
ISSN 0032-9460, Problems of Information Transmission, 2012, Vol. 48, No. 2, pp. 173–181. c© Pleiades Publishing, Inc., 2012.
Original Russian Text c© R. Ahlswede, C. Deppe, V.S. Lebedev, 2012, published in Problemy Peredachi Informatsii, 2012, Vol. 48, No. 2, pp. 100–109.

LARGE SYSTEMS

Finding One of D Defective Elements

in Some Group Testing Models

R. Ahlswede†, C. Deppea1, and V. S. Lebedevb2

aDepartment of Mathematics, University of Bielefeld, Germany
cdeppe@mathematik.uni-bielefeld.de

bKharkevich Institute for Information Transmission Problems,
Russian Academy of Sciences, Moscow

lebed37@iitp.ru

Received May 10, 2011

Abstract—In contrast to the classical goal of group testing, we consider the problem of finding
m defective elements out of D (m ≤ D). We analyze two different test functions. We give
adaptive strategies and present lower bounds for the number of tests and show that our strategy
is optimal for m = 1.
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1. INTRODUCTION

Group testing is of interest in many applications, for instance, in molecular biology. For an
overview of results and applications, we refer the reader to [1, 2].

In [3] the authors considered the problem of finding one defective element in a finite set where
an element i is defective with probability pi. The case where all probabilities are identical appears
already in [4].

In [5] the authors considered the problem of finding at least k nondefective elements. Their
study was motivated by a practical problem of an electronic company. The production department
of the company requires 106 nondefective electronic chips for their production process. There is
a method for testing a pool of chips. They buy chips of 99% quality (a chip is defective with
probability 0.01) and want to find many nondefective elements in a small number of group tests.

We will consider a combinatorial version of this problem. Thus, it is required to find m out of D
defective elements. This study was motivated by [6, 7]. We denote by [N ] := {1, 2, . . . , N} the set
of elements, by D ⊂ [N ] the set of defective elements, by D = |D| its cardinality, and by [i, j] the
set of integers {x ∈ N : i ≤ x ≤ j}. Throughout the paper we consider the worst case analysis.

The classical group testing problem consists in finding an unknown subset D of all defective
elements in [N ].

For a subset S ⊂ [N ], a test tS is a function tS : 2[N ] → {0, 1} defined by

tS(D) =

{
0 if |S ∩ D| = 0,

1 otherwise.
(1)
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174 AHLSWEDE et al.

We define search strategies as in [8]. In classical group testing, a strategy is called successful if
we can uniquely determine D. Here we call a strategy successful if we can find m elements of D.
Recall the concepts of adaptive and nonadaptive strategies.

Strategies are called adaptive if the kth test is determined by results of the first k − 1 tests.
Strategies where all tests are chosen independently are said to be nonadaptive.

Let f be a function f : [0, N ] → R
+. We define general group tests with density as functions

tS : 2[N ] → {0, 1} of the form

tS(D) =

{
0 if |S ∩ D| < f(|S|),
1 if |S ∩ D| ≥ f(|S|).

(2)

In [7] the case f(|S|) = α|S| is considered. The authors assume that a lower bound on the
cardinality of D is known. The goal is finding m ≤ D defective elements.

In majority group testing (defined in [9] and, more generally, in [10]), we have two functions

f1, f2 : {0, 1, . . . , N} → R
+

which define weights on the numbers D of defective elements such that

f1(D) ≤ f2(D) for all D ∈ [0, 1, . . . , N ].

We describe the structure of the tests tS : 2[N ] → {0, 1, {0, 1}} as follows:

tS(D) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if |S ∩ D| < f1(D),

1 if |S ∩ D| ≥ f2(D),

{0, 1} otherwise

(meaning that the result can be 0 or 1 arbitrarily).

(3)

In [10] it is assumed that the searcher does not know the cardinality of D but knows some upper
bound. In majority group testing it is not always possible to find the set D of all defective elements
(see [10, 11]). In general, one can find a family F of sets which contains D. This family depends
on f1, f2, D, and the strategy used. In this case we say that a strategy is successful if we can find
a family F with the smallest possible size.

Now we put ideas of these two models together so that there are two functions

f1, f2 : [0, N ] × [0, N ] → R
+

with f1(D,S) ≤ f2(D,S) for all values of D and S.

We define a test tS : 2[N ] → {0, 1, {0, 1}} as follows:

tS(D) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if |S ∩ D| < f1(D, |S|),
1 if |S ∩ D| ≥ f2(D, |S|),
{0, 1} otherwise

(meaning that the result can be 0 or 1 arbitrarily).

(4)

For this test function, denote by n(N,D,m) the minimal number of tests for finding m defective
elements.

The following lower bound for the minimal number of test is a generalization of a theorem in [7],
where this lower bound is given for the case of

f1(D, |S|) = f2(D, |S|) = α|S|.

This bound is valid for any binary test function (i.e., a test function taking values 0 or 1).
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Theorem 1. We have
n(N,D, 1) ≥ �log(N −D + 1)	.

Proof. Let us assume that we have a successful strategy s which finds a defective element with
n = n(N,D, 1) tests and n < �log(N −D + 1)	.

Depending on results of n tests, we have at most 2n different possible results for a defective
element; we denote them by E . We have by assumption that

|E| ≤ 2n < N −D + 1.

Therefore, |[N ] \ E| > D − 1, and there exists a set F ⊂ [N ] \ E with |F| = D. Now we consider
the case of D = F . Then it is obvious that using strategy s we cannot find any defective element
in n tests. 


We consider the following special cases of this test model: f = f1 = f2, and D is known.

Threshold group testing without gap: f(D, |S|) = u; thus,

tS(D) =

{
0 if |S ∩ D| < u,

1 if |S ∩ D| ≥ u.
(5)

Group testing with density tests: f(D, |S|) = α|S| for all values. Thus,

tS(D) =

{
0 if |S ∩ D| < α|S|,
1 if |S ∩ D| ≥ α|S|.

(6)

For all these test functions we consider the adaptive model with the goal of finding one defective
element.

In Section 1 we consider test function (1) (classical case) and give an optimal strategy for
finding one out of D defectives with �log(N −D+1)	 tests. In Section 2 we give strategies for test
function (5) (threshold case) and show that the strategy is optimal for m = 1. Furthermore, we
combine the strategy with that given in [12] for finding m elements. In Section 3 we give a strategy
for test function (6) and give some remarks on nonadaptive group testing.

2. CLASSICAL TEST FUNCTION

In this section we use test function (1). We assume that D (0 < D < N) is known. Our goal is
finding m defective elements.

We denote by n(Cla)(N,D,m) the minimal number of tests (1) required for finding m defective
elements.

Proposition 1. We have

n(Cla)(N,D, 1) ≤ �log(N −D + 1)	.

Proof. We give a strategy which needs �log(N − D + 1)	 tests. We know that the set S0 =
{D,D+1, . . . , N} contains at least one defective element. Thus, we start with the test set S1 ⊂ S0

of size
⌊N −D + 1

2

⌋
. If the test is positive, then at least one defective element is in S1; otherwise,

at least one defective element is in S0 \ S1. Therefore, depending on the test result, we replace S0

by either S1 or S0 \ S1 and iterate the procedure. With this method we find one defective element
in �log(N −D + 1)	 tests. 


Proposition 1 and Theorem 1 imply the following result.
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Corollary 1. We have

1. n(Cla)(N,D, 1) = �log(N −D + 1)	,
2. n(Cla)(N,D,m) ≤ m�log(N −D + 1)	.

Remark 1. If we do not know D but know that 1 ≤ D′ < D′′ < N with D′ ≤ D ≤ D′′, then we
need �log(N −D′ + 1)	 tests for finding one defective element.

3. THRESHOLD TEST FUNCTION WITHOUT GAP

The threshold testing

tS(D) =

{
0 if |S ∩ D| ≤ l,

1 if |S ∩ D| ≥ u,
(7)

was introduced in [11]. The gap between the upper and lower thresholds is defined to be g = u−l−1.
Now we will consider test function (5), which corresponds to the case of no gap (g = 0). One easily
sees that u = l − 1 in this case. First we assume that we know D.

We denote by n(Thr)(N,D, u,m) the minimal number of tests (5) for findingm defective elements
if we have N elements with D defectives and f(D, |S|) = u.

Our first goal is finding one defective element.

Proposition 2. If D ≥ u, then

n(Thr)(N,D, u, 1) ≤ �log(N −D + 1)	;

otherwise, finding any defective element is impossible.

Proof. We give a strategy which needs �log(N − D + 1)	 tests. The idea of the proof is to
partition the set of N elements into subsets

I1 = [1, u − 1], I2 = [u,N −D + u], I3 = [N −D + u+ 1, N ].

In I2 there is of course at least one defective element, because the union of the two other subsets
has cardinality D − 1. We can find a defective element in I2 using the following strategy with
�log(N −D + 1)	 tests.

We start with the test set

S1 =

{
1, . . . , u− 1, u, . . . , (u− 1) +

⌈
m(1)

2
(N −D + 1)

⌉}
,

where m(1) = 1.

Inductively, we set

m(j) =

{
2m(j − 1)− 1 if tSj−1(D) = 1,

2m(j − 1) + 1 if tSj−1(D) = 0,

and

Sj =

{
1, . . . , u− 1, u, u+ 1, . . . , (u− 1) +

⌈
m(j)

2j
(N −D + 1)

⌉}
.

After �log(N −D + 1)	 tests we can find an i such that t[1,i] = 1 and t[1,i−1] = 0, because it is
clear that t[1,u−1] = 0 and t[1,N−D+u] = 1. Thus, using this strategy, we find a defective element at
the position i. 


From Theorem 1 and Proposition 2 we get the following result.
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Theorem 2. If D ≥ u, then

n(Thr)(N,D, u, 1) = �log(N −D + 1)	.

The strategy can be generalized to the case of finding m defective elements.

Proposition 3. Let D ≥ m. Then

n(Thr)(N,D, u,m) ≤ m�log(N −D + 1)	.

Proof. We apply the strategy used in Proposition 2 for finding one defective element. We use
the ordered set [N ] and denote by πj(i) the jth position before the ith test. We set πj(1) = j.
In the first round we apply the strategy of Proposition 2 and find a defective element d1. Then we
define

πj(2) =

⎧⎪⎪⎨
⎪⎪⎩
d1 if j = 1,

1 if j = d1,

j if j /∈ {1, d1}

(i.e., we exchange the elements at the positions d1 and 1) and apply the same strategy with
�log(N − D + 1)	 tests to find a defective element d2 for the new set {π1(2), π2(2), . . . , πN (2)}.
Now we exchange the elements at the positions d2 and 2 and iterate this procedure, exchanging
after every round the elements at the positions dj and j, until we find a defective element du.
From now on we exchange the defective element at the position dj with the element at the position
N −D + 1 + j. In total, after m iterations, we find m defectives. 


Remark 2. If we have already found u − 1 defective elements, we can use any classical group
testing strategy to find the remaining D−u+1 defectives in the set of N−u+1 unknown elements
by adding the u− 1 defective elements to each test.

We apply this improvement if we want to find all defective elements, using the following result
of [12]:

n(Cla)(N,D,D) ≤
⌈
log

(
N

D

)⌉
+D − 1.

We proceed as follows. After u− 1 rounds in the proof of Proposition 3, we use the strategy of [12]
for the remaining N − u+ 1 elements with D − u+ 1 defectives, and then we get a total of

T (u) = (u− 1)�log(N −D + 1)	+
⌈
log

(
N − u+ 1

D − u+ 1

)⌉
+D − u+ 1

tests. This gives the following upper bound.

Theorem 3. We have

n(Thr)(N,D, u) ≤ T (u).

If D is unknown, we can take one test with all elements. Then, if the answer is negative, we
cannot find any defective element. If the answer is positive, we know that D ≥ u.

So we are interesting in the case where we do not know D, but we have u ≤ D ≤ N .

If D is unknown, we denote by n(Thr)(N,u,m) the minimal number of tests (5) required for
finding m defective objects in the worst case if we have N elements and f(|D|, |S|) = u for all
values. In this case there is the following estimate.

Lemma 1. We have

n(Thr)(N,u,m) ≤ m�log(N − u+ 1)	.
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Proof. If D is unknown, a similar idea works as in the proof of Proposition 3. We give a
strategy which needs m�log(N − u+1)	 tests. We use m adaptive rounds and start with a test set

S1 =

{
1, . . . , u− 1, u, . . . , (u− 1) +

⌈
m(1)

2
(N − u+ 1)

⌉}
,

where m(1) = 1.

For j ≤ �log(N − u+ 1)	 we set

m(j) =

{
2m(j − 1)− 1 if tSj−1(D) = 1,

2m(j − 1) + 1 if tSj−1(D) = 0,

and

Sj =

{
1, . . . , u− 1, u, . . . , (u− 1) +

⌈
m(j)

2j
(N − u+ 1)

⌉}
.

First we find one defective element d1 using �log(N − u + 1)	 tests. Now instead of the set
{1, 2, . . . , N} we use the set {π1, π2, . . . , πN}, where

πj =

⎧⎪⎪⎨
⎪⎪⎩
d1 if j = 1,

1 if j = d1,

j if j /∈ {1, d1},

and then continue as before with �log(N − u+ 1)	 tests and find the defective element d2 for the
new set {π1, π2, . . . , πN}. Then we iterate this procedure until we find u − 1 defectives. Then we
know that the remaining D−u+1 defectives objects are in the set [u,N ]. These defectives can be
found in (m− u+ 1) rounds with �log(N − u+ 1)	 tests. 


4. DENSITY TESTS

Test model (6) was considered in [7].

Let n(Den)(N,D,m,α) be the minimal number of tests (6) required for finding m defective
elements if we have N elements with D defectives. In [7] the authors obtain the following bounds
for n(Den)(N,D,m,α) assuming that D ≥ αN :

�logN	+ max
N ′≤2m/α

n(Den)(N
′,m,m,α) ≥ n(Den)(N,D,m,α), (8)

�logN	 ≥ n(Den)(N,D, 1, α). (9)

In general they show that

log(N −D + 1) ≤ n(Den)(N,D, 1, α). (10)

Test model (6) gives the same result as test model (1) if the size of the test set is smaller
than 1/α. In the strategy given in the proof of Proposition 1, the biggest test set S0 has cardinality⌊N −D + 1

2

⌋
. If |S0| in test model (6) is smaller than 1/α, we can apply the strategy and get

n(Den)(N,D, 1, α) ≤ �log(N −D + 1)�.

This is the case if D ≥ N + 1− 2

α
. Therefore, we obtain the following result.
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Proposition 4. Let D ≥ N + 1− 2

α
. Then

n(Den)(N,D, 1, α) = �log(N −D + 1)	.

Now we will improve the result. We will give a strategy which is optimal for D ≥ αN (it needs
�log(N −D + 1)	 questions).

We define

si =

⌈
2n−i − 1

1− α

⌉
,

where i = 1, 2, . . . , n− 1, and sn = 1. For a given D we choose the largest n such that

D >
n∑

i=1

si − 2n + 1. (11)

We consider test sets

Si = {ai + 1, ai + 2, . . . , ai + si}

for i = 1, . . . , n, where a1 = 0 and

ai =

{
ai−1 + si−1 if tSi−1(D) = 0,

ai−1 if tSi−1(D) = 1.
(12)

Note that |Si| = si.

Lemma 2. If tSn−j (D) = 1, then we can find one defective element after n tests.

Proof. We proceed by induction on j. The case of j = 0 is obvious. Let us also consider the

case of j = 1 (to show the idea of the strategy). We have sn−1 =
⌈ 1

1− α

⌉
and tSn−1(D) = 1. Then

sn−1 − 2 < αsn−1 ≤ sn−1 − 1.

Thus, in the set Sn−1 we have no more than one nondefective element. If tSn(D) = 1, this gives us
a defective element; otherwise (tSn(D) = 0), we can take any element from Sn \ Sn−1.

We assume that the statement is proved for j − 1. Let tSn−j (D) = 1; then by the induction
hypothesis we may assume that tSn−i(D) = 0 for all 0 ≤ i < j.

Thus, the number of nondefective elements in Sn−j is not greater than 2j−1, since tSn−i(D) = 1
and

sn−j − 2j < αsn−j ≤ sn−j − 2j + 1.

On the other hand, the number of nondefective elements in Sn−i for all 0 ≤ i < j is greater than
or equal to 2i, since tSn−i(D) = 0. Thus, all elements in Sn−j \

⋃
i<j

Sn−i are defective.

The set Sn−j \
⋃
i<j

Sn−i is nonempty, because for any k and α, 0 < α < 1, we have

1 +
k∑

i=1

⌈
2i − 1

1− α

⌉
< 1 + k +

k∑
i=1

2i − 1

1− α
= 1 + k +

2k+1 − k − 2

1− α
<

2k+1 − 1

1− α
. 


Theorem 4. Let (11) be fulfilled, and let N ≤ 2n +D − 1. Then after n tests of the strategy
given above we find one defective element.
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Proof. Consider the tests sets defined in (12). If for some i we have tSi(D) = 1, then the
theorem follows by Lemma 2. If tSi(D) = 0 for all i = 1, 2, . . . , n, then we denote by ci the number
of nondefective elements in Si. The number of defectives in Si is si−ci. Thus, we have si−ci < αsi,
and hence ci ≥ 2i.

In total, the number of nondefective elements is not less than 2n − 1 and, since

N −D = 2n − 1,

we can take any element of [N ] \
n⋃

t=1
St. Note that if

N < 2n +D − 1,

then there is an i with tSi(D) = 1. 

Corollary 2. If D ≥ αN , then

n(Den)(N,D, 1) = �log(N −D + 1)	.

Proof. By (10) we have

D >
n−1∑
k=0

(⌈
2k − 1

1− α

⌉
− 2k

)
.

Note that

n− 1 +
n−1∑
k=1

(
2k − 1

1− α
− 2k

)
=

α

1− α
(2n − n− 1).

If we take
D >

α

1− α
(2n − n− 1)

and
N < 2n +

α

1− α
(2n − n− 1)− 1,

then
N

D
<

1− α

α
+ 1 +

(1− α)n

α(2n − n− 1)
.

Thus, if D ≥ αN , we can apply Theorem 4. 

Remarks (nonadaptive case).

In [6] it is shown that for test (1), if D is unknown, one needs N tests for finding one defective
element or claiming that there are no defective elements. If D is known, we can test N−D elements
to find one defective element or we can use a (D, 1) cover-free code for finding all elements and
thereby one element as well.

A nonadaptive model for majority group testing was considered in [9, 10]. The goal in these
papers was finding all defective elements.

Results of [13] for row-weighted cover-free codes can be used to get strategies for test (6) if the
number of defectives is known.

REFERENCES

1. Du, D.-Z. and Hwang, F.K., Combinatorial Group Testing and Its Applications, Singapore: World Sci.,
2000, 2nd ed.

2. Du, D.-Z. and Hwang, F.K., Pooling Designs and Nonadaptive Group Testing. Important Tools for DNA
Sequencing, Hackensack, NJ: World Sci., 2006.

PROBLEMS OF INFORMATION TRANSMISSION Vol. 48 No. 2 2012



FINDING ONE OF D DEFECTIVE ELEMENTS 181

3. Garey, M.R. and Hwang, F.K., Isolating a Single Defective Using Group Testing, J. Amer. Statist.
Assoc., 1974, vol. 69, no. 345, pp. 151–153.

4. Kumar, S. and Sobel, M., Finding a Single Defective in Binomial Group-Testing, J. Amer. Statist.
Assoc., 1971, vol. 66, no. 336, pp. 824–828.

5. Bar-Lev, S.K., Boneh, A., and Perry, D., Incomplete Identification Models for Group-Testable Items,
Naval Res. Logistics, 1990, vol. 37, no. 5, pp. 647–659.

6. Katona, G.O.H., Finding at Least One Defective Element in Two Rounds, in Search Methodologies
(Dagstuhl Seminar 09281, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany), 2009.

7. Gerbner, D., Keszegh, B., Pálvölgyi, D., and Wiener, G., Search with Density Tests, in Search Method-
ologies II (ZiF Workshop, Bielefeld, Germany, 2010), pp. 33.

8. Ahlswede, R. and Wegener, I., Suchprobleme, Stuttgart: Teubner, 1979.

9. Lebedev, V.S., Separating Codes and a New Combinatorial Search Model, Probl. Peredachi Inf., 2010,
vol. 46, no. 1, pp. 3–8 [Probl. Inf. Trans. (Engl. Transl.), 2010, vol. 46, no. 1, pp. 1–6].

10. Ahlswede, R., Deppe, C., and Lebedev, V.S., Threshold and Majority Group Testing, to appear in Lect.
Notes Comp. Sci.

11. Damaschke, P., Threshold Group Testing, General Theory of Information Transfer and Combinatorics,
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