal shadows for sets with the
structure A = XY BX. We generalize this structure by taking unions of such sets. Consider the sets

xtomar, (10)

Now we define our main concept.

Definition 1. For nonnegative integers £, m, and r satisfying
L>r (11)
and
k=0+m+r, (12)
we define a basic set B(k,¢,r) in X* as the following union:

l—r
B(k,t,r) = J Xs0marts, (13)
s=0

For instance, B(7,3,1) is the union of rows of the matrix

We denote these matrices by [B(7,3,1)] and [B(8,3,2)], and in the general case, by [B(k,¢,7)].
Here are key properties of such sets.

Lemma 3. Forall t>r>1, m+r>/{ (ie, k=0+m+r>20), and q =2, we have

(i) |B(k, £,r)| =2 420710 — p) = 20771 (0 — r 4 2),
(ii) shad B(k,¢,r) = B(k —1,¢,r — 1),
(i) B(k,t,r) C B(k,£+1,r —1), Bk 0.1
(iv) |shad B(k,l,r)| = |B(k —1,4,r — 1)| = 0l ot
(v) [shad B(k, £,7)| = 26+7=2(¢ — 1 4 3). 2
Ezample. Let k=9, ¢ =4, and r = 1. Then

1B(9,4,1)| = 2° + 23 = 32 + 48 = 80,
Ng(80) < 24H172(4 — 1 4+ 3) = 48.

This is clearly better than the bound in Lemma 1.
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34 AHLSWEDE, LEBEDEV

An important consequence is as follows.
Corollary 1. For N = 2“’"_1(5 —r+2)and k=0+m+r>20>2r>2 we have

AR(N) < 14—r+3

14
—20—r+2 (14)

Proof of Lemma 3. (i) First, as an example of a basic set B(k,¢,r), consider (k,l,r) =
(9,4,2):

X X X X 0 0 0 X X

X X X 0 0 0 X X X

X X 0 0 0 XX X X X
Note that B(9,4,2) equals the union of the following sets:

X X X X 00 0 A X

X X X 0 00 1 A X

X X 0 0 01 X X X.

These row sets have the total cardinality of 26 + 25 4+ 25.
For the general case of £ < m + r, we find that the first set has cardinality 27", and the other
¢ — r sets have cardinality 277!, Hence,

\B(k, €,r)| = 2577 4 25471 (¢ — ).
(ii) We illustrate the claim by the following example:

shad® B(9, 4,2) shad® B(9, 4, 2)

R R R

X X0 0 0 &X X =
X 00 0 & ¥ X =
0 0 0 X

If we add the first row of the second matrix to the first matrix (respectively, the last row of the
first matrix to the second matrix), then shad B(9,4,2) = B(8,4,1), so k and r are reduced by 1.

In the general case, right shadow deletes from the basic set one X from the right, and left
shadow, from the left. Hence, in the general case k£ and r are reduced by 1 too.

(iii) Simply note that for ¢ > r the matrix [B(k,¢,r)| is obtained from [B(k — 1,¢,7 — 1)] by
deleting the first and last row.

(iv) Note that in shad’ B(k, £,7) we have one X less than in B(k, £, 7) in each row. Also, we have

an extra row; this row X%0™X7~! in shad® B(k,¢,r) corresponds to X"110™X "1 of cardinality
254—7‘—2_

Formally, (iv) follows from the equality
2R (0 —r 4 2) 4 252 = 2D (1 (r — 1) 4 2).

(v) Follows from (i) and (ii). A

Generalization to the g-ary case. It is easily seen that (i) and (iv) in Lemma 3 can be
extended to (i') and (iv’) in Lemma 4. In (i) one should take any nonzero element instead of 1, so
the first row has cardinality ¢*" and the other £ — r rows have cardinality q£+7"_1(q —1). Hence,
we have the following result.

PROBLEMS OF INFORMATION TRANSMISSION Vol. 48 No.1 2012



SHADOWS UNDER THE WORD-SUBWORD RELATION 35

Lemma 4. Forall ¢>r>1, m+r>/{ (i.e, k=0+m+r>20), and q > 2, we have

(i) Bk, 6,1)] = ¢+ + ¢+ (0 — r)(q — 1),
(i) |ﬂmd6wwnﬂzﬂBuw—LaT—1n=‘B%f””-+f+“%q—1>

=¢"2((l—r+2)(g—1)+1).  (16)

For N = |B(k,£,r)| = ¢"7" 4+ ¢~ (¢ —r)(¢ — 1), from |shad B(k, £, r)| = N + ¢ 2(q — 1) we
obtain ¢

Ap(g,N) 1 1 (g—1) B g—1
N Sququr(e—T)(q—l)_q<1+(€—7“+1)(q—1)+1>

1 1
< 1 . 1
_q<+€—r+1> (17)

Hence follows an important consequence.
Corollary 2. For N = ¢ 4+ ¢ Yl —r)(g—1) and k =€+ m +1r > 20 > 2r > 2, we have

1 1
A N) < 1 N. 1
o< (1, 1) (13)

Remark 3. For ¢ = 2 we had a smaller factor 1 + in Corollary 1.

£—r+2

4. LOWER BOUND
For any A C Xk and Y C X, define

A%,:{xg...xkeXk_lz Vrg...xp C Aand zxy... 2 & Aforall x € X'\ V}. (19)

Clearly, these sets are contained in X*~! and are disjoint. Moreover,

shad(A) D shad®(4) = U A%,, (20)
ycx
A= ] Y4;, (21)
ycx
and since |Y| < ¢, we get
|shad(A)| > 2\A| (22)

Hence, with the use of Corollary 2, we obtain the following result.
Theorem 1. For N = ¢ + ¢ =1(¢ —7)(q— 1) and k =L+ m +7r > 20 > 2r > 2, we have

1 1 1
N <A N) < 1 N. 23
Nenam <, (14, ) (23)

Moreover, the lower bound holds for all N.
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36 AHLSWEDE, LEBEDEV
5. CARDINALITY OF BASIC SETS FOR ¢ > m

Note that |B(k,?,r)| = |B(k — 2r,£ — r,0)|¢°". Hence, we are interested in the cardinality of
B(k,¢,0) for an arbitrary £ and m = k—£¢—r, { > m (the case of £ < m was considered in Lemma 4).

Theorem 2. For any ¢ and m such that £ > m, we have
l—m
Bk, 6,0)] = ¢ ' (tlg—1)+q) — (¢ —1) > ¢ " |B(m+i—1,i—1,0)],
=1

and for N = |B(k,£,1)| = ¢*|B(k — 2,¢ —1,0)|,
A(N) 1 1
< 1 .
v <, 1+y)

Proof. Denote by H(¢,m,a) the number of sequences from X t+m that are not covered by the
first a rows of the matrix [B(k,¢,0)]. Consider the jth row X‘~7+10mxi=! in [B(k,£,0)]. How
many new sequences does it add? Using our notation, we obtain

¢ g = DH(l,m,j —m—1)

such sequences.
We have
H(t,m,a) = ¢""* ' —|B(m+a—1,a—1,0)|. (24)

Let i =7 —m —1; then fort=1,2,...,f —m we add
¢~ Mg—1) (" = [Bm +i— 1,i—1,0)])

sequences, and this proves that

{—m
1Bk, 6,0) = ¢ +¢" "m(g = 1) + > ¢ g = 1) (¢ = [Bim+i — 1,0~ 1,0)]).
i=1
Hence,
{—m
B(k,£,0)] = ¢" + ¢ 'm(g—1) + ¢ (€ —m)(g—1) = Y ¢ D|B(m +i—1,i—1,0)|.
=1
We obtain ) Bk.0.0)]
A(N) < 7 N.
(V) < qq|B(m+£¢—1,£—1,0)]
Therefore,
_ =1 _ (4 _ _ o —
A(N) <ig (¢—1)q (¢ 1)I5’(€ 1,0 —m—1,0)|
N q 1

¢ g+ (—1)(g—1) —(g—1) § ¢=m=i|B(m +i — 1,i — 1,0)|

We have obtained this formula using the equality
shad(B(m + £+ 1,£,1)) = B(m + £,£,0).
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SHADOWS UNDER THE WORD-SUBWORD RELATION 37

One can prove that for such V

(a=1) (a ' = 1B~ 1,0 =m—1,0)]) 1
f—m—1 Sg
E-Da-D - @=1) X g mIBlm i~ 1i = 1,0)]

Indeed,

(@ =B —1,6—m—1,0)[)(qg—1)¢ o

<N E-De-D+a)—(¢=1) 3 ¢ " Bm+i—1,i—1,0)

=1
if
l—m—1
> ¢ Bm+i—1,i—1,0)] < [B(¢— 1,4 —m —1,0)|¢.
=1
It is clear that for any natural u
qg|B(m+u—1,u—1,0)| < |B(m+ u,u,0)|

Therefore,

{—m—1

g Bm+i—1,i—1,0)| < [B({—1,£ —m —1,0)|({ —m — 1),
=1

which proves the theorem. A
Remark 4. For the binary case one can prove that for N = [B(k,¢,1)| = 4|B(k —2,¢—1,0)| and
£ > m one has
AN) _1 ( ! )
N +1
Extended basic sets. For basic sets B(k, ¢, r) we used building sets

xtomxr (25)
and took unions of such sets. Now we define a dual building set as
U LV
We add these dual building sets to the basic set and define an extended basic set B (k,£,1) as
{—1

B(k,¢,1) ( Uax- SomxHS) Uomxk=2mom = B(k, £,r) U 0mxk-2mom, (26)
s=0

The set B(k,£,1) has a larger cardinality than [B(k,,1)|, but their shadows coincide!

Theorem 3. For ¢ > m we have

(i) B(k,¢,1) = |B(k,£,1)| +1 for £=m

(ii) (k:€1) |B(k€1)\+2£m1f0rm<€<2m

(iii) B(k,£,1) = [B(k,£,1)] + 2771 — |B({ —m — 1,£ — 2m — 1,0)| for £ > 2m,
(iv) shad(B(k,£,1)) = |B(k — 1,£,0)|.
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38 AHLSWEDE, LEBEDEV

Proof. For { = m we add a new word 0™10™ to the basic set. In case (ii), a new block is
0m1X4™m=110™. Since it has a 1 in the (m + 1)st coordinate, it is not covered by the last m rows
of the basic matrix [B(k,¢,1)]. Since it has a 1 in the (¢ + 1)st coordinate, it is not covered by
the first m rows of the basic matrix [B(k,?,1)]. In total, we have ¢ rows in [B(k, ¥, 1)]; hence, this
proves case (ii). In the case of £ > 2m, there is also a 1 in both the (m+1)st and (/4 1)st rows, but
in this case we obtain H(¢{ — 2m — 1,m,{ — 2m) new sequences. Using (24), this proves case (iii).
Dual building sets 0™ X*=2m(0™ yield a shadow which is a subset of the basic set B(k —1,¢,0),
whence follows (iv). A

6. SHADOWS, UP-SHADOWS, AND THEIR INTERRELATION

Consider a word b*~!' € X*~1. Then
up-shad (b 1) = {a* : a* € X%, *~! € shad(a")}.
Now for any subset B C X*~! we define its up-shadow:

up-shad(B) = U up-shad(b*~1).
bk-leB

For a fixed k we are interested in the function

V(M) = min{|up-shad(B)| : B c X*71 |B| = M}.

The following function is important for finding a relation between the shadows.

Definition 2. Consider a set C' of sequences of length n with cardinality M. Let s,(C, M) be
the number of pairs (z,2"), z € X, 2" = (z1,22,...,2,) € C, such that (z,21,22,...,2,-1) € C.
Denote

sn(M) = max sn(C, M). (27)

Lemma 5. The following conditions are equivalent for C C X™:

(i) [C] # q";
(ii) 3z € X and " = (c1,c¢a,...,¢n) € C such that (z,c¢1,¢2,...,¢h—1) & C;
(i) A(V(C)) # C;
(iv) V(A(C) #C.
Proof. (ii) = (iii). Consider ¢ € C satisfying (ii). Then (z,c1,c2,...,¢n) € V(C), and therefore
y" = (z,c1,¢2,...,¢cn—1) € A(V(C)). However, (ii) implies y™ ¢ C. Hence, A(V(C)) # C.
(iii) = (i). The set V(c") consists of Xc¢y,c,...,¢y Ucy,ca, ..., cpX. Hence,

ANV(E) =c1,e0,...,cnUXer, 00,00 1 Uca, ..., cn XL

Therefore, C C A(V(C)). Thus, (i) is proved.

(i) = (iv). Consider ¢" € C satisfying (ii). Then we have (c1,¢2,...,¢,—1) € A(C), and
therefore y" = (z,¢1,c¢2,...,cn—1) € V(A(C)). However, (ii) implies y™ ¢ C.

(iv) = (i). For any ¢" € C we have

n
A"y =ca,...,cpUct, ey . Cn

and
V(A(") =Xegy ... yepUca, . ,en X U Xey, ¢,y cn—1Ucq,Coyn ey 1 X
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SHADOWS UNDER THE WORD-SUBWORD RELATION 39

Thus,
CC AV(C)) € V(A(Q)).
Hence, we get (i).
(i) = (ii). Assume that for all z € X and all ¢" € C property (ii) is fulfilled. Then

Xcy,c0,...,ch1 € C. Hence, XXc¢y,c9,...,¢h2 € C, XX Xc1,02,...,ch_3 € C, etc. Therefore,
XXX...XX € C, and we get a contradiction to (i). A

Property (ii) and Definition 2 immediately imply the following result.

Corollary 3. If M' < M, then
s(M') < s(M).

Thus, s(M) is a strictly monotone increasing function.

Theorem 4. For any q, k, and M < ¢*~1, we have
Ag(sk—1(M)) = M.

Proof. Let C' (|C| = M) be a set maximizing (27). We add a sequence (z,z1,22,...,2y) to
the set D, if the condition from Definition 2 holds for this z and (z1,z9,...,2,) € C. Then
|D| = s,(M) and shad(D) = C. Hence,

Ak(sk—l(M)) § M.

If there existed a set C” of a smaller cardinality M’, M’ < M, and such that s(M') = s(M),
this would contradict Corollary 3. Hence, Ag(sx—1(M)) =M. A

From this and Lemma 5, we have the following fact.
Corollary 4. If N < ¢*, then
1
qN < Ap(g, N). (28)

7. ISOPERIMETRIC NUMBERS OF GRAPHS

Problems on isoperimetric numbers of graphs have been studied for a long time (see, e.g., [7,8]).

Consider a graph G(V, E) with the set of vertices V and set of edges E. If X C V is some set of
vertices, then X denotes the set of edges that have one end in X and the other in V' \ X. Thus,

0X ={(x,y) e E; x € X, ye V\ X}

The edge-isoperimetric number of this graph is defined to be

10X

i(G) = min ,
X

where the minimum is over all nonempty subsets X C V satisfying | X| < |V|/2.
Denote by N(X) the set of vertices of V '\ X adjacent to some vertex in X. Thus,
NX)={yeV\X; zeX, (z,y) € E}.

The vertex-isoperimetric number of this graph is defined to be

where the minimum is over all nonempty subsets X C V satisfying | X| < |V|/2.
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40 AHLSWEDE, LEBEDEV

We want to consider graphs related to the word-subword relation: a U-D graph and a D-U
graph. Vertices of these graphs are all sequences of X™.

For the U-D graph, vertices a" = ajas...a, and b" = biby ... b, (a™ # b™) are adjacent if and
only if there exists ¢"*! such that

" € up-shad(a"), b" € shad(c"™).

We would like to have a bijection between edges of the U-D graph and all words from X"+1,

To this end, for a” = b" we draw a single edge (loop) in the graph if and only if a1 = ay =
a3 = ...=a,. Then we get a bijection between edges of the U-D graph and all words from x™+1!.
Under this definition of the graph, its edges can be identified with sequences of length n 4+ 1, and
vertices connected by an edge are the right and left shadows of this sequence. Such a definition of
the graph seems to be extremely natural.

Note that a vertex degree in this graph is 2g — 1 for o™ with a1 = as = a3 = ... = a,, and 2¢q
for all other vertices.

For the D-U graph, an edge connects vertices a” = aqas ...a, and b = b1bs ... b, with a”™ £ b"
if and only if there exists a word d"~! such that

d"~! € shad(a"), b" € up-shad(d"!).

The total number of edges in the D-U graph is ¢" 1q(q¢ — 1) + ¢"* = ¢"(2¢ — 1).
In this paper we do not consider properties of the D-U graph.

8. RELATION TO DE BRUIJN GRAPHS

Recall that for a fixed n and & = n + 1 we are interested in
A(N) = min{|shad(A)| : A C X*, |A] = N}.

In graph theory, an n-dimensional De Bruijn graph of ¢ symbols is a directed graph with ¢"
vertices consisting of all possible n-sequences of the given symbols. If one of the vertices can be
obtained from another by shifting all symbols by one position to the left and adding a new symbol
at the end, then the latter vertex has a directed edge to the former. Thus, the set of (directed)
edges is

E = {((v1,v2,...,0,), (w1, wa,...,wy)) : Vg =w1, V3 =W, ..., Uy = Wp_1}.

Each vertex has exactly ¢ incoming and ¢ outgoing edges. Consider an undirected (k — 1)-
dimensional De Bruijn graph. The graph is very close to the U-D graph. (Sequences a* from X'*
are edges in the graph. The left shadow shad”(a”*) and right shadow shad(a*) are vertices incident
to this edge.) For a" with a; = ag = a3 = ... = a,, we have a loop in the U-D graph and two loops
in the De Bruijn graph.

The minimal shadow problem is equivalent to the problem of finding N edges incident to a
minimum possible number of vertices. Theorem 4 shows that the problem of finding M vertices
in the U-D graph that give the maximum possible number of edges between them is the inverse
problem. Thus, the function s;_1(M) is very important for us. It is also related to the up-shadow
problem.

k—1

Theorem 5. For any q, k, and M < ¢"~*, we have

V(M) =2qM — sp_1(M).
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SHADOWS UNDER THE WORD-SUBWORD RELATION 41

Proof. The de Bruijn graph is regular. The vertex degree is 2q. Hence, there are 2¢gM edges
incident to M vertices from a set C, but some of them were calculated twice. The number of edges
calculated twice is sg_1 (M), and therefore the number of edges incident to C'is 2¢M — s_1(M). A

Theorem 6. For any M < ¢! we have
sp—1(¢"1 = M) = ¢* — 2qM + 5,1 (M).

Proof. Let C (|C| = M) be a set of vertices that maximizes (27). Let a set B of cardinality
|B| = V_1(M) consist of edges incident to M vertices of C. Then any edge out of B gives a
shadow out of C'. Hence,

A(d" = V(M) < ¢* ' - M.

Theorem 5 implies
V(M) =2qM — sp_1(M).

From this and Corollary 4, we obtain
se-1(¢"" = M) > ¢* — 2qM + s _1(M).
If we do the same with the set X*~1\ C, we get
A(q" = Ve (@" = M) < M.

Therefore,
sk—1(M) > ¢ —2¢(¢" 1 — M) + s_1(¢" ' — M),

whence we find
se-1(q"t = M) < ¢ —2qM + 5,1 (M). A

Using this theorem, we can compute the rate R = A(N)/N for large N.
Proposition 1. For N = 2% — 2¢(¢ + 3) and ¢ < k/2 in the binary case we have

1
< .
R<1/2 (1+2H_€_3>
Proof. For £ < k/2 and M = 2/~1(¢ + 2) we obtain s(M) = 2¢(¢ + 1). Theorem 6 implies
st (2Pt =2t 2)) =28 — 2 l4(r 4+ 2) + 290 + 1) = 2F — 241 4 3).

Hence,
2kl — 2671(0 4 2) 1
< = ,
B < 20(2k—t — ¢ — 3) 1/2(1+2k—€—€—3) A

Proposition 2. For N = ¢* — ¢‘(¢+ (¢ — 1)(¢ + 1)) and £ < k/2 in a q-ary case we have

—1
R (4 g ny)
Proof. For ¢ < k/2 and M = ¢"~'(q + £(q — 1)) we obtain s(M) = ¢‘(q¢ + (¢ — 1)(¢£ — 1)).
Theorem 6 implies
s (@ = ¢ g+ g - 1) =" — 294" g+ g — 1) + ¢ (g + (¢ = (¢ — 1))
=¢"— "¢+ (¢ - 1)L +1)).
Hence,

=g g+ g —1) 1 g—1
qu’“—qf(q+(q—1)(€+1)) (1+qH—( ) 2

B g+ (g —1)(¢+1))
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Denote by i(U-D) the edge-isoperimetric number of the U-D graph. For any ¢ and k we have
the following fact.

Theorem 7. For |N| < ¢*/2 —i(U-D)¢"*~'/4 we have

Ap(N) _ 1 ( i(U-D) )
> 1 . 29
N g - 2¢ —i(U-D) (29)
Proof. Since
min{|0X|: | X| =M} =V (M) —s(M) =2qM — 2s(M), (30)
for M < ¢*~1/2 we have
2s(M
2g — 8](\4 ) > iu-D)
Hence,
s(M) < M — i(U-D)M/2
Therefore,
Ar(gM — i(U-D)M/2) M 1 1 ( i(U-D) )
. > . = . = + , VAN
gM — i(U-D)M/2 gM —i(U-D)M/2 q—i(U-D)/2 ¢ 2q —i(U-D)
In [9] it was proved that
. q
D
i(U-D) 2 5, _ 1
Hence we get the following result.
k
: <gtj2— 1
Corollary 5. For |N| < ¢"/2 8k — 2) we have
Ap(N) _ 1 1
> 1 . 1
N “q ( + 4k — 9) (31)

9. EDGE-ISOPERIMETRIC NUMBER OF THE DE BRUIJN GRAPH

In [9] there was obtained the following upper bound for the edge-isoperimetric number of the
De Bruijn graph:
2qm
(B < .
B < 17

Here is an improvement of this bound.

Theorem 8. The isoperimetric number of the de Bruijn graph satisfies the inequality

2q
(B <
i(Bn,g)) < n—2log,n+1’
and in the binary case,
4
(B < .
i(B(n.q)) < n —logn + 2

Proof. From (30) it follows that for M = |B(n,¢,0)| we obtain

2s(M)
Mo
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It follows from Theorem 2 that

and in the binary case,

M <\B(n,€,0)\<1<1+ 1 )
s(M) — |B(k,¢,1)] — 2 41
Hence,
. 2q/ 2q
B <2q- =
B <2- 0 = 2
and in the binary case,
. 40+ 1) 4
B(n,2)) <4 -— = .
i(B(n,2)) 042 042

From Lemma 3 we obtain
1B(n,£,0)] <271 +2).

Hence, for m > logn we have £ < n — logn, and for n > 4,

n —logn +4) < 2"

2 (
B 0) < .
| (n7 Z’ )| 2n 2

Hence, in the binary case we obtain

4
n—logn+2°

i(B(n,2)) <

Lemma 4 implies

B(n,£,0)] < ¢ (tg—1) +q).

Hence, for m > 2logn we have £ < n — 2logn, and for n > ¢,

¢"((n —2logn +1)q) _ ¢"

4 < .
Bine,0)) < 020D 0
Therefore,
i(B(n,q)) < 24
4 ~n—2log,n+1

10. VERTEX-ISOPERIMETRIC NUMBER

In [9] there was given the the following upper bound for the vertex-isoperimetric number:

2\/qm

WBD) < L1 - (@am)/(n+ 1))

In [10] it was improved as follows:

for n > 9.
Consider a basic set B(n, ¢, 1), where { +m + 1 =n:

N(B(n,£,1)) = X10m U 0™1x°.
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Then
IN(B(n,£,1))| = 2 + [0m1x ™ ox™| + [om1xt—m"11am|.

Therefore,
IN(B(n,?,1))| =2t + 271 4 26-m=1(gm _ 1) = ottt _ gf=m—1

From bounds on the cardinality of basic sets, we have
1B(n,£,1)] > 20 +1) = 2™ 0 —m 4+ 1)(L —m —1).
Hence,

IN(B(n, ¢, 1)) _ 2641 — gt=m—l
IB(n,0,1)] = 2l +1)=2-m=1l —m+1)({ —m —1)

Put m = 2logn; then £ =n — 2logn — 1, and we obtain as n — oo

IN(B(n,£,1))]

2
Bn, 0,1y = TR

Clearly,
1B(n, £,1)] < 2¢(¢ +1).

Therefore, for m > logn we get £ <n —logn — 1, and

2"(n —logn) _ 2"
< < .
B,e < 70 B <

Hence, as n — oo, we get

in(B(n,2)) < 2(1 +o(1).

Theorem 9. The vertex-isoperimetric number of the de Bruijn graph B(n,q) satisfies the fol-
lowing inequality as n — oo:
q+2
qn
Proof. For the binary case, this is already proved above. For a g-ary case, we again consider a
basic set B(n,¢,1) with £ +m + 1 = n:

iv(B(n,q)) < (1+o(1)).

N(B(n,£,1)) = X*X0m U 0mX XY,

where X denotes any nonzero element.
Then

IN(B(n,£,1))] = ¢"(q = 1) + 0" XX H0X™| 4 0" X XL (A™ N\ 07)].

Hence,
IN(B(n,0,1))| = q"(¢— 1) +2¢" (¢ —1) —¢""™ (g - 1).

Put m = 2logn; then, as in the binary case, one can check that for large n we have |B(n,¢,1)| <

n

4 and
2
iv(B(n,q)) < q;f(l +o(1)). A
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11. SHADOWS FROM X* TO x™

Definition 3. A sequence 2" = (1, 22,...,2,) is an n-subword of y* = (y1,ya, ..., ys) if there
exists i, i € {0,1,...,k — n}, such that

yi—i—l - 3317 yi+2 - $27 ey yi—H’L = Tn.

Equivalently: z” is an n-subword of y* if there exist a* and b*~"~% such that y* = a’z"bF—""7,
where i € {0,1,...,k —n}.

The shadow of y* is the set of all its n-subwords:
shady ,(y") = {2" : 2™ is an n-subword of y*}.
Now for any subset A C X* we define its shadow

shady, ,,(A4) = U shady ,(a").
akeA

For fixed n and k we are interested in the function
Akn(g, N) = min{|shady ,(A)| : A C X%, |A] = N}.
The up-shadow of a sequence z™ is the following set:
up-shad(z") = {y* : 2" is an n-subword of y*}.
Now for any set B C X" we define its up-shadow

up-shad(B) = U up-shad(b").
bmreB

For fixed n and k we are interested in the function
V(M) = min{|up-shad(B)| : B C X", |B| = M}.
Let v = k —n. For any £ > r > v such that m+r > ¢ (or k =€+ m+r > 2(), we have
shady, , B(k,0,r) = B(k —v,{,1 —v).

Hence, we have the following result.

Theorem 10. For N = ¢ + ¢ 1 (0 —v)(¢ — 1) and k = £ +m + v > 20 > 2v we have
1 1 v
N <A N) < 1 N
q,v —= k’,n(q7 ) —_ qrv ( + E —v _|_ 1)
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