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On the connection between the entropies of input and
output distributions of discrete memoryless channels

1. Introduction

Let A and B be finite sets and let w(.|.) be a stochastic |A| X |B|—ma-
trix. The transmission probabilities of a discrete memoryless channel (d.m.c.)

D are defined by

(1'.1) P (b"|a®)=II w(b,|a;) for every a*=(a;, ..., a,)€A"=1I 4,
=1 1
b*=(by, ..., b)€B"=I1 B and every neN={1,2,3, ...
1

4 is the input and B the output alphabet of this channel. The elements
of A" (resp. B”) are the input (resp. output) words of length n.

Let p” be a probability distribution (p.d.) on A” and ¢*the correspond-
ing p.d. on B*, that is, : ,

(1.2) = > p* (a")P (b"ja") for all b < B",

a"eA"

We shall denote by H the entropy function of random variables and
we use the same letter also for the entropy of p.d.’s.
Finally, we frequently use the function I, defined by

(1.3) h(N)=—2 log A—(1—2) log (1—2), 0 <A< %

In[1] Wyner and Ziv proved the very interesting Theorem below, which
establishes a connection between the entropies H(p") and H(¢") in case 9 is
a binary symmetric channel. In [2] this result was applied to various multi-user
communication problems.

Theorem (Wyner and Ziv [1])

Let @ be a binary symmetric channel (b.s.c.) with “crossover” proba-
bility py, then for all ne N and all p.d. p* on A*:

1.4) -]1; H@Y>h (x)=>-:- H (") 27 (A (1= po)+(1—2) po) (0 << 1).

—— e
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The bound to the right in (1.4) is clearly best possible and is already
obtained for n=1. Defining for any real number ¢, 0 <c< log|4]|, and. any
neN the function f?(c¢) by

. 1 i
(1.5) f* ()= min - H (¢™)
P HP e

we can state (1.4) in the following form:

(1.6) f*()=h[h™(c) A =pe)+(1—h~1(c)) po] where i~ is the inverse of the
function defined in (1.3), .

O0<c<log?2, and neN.

Since it is to be expected that relations of a similar type as (1.6) shall
play an increasing role in the analysis of multi-user channels and sources it
seems desirable to have results for more general channels. One of our results
(Theorem 2 in Section 3) says that the equality f*(c)={f"(c), n<N, holds for
all memoryless binary alphabet channels. However, examples 1 and 2 in Section 3
show that the identity does not hold if |A] =3 or |B|>3. In order to prepare
for results of a more general nature, we introduce now the concept of the ger-
bator of a channel. This concept is motivated by (1.4) and the name is choosen
for historical reasons (see [1], footnote 1).

G is the gerbalor of the d.m.c. @ if for any real ¢>0, any neN and
any p":

(1.7) 2 H(p"y=c=>—H (") 26 (c) and G (c) is mazimol with this property.
n n -

Frequently we write f instead of f! and we call this function the charac-
leristic function of the channel. In this terminology the result by Wyner and

Ziv says that for the binary symmetric channel the gerbator equals the charac-
teristic function. Our Tleorem 1 in Section 2 states that for general discrete
memoryless channels the gerbafor is equal to the convex lower envelope of the
characteristic function. _

Finally, in Section 4 we extend the concept of a gerbator to arbitrarily
varying channels and to multiple-access channels, and we obtain simple cha-
racterizations (Theorem 3).

2. The gerbator of a discrete memoryless channel

We denote by f* the convex lower envelope of the characteristic function

f(c)= min  H (q'). Equivalently we can define f* by
PLH (P e
(2.1) f* ()= inf min -~ H (¢").
neN p"=P1><---><fJ,, n
~ H(p")2e

n
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THEOREM 1

For a discrete memoryless channel we have

) . ) . 1
(2.2) inf min L H (¢®)= inf min — H(g")
neN " L= " "EN  plepiXeXpn
i — H{(p")>c

n

or equivalently tlie gerbator G equals the lower envelope f* of the characteristic
function f.
For the proof we need a well-known identity, which was also used in [1].

Let X"=(X,, ..., X,) be a vector valued random variable with values
in A" and distribution p". Furthermore, let Y"=(Y,, ..., Y,) be a vector valued
random variable with values in B* and distribution q" given by

(2.3) " (0")= ) p"(a") P (1*|a") for b"< B", where P(.|.)

aﬂ E Aﬂ

is the transmission probability for a memoryless and not necessarily stationary
channel.

‘Under that éssumption we have
(2-4) H(Yklyls sy Yk—h Xl’ LN Xk—z)-_—H(Yleb X3 Xk-l),
for k=2, 3, ...n.
Proof of Theorem 1
We have to show that
(2.5)  min {i—];H(YHYk_l, YY) ;%};H(Xklxk_l, xl)_>_c} > f* (c).

Since H (Yy|Yiy, -0, Y) 2 H(Yi|Yyoy, ooy Yy, Xy, ..., X,) and since

(2.4) holds, it suffices to show that

(2.6) min{izH(Y,_,;Xk_l, e XA H(XL X, ...,Xl)zc}zf* (c).
n k=1 n g1
One easily verifies that
(2.7) PI‘Oh (Y,’r:b}llxk_l-:(lk__l, iy X1:a1)=
=2 Prob (Xe=a| Xy 1=y s oo, Xy=ay) W(belay)
2

and therefore we have

(2.8) H(YkIXk——lzak—ls vy Xy=ay) Zf*(H(XI:,XI:—lzak_—ls s Xy =ay)).
The convexity of f* and (2.8) imply that

(2.9) H(Yp|Xgogs oo, X)) =% (H(Xp | Xsoss oo, X1).
This, and again the convexity of f* yield (2.6).
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3. Convexity of the characteristic function in case Al — Bl =2

In section 2 we proved that the gerbator G of a d.m.c. equals {*, the
convex lower envelope of the characteristic function f- It was shown in [1]
that in case of a binary symmeiric channel the function

(3.1) [(&)=1 (17 (e) (1= po) -+ (1 —=1"2(e)) po).

0

IA

¢ <log 2, pOE[O, —1~:i, is striclly convexr (U) in ¢ and that

-

(3.2) f(€)=0G(c), D<c<log2.

In this Section we prove that (3.2) holds for all binary (not necessarily
symmetric) channels and that (3.2) does not hold in general if |Al=3or |B| =3

THEOREM 2
For a discrete memoryless channel with binary «lphabets ihe following
statements io0ld :

(1)  the claracteristic function _
f(©)= min H(qY) is convex, thal is, [(c)==[%(c),
P1: H (p)=c

(2) ™ (c)= min }__[—] (q"):;f(c):G(C) Jor all ne N.
#E e

Proof

We know from Theorem 1! that G(e)=[*(c) <f"(c) and since also
f*(€) <f(c). (2) if a consequence of (1).

It remains to be shown that f is convex. The function
(3.3) F(c)= min H(g)

P H (p)=s

is equal to f(c) for every c, O<c<log2, if F is monotonically increasing.
It suffices therefore to show that F has positive first and second derivatives.
For this purpose we give now a suitable description of F.

For given ¢ we find that one of the two distributions with entropy c,
which minimizes H(¢). We denote the smaller of the two components of this
probability vector by z and also the smaller of the components of the cor-

. 1 .
responding output vector by y.Thus to everv z,0 < T < -, we have associated
v v 2

<

1 . . o .
ay,0<y<—. Denoting this mapping by [ we can write
2 :

(3.4) F(c)=h{I(i7*(c)), with & as defined in (1.3).

We describe now [ analytically and show that y=I{x) is linear and in-
creasing. The transmission matrix w can be written in the form

(3.9) w:(gg), where F=1—r for any real number r.

W.lo.g. we can assume that

(3.6) . 22 B>
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Clearly,
[(2)=min {za+2B, za+if, Ta+ 2B, T&+ af}=min{ z (x— B)+
T8, 2@—P)+B, z(B—o)+a, z(B—a)+a}.
We claim that
1

(3.7) H(z)=z (B—&)+a, Osxs?.

The inequality z(a— B)+B < x2(B—«)+a holds for all z E[O, —;-], because

the lines intersect as x=% and for x=0 we have B<a by lassumption. Si-

T@-@)+a<z(@—P)+4 for 0zl

2 R
(3.7) follows now from those two inequalities and the relations & < and
(a—P)=((—a). (The two lines z(e—B)+p and r@B—a&)+& are always paral-
lel and they coincide exactly in case &=f, that is for the b.s.c.).d

’ Set z=h"1(c) and y=(5-&)x+&=y:r+6c, v>0. Then for 053;_5%
dz de y X s
and also
(3.9) F'(=ylog=i1=2[ 1 ;. 1=y _ log 1=Z],
x (1-2)z ¥y (d-py T
Since y log™? 12 20 it remains to be shown that
X
(3.10) ' 1—y (‘—")3’> l—z\Y(l-x)x,
. ( y ) _( x )

Ify<a, thenﬂz 1=z 21, 1—y>1—z and—€=x+i>x.
y z Y . ¢
In the remaining case we have;— 2 Y2z and it turns out that the b.s.c.
has an interesting extremal property, which makes it possible to reduce the
~above problem to the case of g b.s.c., where the solution is known ([1]).

We proceed as follows. For a given pair (z.y) z<y< —;~ we consider
the class Way of all channels w* such that
(3.11) y=vy*z+t+a*
i Since 1—_—-3521 it suffices to prove (3.10) only for the maximal v* occur-

X .
ringin (3.11). We complete the proof of the theorem by showing that the maxi-

mal value of y* is assumed for a binary symmetric channel. For a b.s.c. satis-
fying (3.11) we have

(3.12) y=(1—28) -+8, where §—=_Y—%
12z

Suppose that Y*=1—28 is not maximal, then for an ¢>(
y=(1-28)x+ex+8(e) and therefore §(c)=8—ez.

2 — C. 1067 17
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1—-8+4ex 8—cex

For the corresponding matrix (
' §—ce(1—2x) 1-8+e(1—2)

) we have
to satisfy the constraints ,
(3.13) C 1—34ex>8—e(l1—1x)>8—cx.

The last mequahty however does not hold for x<? For z = % we

have y=—— and (3.10) holds anyhow.

We show now by example that Theorem 2 does not generalize to non-
binary alphabet channels.

Ezample 1 (JA] =3, |B|=2).

it
01/ ,|d]=m+1
We shall show now that the characteristic function f is not convex, sim-

ply because it is 0 at ¢=0, increases then to the value ]z(—i—) and stays con-
stant over a certain interval. ' _
1 1 /(3 1 3
Let c=su c) </ (—)} Since —(— —) 0,1 —(——,—) we 0b-
p{elf@<i ince — (=, |+ =0.0=(+. 3
tam that ¢=H (p), where p= ( ,—}— 2
3m’ 3

3m

A

Hence, c=1 (%)+%logm. Set é=sup{c]f(c)=/z (—i—)} We havé
¢=logm and ¢>c for m=>2.

Ezample 2 (JA|=2, |B|=3). Since example 1 shows already that Theo-
rem 2 does not extend to general alphabets we comment on the present case
only briefly and omit calculations.

Suppose that w=(2) and that #(p,)<H (p;). It can ‘be shown that
f©o= min H(gq)=min (f, (c), f>(c)), Where f;(c)=H (Aps-+(1—A) ps) for

=(hs 1—

h(A)=c
)\'s% and h(\)=c, f, (€)=H (A\pr+(1—2) p,) for >\>% and h(1—2)=c.

Let now 3* be such that H (\*py+(1—A%) p.)= max H AP+ (1—2) ps)-

If )\*>—12- then f;(c) is not convex, f2(c) is convex but f(¢c)=min (f; (c),

fz(c)) is not convex. This occurs for instance if

w— I ;\*5% then fi(¢) =f(c) and we have convexity of



An open problem

Since f(c) is in general not convex one might investigate whether for
a given matrix w there exists a function ny(w) such that f® is convex and
equals therefore f*. It should be possible to give a bound on n,(w), which de-
pends only on |4} and |B|.

At any rate it is desirable to have estimates on the speed with which
f*(c) converges to f*(c) as n goes to infinity.

4. General results

The purpose of this last Section is o demonstrate that the concepts
and results of Section 2 can be extended to various channels, which have
previously been considered in the literature. Since by its very nature our
discussion can be by no means exhaustive, we shall limit ourselves to two
typical examples, arbitrarily varying channels and multiple-access channels
(see [7] and [4], [5], [6]). We did not include compound channels, because the
generalization of Theorem 1 to this case is straightforward. At the present
state of the theory we cannot fully judge the importance of our results for
existing coding problems, but since the results seem to be answers to natural
questions. we are optimistic about their future role. We recall now briefly
the definitions of the channels mentioned. .

Let S be any set and let W={w(.].|s) |s=S}be a set of stochastic [A] X

X |B|-matrices. For every s*=(sy, ..., Sn)ell S we define P (.l.Is*) by
' 1
(4.1) P ar|s*y = II w (b, | a;|s;) for every a*e A", b*e Bn.
=1

An arbitrarily varying channel (a.v.ch.) @ is defined by a sequence
(@)nen, where

- (4.2) a*={P(.|.Is")|s"< S"}, ne N.

For the sake of notational simplicity we define multiple-access channels
(see [4], [5], [6]) only in case of two senders even though our results below
extend to more general cases. ’

Let A, D, and B be finite sets and set A»=1IA, D*=IID, and B*-—
1 1

=IIB. Furthermore let w(.].,.) be a stochastic |AXD | X |B|-matrix.
1
The transmission probabilities of a multiple-access channel 4 are defined by
(4.3) ‘ P (b" f a®, d”) =w (bg ! a;, d;)
t=l

for every a*=(ay, ..., a,) e An, d*e D" b"eB", and neN.

We introduce now a notion of gerbator for the channels described. For
p" on A" and P(.|.|s*) define ¢ (-1s") by
(4.4) g (0" [s*)= ) p*(a®) P (b*|a"|s") for all b*e Rn.

a"ed”
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G, is the gerbator of a if for any real ¢ >0, any n and any p*:

(4.5) L H(p7) et min H (g% |s%) = Ga(c)
n n s*

and G, (¢) is maximal with this property. '

Let r* be a p.d. on A®XxX D™ and define ¢* on B® by ¢* (b*) = E " (a®,

a", 4"

d*) I’ (b*| a®, d*) for all b"< B". Denote the marginal distribution of r* on
A" (resp. D®) by r} (resp. rp).

The gerbator of m is a function of two variables G,.: G.(c,, ¢5) is the lar-
gest number such that for all n and r*

(4.6) % HEDzc, %H () = c; =2 H (¢%) 2 Gon (cy, C2)-
n

In case we allow only product distributions r*=rjxrpin (4.6) we are
led Lo the definition of the I-gerbator G,,z

We denote the characteristic function of w(.|.|s) by f(c¢, s) and we defme
the characteristic functions f/ and f for s by

(4.7) fi(cq, o) = min H (q9)
r=7,Xr,
Hir )=¢y, Hr ) >c

(4.8) f(cy, ¢.)= min H (¢).
r:H ('4) =6
H (’D) 2 €y

Finally, we denote the lower envelopes of these three functions by f*(c, s),
[*(ey, €5), and f*(cy, o).

THEOREM 3 (Characterization of gerbators of a and m).
The following identities hold:

a.) G. (¢) equals the convex lower envelope f of min [(c, s),
seS
b) Gm (cl’ Cz)zf* (cla 62)9
¢.) Gn (€1, C2)=[*(Cq, C2).
Proof

a.) By using time sharing we clearly get that G.(c) < f(c).

We prove the converse inequality by looking at an individual P(.|.[s"),
where $%=($y, ..., Sz). Since (2.4) holds in case of a nonstationary memoryless
channel, (2.9) holds also in the present situation and we therefore have

(4.9) H (Y Xe_ps ooy X3 58) 2 [* (H (X4 Xsot, ooy Xo)y S,

where the distribution of Y, depends now of course on sg.
Since f(¢) <f* (¢, s) for all se S and since f is convex

(4.10) %Z,(Yklxk_l, o X0 z% k}jf (H (Xe| X5ry orey Xo) 2
k=1 =1

f( H(X,, ..., X,.)), which was to be proved.

20



b.) We have to show that

min{l EH (Ykl Yk—-l’ resy Yl)l -:—{ ZH (Xlek_p very Xl)an
n p=1 . Awe] .

1 ¢« y
. kZ;H (ZilZi_y, .., Zy) ?_Cz}Zf*I (¢4, C2)-

By viewing A x D as a single input alphabet and (X Z,), {=1...., n;
as random variable with values in A XD we can use the result stated in
(2.4) and obtain

(4.11) H(YalYips oo Yo, Xigy ooy Xy Zass orn) Z9)—
=H Y| Xe_1, ..., X4, Zi_4,..., Zy). Since H(Ye|Yi_,, ..., Y)) >
2H(Ys|Yroy, o, Yy, Xiigy oo Xy Zicy, -.., Z,) it suffices to show that

min —1‘ ZH(YIC,XI(—IQ oo Xay ZLrqs ey Z,) ?.f*I (cls Cs)-
n (=1

One easily verifies that

Prob (Yi=bulXs1=ar_1, o, Xa=ay, Zi_y,=ds_y,..., Zy=d;)= Y, Prob

a4,
Kr=ar, Zi=dx|Xs 1= ti_y, ..., Xo=0y, Zi_y=ds_y, ..., Zy—=d) w (bslas. dx)
and therefore we have
(4.12) H (Y Xoy=ax_y, ., Xo=0,, Zy_y=dp_y, ..., Ay=d)) >
= (H (X Xp_y=ak_y1, oy, Xo=0y), H(Ze|Zs_y=dx_,, ..., Z,=d,)).
- The componentwise co.nvexity of f*! yields
(4.13) H(YdXe_y ooy X0, Ziq, ooy 23) =
2 ¥ (H (XelXioy oo X3, H(Z1|Zs_y, ..., ZY))
This, and the convexity of f*! imply

(4.14) | %ZH’(Ykixk_l, r Xuy Zis s Z2)
k=1

Zf*l(:l_hZIH(Xk,Xk-la ey Xl)s%’; H(ZkIZk._l, ey Zl))

Thus, Gr. (c;, ¢3) > f* (c,, ¢;). The converse inequality is obtained again
by time sharing. '
‘ ¢.) In the case of dependent input probability distributions (4.12) holds
with f*! replaced by f*. Convexity then yields (4.13) for f* and finally also
(4.14). Thus, G,(c,, ¢;) = f*(c,, ¢;). The converse relationship is again obvious.
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