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Abstract We present a new class of error-tolerant pooling designs by constructing d* —disjunct
matrices associated with subspaces of a finite vector space.
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1 Introduction

Combinatorial group testing has various practical applications [8], [9]. In the classical group
testing model we have a set [n| = {1,...,n} of n items containing at most d defective items.
The basic problem of group testing is to identify the set of all defective items with a small
number of group tests. Each group test, also called a pool, is a subset of items. It is assumed
that there is a testing mechanism that for each subset A C [n] gives one of two possible
outcomes : negative or positive. The outcome is positive if A contains at least one defective
and is negative otherwise.

A group testing algorithm is called nonadaptive if all tests are specified without knowledge
of the outcomes of other tests. Traditionally, a nonadaptive group testing algorithm is called
a pooling design. Pooling designs have many applications in molecular biology, such as DNA
screening, nonunique probe selection, gene detection, etc. (see [9], [10]).

A pooling design is associated with a (0,1)— inclusion matrix M = {m;;}, where the rows

are indexed by tests Ay, ..., A; C [n], the columns are indexed by items 1,...,n, and m;; =1
if and only if j € A;. The major tool used for construction of pooling designs are d—disjunct
matrices. Let M be a binary ¢ x n matrix where the columns Ci,...,C, are viewed as

subsets of [t] = {1,...,t} represented by their characteristic vectors. Then M is called d—
disjunct if no column is contained in the union of d others. The notion of d—disjunctness
was introduced by Kautz and Singleton [14]. They proved that a d—disjunct matrix M can



identify up to d defective items. d—disjunct matrices are also known as d—cover free families
studied in extremal set theory [7].

The maximal d for which M is d—disjunct is called the degree of disjunctness and is denoted
by dynee. Note that d—disjunctness of a pooling design is a sufficient, but not a necessary
condition for identification of d defectives. However a d—disjunct pooling design has an
advantage of a very simple decoding. Removing from the set of items all items in negative
pools we get all defectives (see [9] for details).

A pooling design is called error-tolerant if it can detect/correct some errors in test outcomes.
Biological experiments are known to be unreliable (see [9]), which, in fact, is a practical
motivation for constructing efficient error-tolerant pooling designs.

For error correction in tests the notion of a d*-disjunct matriz was introduced in [17]. A
d—disjunct matrix is called d*~disjunct if for any d + 1 of its columns Cj,, ..., C;, , we have
1Ci, \ (Ci, U...UC;,,,)| = z. In fact, the d'—disjunctness is simply the d—disjunctness.
A d*-disjunct matrix can detect z — 1 errors and correct |251] errors (see e.g. [10] or [9]).

Constructions of d*—disjunct matrices are given by many authors (see [2], [17], [18], [10]).

Most known constructions of d*—disjunct matrices are matrices with a constant column
weight. Let M be a binary ¢ X n matrix with a constant column weight k£ and let s be
the maximum size of intersection (number of common ones) between two different columns.
Kautz and Singleton [14] observed that then M is d-disjunct with d = [®|. Moreover, for
integers 0 < s < k < t the maximum number n(d, ¢, w) for which there exists such a disjunct

matrix is upper bounded by
t k
d,t, k) < . 1.1
n<”)_(s+1)/(s—|—1) (1.1)

Note that the columns of M considered as the family F of k—subsets of [t] (called blocks)
form an (s+1, k, t)-packing, that is each (s+1)-subset of [t] is contained in at most one block
of F. Note also that equality in (1.1) is attained if and only if F is an (s + 1, k, t)-Steiner
system (each (s + 1)—subset is contained in precisely one block).

Thus, packing designs can be used for construction of d—disjunct matrices. However, con-
struction of good (s + 1, k, t)—packings, in general, is known to be a difficult combinatorial
problem. Several other constructions (see [9, Ch.3]) of disjunct matrices are also based on
combinatorial structures or error correcting codes. We note that (s + 1, k, t)-packings can
also be described in terms of codes in the Johnson graph J(n, k) (or Johnson scheme) with
minimum distance d; = k — s. It seems natural to try other distance regular graphs (see [4]
for definitions), for construction of d-disjunct matrices, using the idea of packings.

In this paper we construct new error-tolerant pooling designs associated with finite vector
spaces. In Section 2 we briefly review some known constructions of disjunct matrices based
on partial orders and determine the degree of disjunctness for the construction proposed
by Ngo and Du [18]. Our main results are stated and proved in Section 3. We present
a construction of d*—disjunct matrices based on packings in finite projective spaces. For
certain parameters the construction gives better performance than previously known ones.



2 d*—disjunct matrices from partial orders

Macula [16] proposed a simple direct construction of d—disjunct matrices. Given integers
1 <d<k<mlet M = (my) bean () x () matrix where the rows are indexed by
elements of ([73]), the columns are indexed by the elements of ([ZL]), and m;; = 1 if we have
containment relation between the subsets corresponding to the ith row and the jth column,
otherwise m;; = 0. Note that each column has weight (g) and each row has weight (m_d).

k—d
Macula showed that M is a d—disjunct matrix and d,,., = d.

Similar constructions, using different posets, were given by several authors. Ngo and Du [18]
extended Macula’s construction to some geometric structures. In particular they considered
the following construction of a d—disjunct matrix M,(m,d, k) associated with finite vector
spaces. Let GF(q)™ be the m—dimensional vector space over GF(q). The set of all subspaces
of GF(q)™, called projective space, is denoted by P,(m). Recall that P,(m) ordered by
containment is known as the poset of linear spaces (or linear lattice). Given an integer
0 < k < m, the set of all k-dimensional subspaces (k—spaces for short) of GF(q)™ is called
a Grassmannian and denoted by G,(m, k). Thus, we have Jjcic,, Gg(m, k) = Py(m). A
graph associated with G,(m, k) is called the Grassmann graph, when two vertices (elements
of G,(m,k)) V and U are adjacent iff dim(V NU) = k — 1 (see [4] for more insight). It is
known that the size of the Grassmannian |G,(m, k)| is determined by the g-ary Gaussian

coefficient [’z]q; k=0,1,...,m ([mq 2 1)),

m} _ (@ =D(@ T =) (@mTM —)
klg (" =D =1)---(¢g—1)

For integers 1 < r < k < m, the [T]q X [T]’ﬂq incidence matrix M,(m,r, k) = (m;;) is
defined as follows. The rows and the columns are indexed by the elements of G,(m,r)
and G,(m, k) (given in a fixed ordering), respectively, and m;; = 1 if we have containment

relation, otherwise m;; = 0. Note that each column of M,(m,r, k) has weight [ff ]q and

Galm, )| = | (2.1)

each row has weight [Zl::]q. Ngo and Du showed that M,(m,r, k) is an r—disjunct matrix.

However D’yachkov et al. [10] observed that the degree of disjunctness of M,(m,r, k) can
be much bigger than r. Moreover, the construction can in general tolerate many errors.

Theorem DHMVW [10]

Fork—r>2andd< qg%ck:rljll), the matriz M,(m,r, k) is d*—disjunct with

zzm —d{k;l} +(d-1) {k_Q} . (2.2)

r r

The bound is tight for d < q+ 1.

Note that the maximum number d in (2.2) for which z > 0is d = q(qq:jjll). Thus, the

> ald*'-1)

theorem tells us that d,,q > pr In fact, we determine d,,q, for every M,(m,r, k).

Theorem 1 For integers 1 <r < k < m, the degree of disjunctness of My(m,r, k) equals

dmaa} = M (23)

qg—1



Proof. Let V € G,(m,k). We wish to determine the minimum size of a set of k-spaces
which cover (contain) all r—spaces of V. Suppose Uy, ..., U, € G,(m, k) is a minimal covering
of the r—spaces of V. Without loss of generality, we may assume that dim(U;NV') = k—1 for
t=1,...,p. Therefore, W, =U,NV,..., W, =U,NV can be viewed as a set of hyperplanes
of P,(k) that cover all r—spaces of P (k). Let now A; € P,(k) be the orthogonal space of W;;
i=1,...,p. Thus, A= {A;,...,A,} is a set of one dimensional subspaces, that is points,
in P,(k). By the principle of duality, every (k —r)-space of P,(k) contains an element of A.
To complete the proof we use the following result.

Theorem BB [3] Let A C GF(q)™\ {0} have a non-empty intersection with every (k—r)-
space of Py(k). Then |A| > (¢t —1)/(¢ — 1), with equality if and only if A consists of
("™t —1)/(q — 1) points of an (r + 1)-space of P,(k).

It is clear now that dy,, = (¢"™ —1)/(¢ — 1) — 1. O

3 New construction

Our construction of a disjunct matrix M is based on packings in P,(m). For integers 0 <
s < k <m, asubset C C G(m, k) (with the elements called blocks) is called an [s+ 1, k, m],~
packing if each (s + 1)-space of P,(m) is contained in at most one block of C. This clearly
means that dim(V N U) < s for every distinct pair V.U € C. C is called an [s + 1, k, m],~
Steiner structure if each (s+ 1)-space of P,(m) is contained in precisely one block of C. Let
N(m,k, s) denote the maximum size of an [s + 1, k, m|,~packing.

An equivalent definition of an [s + 1, k, m|,~packing can be given in terms of the subspace
distance dg(V,U) defined (in general for any V,U € P,(m)) by dg(V,U) = dimV +dim U —
2dim(V NU) ([1], [15]). Then clearly ds(V,U) > 2(k —s) for every pair of elements V, U € C.
The following simple observation is an analogue of (1.1) for projective spaces. Let M be the
incidence matrix of an [s+ 1, k, m|,—packing C with s > 1, that is the ¢ x n matrix where the
rows (resp. columns) are indexed by the nonzero elements of GF(q)™ (resp. by the blocks
of C) given in a fixed ordering.

Lemma 1 (i) For d < ¢*=%, the matriz M is d*—disjunct with z = ¢* — 1 — d(¢° — 1).
(i) The number of columns

n < N(m,k,s) < LTlL/LLL (3.1)

with both equalities if and only if C is an [s + 1, k, m|,~Steiner structure.

Proof. (i) By the definition of an [s+ 1, k, m],—packing, each (s+ 1)-space is contained in at
most one k—space of C. Therefore, any two columns in M have at most ¢° — 1 common ones.

Zij ] > ¢*~* other columns. Note that

Hence, a column in M can be covered by at most |

in case s | k, the space GF(q)* can be partitioned by s—spaces (see [5]) and d,ner = Z{:j —1.

(ii) Since the number of (s+1)-spaces contained in a k—space is [ * 1, we have the following

s+lj|q



packing bound N(m,k,s) < [Sfl]q/[sil}q (see [1], [20], [15]). The equality in (3.1) is

attained iff we have a partition of all (s + 1)-spaces by the blocks of C. O

A challenging problem is to find Steiner structures in P,(n). Note that no nontrivial Steiner
structures, except for the case s = 0 when we have a partition of GF(q)™ by k—spaces, are
known. Properties of Steiner structures in P,(n), introduced in [1] are studied in [19].

Theorem WXS [20] (KK [15]) Given integers 1 < k < m, there exists an explicit con-
struction of an [s + 1, k, m],—packing C with

(s+1)(m—k) ;
q if m>2k, 0<s<k
ICl = { (3.2)

aSany) if m<2k 0<s<m-—k.

The construction of such packings is based on Gabidulin codes [13] The explicit description
(in terms of subspace codes) is given in [20] and in [15]. For completeness we describe
this construction here (in terms of [s + 1, k, m],~packings). Let F’q“” denote the set of all
k x t matrices over GF(q). For XY € F;*" the rank distance between X and Y is defined
as dr(X,Y) = rank(X — Y). It is known that the rank-distance is a metric [13]. Codes
in metric space (F£*", dp) are called rank-metric codes. It is known [13] that for a rank-
metric code C C F2*" with minimum distance dg(C) one has the Singleton bound log, |C| <
min{k(r — dr(C) +1),r(k — dg(C) + 1)}. Codes attaining this bound are called maximum-
rank-distance codes (MRD). An important class of rank-metric codes are Gabidulin codes
[13]. They are linear MRD codes, which exist for all parameters k,r and dg < min{k,r}.
The construction of an [s + 1, k, m|,~packing from an MRD code is as follows. Consider the

space F’;X(m_k) (m > k). Let first m > 2k. Then for any integer 0 < s < k there exists a

Gabidulin code Cq C Fl;x(m_k) of minimum distance dg = k — s and size ¢t =%) To each
matrix A € Cg we put into correspondence the matrix [I;|A] € Fi*™ (I is the k x k identity
matrix). We define now the set of k-spaces C(m, k, s), = {rowspace([I;|A]) : A € Cg}. It
can easily be observed now that dim(V NU) < s for all pairs V,U € C(m, k, s),. This means
that C(m, k, s), is an [s + 1, k, m],—packing with |C(m, k, s),| = |Cq| = ¢“+V"F). Similarly
is described the [s + 1, k, m],—packing C(m, k, s), for m < 2k. Note that for our purposes
the case m > 2k is more important.

The following is a useful estimate for the Gaussian coefficients. A proof can be found in [6]
(and in [15] for the case ¢ = 2).

Lemma 2 For integers 1 < k < m we have

gk < [m} < a(g) - ¢ Pk (3.3)
klq

where a(2) =4 and a(q) = L for ¢=3.

Note that Lemma 2 in conjunction with Theorem WXS applied to our upper bound (3.1)
shows that C(m, k, s), is nearly optimal:

Clm. k, )| < [N(n,k, ), < alq) - "9 = a(q) - [Clm, b, 5),.

5



Here actually lim a(q) = 1, as ¢ — oo, yields asymptotic optimality.
Let P(m,k,s), denote the incidence matrix of C(m, k, s),. We summarize our findings in

Theorem 2 Given integers 1 < s < k < %m and a prime power ¢q, we have
(i) P(m,k,s), is a d-disjunct t x nmatriz where t = ¢™ — 1, n = ¢FVM=F) g = gh=s,
(ii) For any d < ¢"=%, the matriz P(m,k,s), is d*-disjunct with z = ¢* — 1 —d(¢° — 1).

Finally, we explain how good our construction is. Let ¢(d,n) denote the minimum number
of rows for a d—disjunct matrix with n columns. In the literature known are the bounds
asymptotic in n

9 logn
20/4) < 300

(log is always of base 2). The lower bound is proved in [14], [11], [7] (see also [12], [9, ch.2])
using probabilistic methods. The upper bound is due to D’yachkov and Rykov [11].

< O((logd)/d*) (3-4)

Next we compare our construction with the construction in Ngo and Du [18], described
in Section 2 (both constructions we take over GF(¢q)). In their construction we have n <
a(q)g™ Pkt > ¢ (Lemma 2), d = q(%_ll) (Theorem 2), and rate (logn)/t.

For the parameters in our construction we use the notation ng, kg, tg,dg. Thus, nyg =
q(erl)(ﬂ’lofko)7 to = qmo -1, dO > ko*s‘ We put mg = m, kO = k" s=k—r—1. Then we
have ng = ¢+ M=k o= g™ —1, dy > ¢"*' > d, and rate (logng)/ty. A simple calculation

shows that (logng)/te exceeds (logn)/t by a factor ¢™"—1="". ’,i—jr’l"

Let us take now in our construction ¢ = 2, m = 2k. Then we have d = 285 t = 2% —1, n =

2(+Dk and hence
logn (s+1)k _s+1 logd

t > 22k > 22s d2 '

Corollary 1 Given integer s > 1, our construction gives a class of d—disjunct t X n matrices
with parameters d = 2875, t = 22F n = 26%DF gttaining the upper bound in (3.4), that is
rate (logn)/t = 2((logd)/d?).
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