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Let 1 < N <2" and let %, B denote families of subsets of {1,..., n}. The following results are
proved: ' '

Theorem 2.3. (U,B) is a d-pair, 1<d=<n, if |AAB|=<d for all A€, BEDB. Then
max{|B|: (A, B) is d-pair and |A| = N} is assumed if N is a “*quasi-sphere"’.

Theorem 3.1.‘minﬁ:.u,-~2A_Be§|A N B is-assumed for a (pseudo)-sphere characterized by the
property that

[HA:A €W, x€A}-{A:AENA, yE A}|l=1

for all x,y €{1,2,...,n}. _ -
Denote by K, = K,(N) (i =0,1,..., n) the number of i-element members af an order ideal .

" Theorem 4.2. miny. u.-~n2, KW, is assumed
(a) in case Wo< W,<---< W, if W is a quasi-sphere,
(b) in case Wo= W, == W, if A is a quasi-cylinder.

Theorem 4.5. min,.':,“,_,.,z, KW, is assumed
(8) incase Wos W, <-.-W,,,,=---=W, by a union of a quasi-cylinder and a quasi-sphere,
(b) incase Wo=W,=---=2 W, < W,.,.I <---=< W, by an intersection of a quasi-cylinder and
a quasi-sphere. ' '

1. Introdu‘ction

Let H* =I17{0,1} be the set of (0-1)-sequences of length n' and let d denote the
Hamming metric in H", that is, for any two elements x" = (x,,...,x,), y" =
(Yiy...,y.)EH", :

* The Research of the first author was supported by the Deutsche Forschungsgemeinscﬁaf(. The work
of-the second author was done while the author visited the Institute of Mathematical Statistics,
University of Géttingen. :

' There is a natural correspondence between those (0-1)-sequences and the subsets of the set
{1,...,n}. We shall use both — the sequence and the subsets — terminology in this paper. Sets of
cardinality k are also- called k-tuples.
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d(viovty = e A y. I <t<n}|. ' (1.1)

This is a very canonical metric for (0-1)-sequences and was used by Hamming for
his investigations in the theory of error correcting codes [14]. We refer to (H”, d)
shortly as Hamming space. Whereas the theory of error correcting codes has used
since its carly days algebraic and also combinatorial techniques, this used to be not
the case for the Shannon theory of communication, which heavily depends on
probabilistic methods. However recent investigations in multi-user communication
(1. 2D led to new combinatorial extremal problems in (H", d) and also more
general spaces, which we shall not consider here. Related problems occurred in the
study of random graphs [26]. We state one important result of [26] (in the slightly
.improved form of [2]), which scems to be of gencral interest to probability theory.

Let P*= P x---X P be a product distribution on X" =II1 X, X ={1,...,a},
and define for BC X":

[“B={x":x"€X", d(x",y")<k for some y" € B} - (1.2)
for'k =12,....
Furthermore. define the “‘inner” surface 6B of B by ‘
8B =BNTI'B, - | (1.3)
where here and elsewhere A denotes the complement of a set A. Then,
P (8B)= ¢ - n f(P"(B)), _ (1.4)

where f(s)= ¢(P7'(s). (1) = (21r)‘§e'5’2, Q)= [’ ¢(u)du and where ¢ is a
constant depending only on P. '
As a consequence of (1.4) one obtains (see [2]) for all B C X7,

l’"(l"B)Z(I)[(IJ"(P"(B))Jrn'5(k—l)c], Ck=1,2,.... (1.5)

Those results are exact up to a multiplicative constant and imply that in case
N ={0.1} and P(0)= P(1) =3 among all the subsets of H" with given cardinality
the Hamming spheres have smallest (within an accuracy given by this constant)
surface. (The surface of a set B is I'B — B.) The same result holds for the k -surface
I'B* — B. This result suggests that the sphere is the exact solution to the problem.
and indeed this was proved to be true in [16]. More specifically the following was
proved. '

Theorem 1.1. If ACH" |A|= N <2", then
iIr‘'(A)| = Ga(n,N) ford=1,2,..., : (1.6)

Gy = (1) e (B (e

(lk e ® a'
+(k—d>+ +(1—d>’

where
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if N is (uniquely) represented as

= n .« .. h (Ik oo al
N = () () () e+ ()
for some k; t—1<k <n; and

M >aa>a, > >a=t=1.

Equality holds in (1.6) if A consists of all [-tuples; O0</=<k+1; and
(&) + - -+ (¥ (k +2)-tuples chosen in lexicographical order. We refer to such a set

© as a quasi-sphere and if (%) + - - - + (%) = 0 as a sphere of Hamming radius k + 1 and

center 0 = (0,...,0). H" can be viewed as vector space over the field GF(2) and the
metric d is invariant under translation by a vector. Therefore the above statements
apply to spheres or quasi-spheres with any center. The special case d =1 has a
striking interpretation and simply means that given the cardinality (*volume’) the
sphere has minimal cardinality of the surface. This phenomenon is known as -
isoperimetric property for euclidean [30] and also non-euclidean geometries (see
[28, 29]). Since (H", d) is isomorphic to the family of subsets of an n-set endowed
with the symmetric difference as distance function every result about (H", d) has
directly a set theoretic or combinatorial interpretation. The classical isoperimetric
property has been studied in great detail and many consequences have been
derived. Those geometric results can now serve as guides for finding analogous

combinatorial results or at least to derive some of the known results by a unified

approach. Combinatorics has always ecarned the criticism of lacking general-
theories and the present attempt may help to carry some general principles into the

~area of extremal problems. As far as our actual results go this is just a beginning.

In Section 2 we show that earlier results (see [17, 20]) can be derived from the

~ isoperimetric property and can be stated as: for given “volume™ the Hamming

sphere has minimal diameter.
The “Spiegeltheorem” of Schmidt [28], a dual form of the isoperimetry theorem

‘has a simple analogue in H" and lcads to a combinatorial result, which was

previously unknown (Theorem 2.3, Section 2). ,
In Section 3 we investigate sum type extremal problems, which add a new

- dimension to extremal problems considered so far in the literature (see [10, 18, 12]).

Theorem 3.1 gives a new characterisation of the sphere. The concept of an order
ideal is very basic for many combinatorial problems (see [12]). They are defined for
partially ordered sets and naturally extend the notion of a simplicial complex to
which they specialize in H". They provide the answer to many extremal problems
and deserve a study on their own. In Section 4, Theorems 4.2 and 4.5, we give
geometric characterisations of order ideals, which are optimal under certain weight
assignments to the “levels” of the ideals. In Section 5 an application to random
graphs is given. ’ ' '
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3. New and old combinatorial results as consequences of the isoperimetric property
in Hamming spaces

“We begin with some general remarks about the isoperimetric property.
For a set A C H" one can write I"'(A) (defined in (1.2)) also as

I"(A) = "Le)‘ S.(x™), , ' B (2.1)
wliere ‘
S(x")y={y":y"€H" d(x"y")=s r}.
Since '

S =1+ S0 - o 2.2)

with the addition understood in the vector space H”, one can also express F'(A) as
the Minkowski sum (that is B+ C={b+c:bEB,cE ChH

I"(A)= A +5,(0). (2.3)

The isoperimetric property then means that Mina:ja-n] A + S, (0)] is assumed for a
quasi-sphere. In this formulation one easily recognizes a similarity to the
Brunn-Minkowski inequality (B.M.L) for the cuclidean space E" 5,27}, especially
it one uses a formulation due to Schmidt [29). ' :

For anv Lebesgue measurable set A C E" he defines the radius v(A) as the
radius of a sphere, whose volume equals the volume of A. The B.M.IL. then takes

the form
(A +B)=v(A)+ v(B) | (2.4)

with equality if and only if A and B are spheres up to null sets. In [28] a closely
related result was obtained, called the Spicgelthecorem,

r(A/B)< v(A)- v(B) 2.5

with equality if and only if A and B are spheres up to null sets. Here
A/B =0V u{- h,;‘\+ A} is the Minkowski difference. '
In {28} and [29] those inqualities were extended to all non-euclidean geometries.

The structure of the space H™ is quite different, however. The most apparent and
most basic differences are:

(a) H" is discrete (even finite) — E™'is nondiscrete. .

(b) Complements of spheres arc spheres in H" — this property obviously does
not hold in E". _

(c) H" hassubgroups, whereas E” has no subgroup of positive finite measure.
 An immediate consequence of (c) is that the B.M.IL. cannot hold for H" in its full
ecnerality. v

However. there are important special cases, which are obtained by assuming that
onie of the two sets is a sphere. For A C E” define
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I''A={x:x€E" p(x, A)<r}, ‘
A={x:xEE" p(x,a)sr Vae€ A},
' A={x:x EE" p(x,A)=r}, (2.6)

where p is the euclidean distance and p(x, A)=inf,e.p(x, y). Then

v(I'A)=v(A)+r, (2.7)
v(lFA)Ysr—-v(A), ‘ (2.8)
v(I_, A)<v(A)-r (2.9)

with equalities if and only if A is a sphere up to a null set.
(2.7) and (2.8) can be put into another equivalent form. For this define,

" D(A,B)="sup p(pq), D*A,B)= inf p(pq).

PEA.qED pEA.qER
Then
v(A)—-v(B)=D*(A,B), A D B, (2.10)
v(A)+v(B)=< D(A,B) ) (2.11)

with equalitiés exactly when A, B are concentric spheres up to null sets.
To see thisset r = D*(A, B) resp. r = D(A, B). In the special case A = B (2.11)
gives

v(A)<}iD(A,A) - (2.12)

that is, for given diameter the sphere has maximal volume [4]). We shall see below
that all inequalities (2.7)-(2.12) have analogues in Hamming spaces. The exact
formulations do not translate because slight modifications are necessary if v is not

an 1ntegral Also in order to get exact results for quasi- sphcres one has to cope with
~ the fact that boundaries of sets in H" have non-zero “volume™. We use the notion

of a volume radius only heuristically. For the exact formulation of the results it is
‘ simpler to avoid that notion altogether.

For x € H" denote by ¥ the element of H" which satxsﬁcs x+x=(11...., 1)
= L.

Lemma 2.1. (Spherical duality of H")

= 2" - max
ACH ™A |=N

min
ACH"|A|=N

U S (x)

XEA

M S.. (%)

xEA

That is, minimizing the union of a given number of spheres with identical radii is
equivalent to maximizing the intersection of a given number of spheres with identical
radii.
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Proof.

(0,50)]

. V| = i
\_m\ln N ..L{ 5 (X ! A.I'T/]‘l'l] N VOA
_ . no_ X
A_‘H‘l'rlhl 2 xQA S" - (x )
= 2" — X
- ArPAaI)EN (DA S (X)

Analogously to (2.6) define now for A CH”
I"A ={x:x € H" d(x, A)<r}, ' (2.13)
A={x:x€EH"d(x,a)sr Ya€A}
I' A={x:xEH" d(x,A)=r}.

Clearly,

I'a=U S(x), LA= S(x), 2.14)
xXEA xXEA )
A ={xsd(x a)y=r Va € A}

={x:dx.a)sn-—r YaEl+ A}

= M S...(a).

€. A

The isnpcrimétric property and Lemma 2.1 iinply

Lemma 2.2. The quasi-sphere (defined after Theorem 1.1) is a solution to the
following extremal problems

(1) min [ 1A ] = min U Sx)].
AcH” AlAL=N | xEA
A= N
) max (DAL= max | QSO
@ max [AT= max | L S (@]

We derive now anaiogously to (2.10) and (2.11),

max |B| = max max | B| (2.15)
A B AVSN A.lAl=N B.D(A B)<d -
DA By~ ’
= max [[LA | = Jmax xQA Sa(x)|.
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By Lemma 2.2 the maximum is assumed if A is a (]uasi;sphere. The corresponding
maximal B is B = I A. If |A|>20..(7), then I,A =, otherwise IA is also a
quasi-sphere. Similarily, ' '

max max |B|=max [["4, A| (2.16)
|A|=N D*(A.B)>»d"* [Al=N
ADB

and again by Lemma 2.2 the quasi-sphere gives a solution.
We state our main result, (2.15), in set theoretic language as

Thedrem 232 Let 1< N =<2, 1=<d <n, and let N, B denote families of subsets of

{1,...,n}. Wecall (N,B) a d-pairif | AAB|<d forall A €U, BEDB. Then

max _|B|
d-pairs(¥,B)
|¥1)=N

is assumed if A is a quasi-sphere and
B=r,N={B:|BAA|sd VA €}

It can be seen from Lemma 2.1 that this result is equivalent to the isoperimetric

property. A :
In generalizing the Erdés-Ko-Rado Theorem [11] Kleitman proved another two
family result.

Theorem 2.4 [21]. Let A and B be two families of different subsets of {1,..., n},
such that |A|=k forall A€, |B|=1forall BEDB and

|[AAB|<k+1-1 A€ BeDB.

‘Then either

(Al < (::}) or ]%|S<’;__1]>

The Hamming analogue to (2.12) exists alrcady in the literature and has actually
been proved twice [17, 20]. In both papers it is shown first that a “pseudo-sphere’ is
a solution and then the cxact boundary is determincd with the help of the
Erd6s-Ko-Rado Theorem [11]. We show below that the first part is an immediate
consequence of Theorem 2.3. For the determination of the boundary we need here
Theorem 2.4, which is a generalization of the Erd6s-Ko-Rado Theorem and which
fortunately- has also a nice and perspicuous proof [21]. '

In [20] the problem was formulated as follows: What is the maximal size of a
family A of subsets of {1,..., n} subject to the condition:

|[AAB|<d forall A,B€. (2.17)

* Recently P. Frankl informed us that he has obtained related results. His exact statement is not
available to us at the present time.
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~If one replaces the condition (2.17) by
|[AUB!<d forall AABEY (2.18)

one gets the problem solved in [17].

" The equivalence of the two problems is immediate from the observation that one
can limit onself in both cases to order ideals, that is, families of subsets, which
contain with every subset all its subsets. (See Lemma 2.6 below.)

Theorem 2.5. Let Y be a family of subsets of {1,...,n} satisfying for d <n —2
|AAB|<d for all A,B€?, then max I?I[ is assumed in case d = 2r by
M={A:|A|<r}and incased=2r+1 by A={A: |A|<r}U{A |A]=r+1,
x € A for a fixed x,1 <x <n}.

Proof. One has to find a family for which f; = max,,«-u|¥| is assumed.
Consider more generally '

g = ,max |A|=fi | (2.19)
1B|>N)

For fixed 9 a best choice for B is B = I'; %. Whatever the cardinality of an optimal

9 may be, by Theorem 2.3 we know that |8| = | I, | is maximal if % is chosen as a
quasi-sphere:

S, () C ASS,. (). (2.20)

Here S,(V) denotes a sphere of radius | around the empty set .
Case 1: d <2l Then || <[], because I';A cannot contain a set of size
= |, and therefore this does not occur.
Case 2: d =21 +2. This contradicts the definition of | and the maximality
of |V}. :
Case 3: d =21 Then A € I, implies | A| <1 and the solution is [LA=A=" "~
Si (). | |
Case 4: d =21+ 1. Then S;(®)CT,NCS,,(#). By Theorem 2.4 either

weson= (1) o rn-so=("7)

and since | I,V =Y 9 — S (9)| < ("7"). By choosing A — S, (@) in the
Erdios-Ko-Rado fashion we get the % for which g, is assumed. In both possible
cases g, = fs aind hence the theorem.

We conclude this section by showing that in both,rTheorem 2.3 and Theorem 2.5,
the operation ““A” can be replaced by *“ U ”’. The argument seems to have been used
for the first time in [11], then in [17] and decisively in [20] and [21].

Lemma 2.6. Let 1<N, M<2", X={1,...,n}, P(X)=power set of X, and
l<sd=<n :
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(a) The following two conditions are equivalent:
There exists %, B C P(X) such that |A| = N,

IB|=M and |AAB|<d forall A€, Be®. (2.21)
There exists A, B C P(X) such that || = N,
IB|=M and |AUB|<d forall A€W Be®, (2.22)

(b) Equivalent conditions are:
There exists an A C P(X) such that || =N

and |AAB|<d forall A BeY. (2.23)
There exists an A C P(X) such that |%| =N
and |AUB|<d forall A,Be. (2.24)

Proof. In all four cases one can limit oneself to order ideals. This is obvious for
(2.22) and (2.24). In order to see it for the other cases define for x €{l,...,n}

A ={A:A€EU x€EA, A -{x} &),
B.,={B:BEB, xEB, A -{x}&9B),
i At={A-{x}:A €},
| B ={B—{x}: BB,
-and set
A* = (A -A ) U A,
B* = (B-B,)uU B,
then |A*|=|Y|, |B*|=|B| and (A*, B*) and (A*,A*) are d-pairs. The claim
follows by iteratively applying this to all x € {1,..., n}.A ,
If now % and B are order ideals (especially if A = B), then |A A B |<d for all

A €Y, BEYB implies that also |A UB|=<d for all A €9, BE B, because
A — B € U. The converse implication is obvious. '

3. Sum type extremal problems

In estimating conditional probabilities for correlated independent processes
optimization problems arise which involve functions depending on all pairwise
distances of the elements of a set. In order to understand-the nature of such
problems we consider there a simpler type of such problems without worrying at
this time about possible applications. We ask the following questions: What is the
‘structure of a family of subsets of {1,..., n} for which
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 min > |AAB]| : 1
=N A'Ben ‘ '

Jmax S |AAB| (2)
M oN Apen ~ :

,min > |ANB]| 3)

(=N A'Ben _

max > |ANB]| ’ 4)
N AREn

is assumed?

Problems involving the union can be transformed into a problem .involving
intersections by complementation. Similar questions can be asked for several
families of sets and for families with a size limitation on the subsets. (2) is actually
trivial, we have solved (3), we have a conjecture about (4) and no idea about (1)
except that there is some connection between the two. :

In order to find a solution to (2) define A, ={A:A €N, xE€ A} for x =
1.2. Since Sapen| AAB|=2Z, || [(A—-12,)| and since the function
q(\ = \(I“l | — x) takes its integer valued maximum at (3|2
family Y1 satisfving |9, [= 1N if N is even and

e have to find a

ML =[IN] or [IN]+1 for x =1,...,n if N is odd.

In the first case for instance any family 9 with A € ¥ implies A € % is a solution.
In the second case choose an * with A € %* implies A € A* and |A*|=N -1
and define 9 = 9* U{A}, where A € %* and is arbitrary otherwise. Of course there
are many other solutions. :

We state now the solution to problem (3) as

Theorem 3.1. Minu.mi-n| Zapen|A NB|| is assumed for a (pseudo)-sphere
characterized by the property that

HM:AE%XEAN%M:AE%yEAmslfWMUJEUJWHM-

Proof. For ={A,.. ., An} define the incidence matrix I = (I ),-. """ Nby I; = 1iff

.....

JEA. VM, I={A: A € q( x € A}| counts the number of 1's in the x th column of
I. We have .
S 1anBl=2 L (3.1)
A.Be x .

The function f(x)= x* has the property that for two natural numbers x and
yox > v

f(x =D+ f(y + 1)< f(x)+ f(y) with equality iff x =y + 1. (3.2)

Therefore we can decrease 2. |91, 2 by subtracting from a big column and adding
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it to a small column. We show now that this can be done in such a way that the
resulting rows are still distinct and hence we get a new family (" with [’ = N.

Let us suppose that there exists a pair (x, y) with [, = |9, |+ 2. Consider now
those rows where the xth and the yth column differ. Write the rows which have a |
in the xth column as .

a 10, s=1,...,5, | (3.3
and those which have a 1 in the yth column as
b, 0t, t=1,..., T : 3.4)

Since S = T +2 there exists an el.eme'nt a,, say, such that a, & {b, ,t =1,..., T}
Replace now a,10 by a,01. We can iterate the procedure until for al x - ’

U ]=1 or [+1. , ' (3.5)

Given % and thus 2|9, | it is clear how ! is defined. It is the largest integer such that
In< > |9, ]. : (3.6)

There are k, O0=sk< n, terms with values [ + 1. Since
2= > A, | (3.7)
x A

adecreasein 2,en| A [ can only have the effect that the number of terms with value
[ + 1 decreases, if possible, to 0, then the number of terms with value ! decreases
and so on. This implies that also Z, |9, | decreases and the procedure stops when
EAEWIAJ is minimal, that is for the pseudo-sphere, which is balanced:_

1% ]=1t or £+,

It is conceivable that the answer to (4) is a sphere around X, but since the convexity
of f(x) = x* does not help in case of maximisation a completely new and likely
harder argument is needed. ‘ |

We conclude this scction with bounds for (4), which arc in a certain sense
-asymptotically sharp. Since .

fo(N) = max > |9, P=|%]> max i (]l{)’

N N=N < =N '9[,

can be interpreted as follows: define a probability distribution on H”" by putting

(L "y
Pn(xn) — {’\\)I’ for x" € \I,.

. (3.8)
0 otherwise.

Then ([ |/]%A], 1-|9, |/|9N]) is the 1-dimensional marginal distribution on the
xth component. P, = |9, [/ is the probability for 1 and | = p. the probability
for 0. By allowing in the “max” general probability distributions on H" with given
entropy — the substitute for cardinality — we get a function
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g.(N)= N’ max Z P

P H(p™)=log N 2
It sutlices to consider the function

Gue) =L max  3pt

N (nyip™y=c 1=1

Set G(c)= Gi(c).

l.emma
n=1.2.....

Proof. G(c)=p".
G(c)y=(h ().

dG
dc

N d(‘ = log 1 - Q
dp p

Hencee ‘
d(; _ h_ISC!
a - ["‘g )

_ -2

TG [ ]
de’ (c)

G.O.1. Katona

= [.(N). ,’ (3.9)

(3.10)

3.2. G(c) is monotonically decreasing and concave (), G.(c)= G(c) for
if h(p)—p=logp—(1—p)log(l- p)=c and p=3 Write

2 () D = 20 (gﬁ)*'

] | 3.1y

+2h j'(é){— [log (1__71_{11(_};_)”2 (%)
(gt s ) )

=2[logl-%—%)£)} :{1+

s s ()] ).

The first factor is positive. To see that the other bracket is negative it sufﬁces to

show that
r

12—(l—p)logl—;—£.

But this is true because

~plogp—(1=p)log(1-p)=1 and

The incquality Ga(c)= G () is obtained by considering for p”

uons.

(3.12)

—logp > 0.

prod‘uct distribu-

Bl -

B o U
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Since always H(p")< 2., H(p,) we have

n

Gue)<= max > pi=  max 13 G(H(p)

B oynxte, Hpy=c i=1 Wn X0, Hipy~c N =1

< max G (l > H(p,)) (by concavity)
Un 270 H(p)=c n

= G(c), since G is decreasing:

This completes the proof of Lemma 3.2. We thercfore have also proved

" g.(N)= N’n [h" ('ﬂﬁ—"')]z | (3.13)

For any family % containing with every set its complement

> |ANB| —L?—[L- n<f.(N).
.A,BE?l )
Corollary. [h7'(log N/n)I’N’n = f,(N)=iN’n. For N = N(n)=c -2", ¢ >0, this
implies
im f2N(1)) _ 1

n—s. N?-n 4-

‘4. Optimization for order ideals under a weight assignment

M'an’y extremal problems for families of subsets are such that the answer can be
found in the class of families having the order ideal property. The problems dealt
with in carlier sections arc all of that nature and it makes sense to study order ideals

in their own right (see for this also [12]). In [22] the following question is answered:

Given a weight- funcnon w; on the subsets of {1, ..., n} which depends only on their
sizes, what is ‘

max 2 K. (Y)w,,
i=Q

if K, () counts the number of i-tuples in a family of subsets 9 and if the max runs
over the families 9 with AZ B for all A, B € 9(? »

- Another problem ariscs if the families 9 have the additional property: A N B
#0 for all A, B €9, It was solved in [13].

In this section we prove results of this type, when ¥ is an order ideal and || is
fixed. Replacing the “max” above by a “‘min” leads to a trivial problem in the two

- cases mentioned, however, in our case it is also interesting. Actually, we formulate

the problems only for “min”, because the case of “max” follows from it by taking
the weights — wi. The methods of proof heavily rely on the Kruskal Theorem [23].
which was independently obtained in [19]. Meanwhile several clegant proofs exist
(6, 8, 9]. It is also at the root of the isoperimetric property and states the following:
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Theorem 4.1 If is a family of k -element subsets of an n-set and 5(20) denotes the
family of all (k —1)-element subsets, which are subsets of a set in %, then

SN = F(kom), ‘ (4.1)

where m =1, and

Fikm) - (ka—k 1) ¥ (kak_lz> + N + (ti'l)

if the k-canonical representation of mis

_ [y I ...' a,
m (k)+(k—l>+, +<t>'

where a, > y >.--2>qa =1 = 1.
Equality holds in (4.1), when the k - subsets are chosen in lexicographic order. Also,
F(k.m) is monotonically increasing in m.

Corollary. If Y is an order ideal on an n-element set and K, is the number of
i-element members in 9, 0<i=<n, then

K, |2F(i.K.‘), i=l,2,...,n, (42) '

and converselv. if (4.2) holds for numbers K, (i =0,...,n) then there exists an order
ideal with K, members on the ith level.

Proof. The first implication follows immediately from the order ideal property and
Theorem 4.1. To get the second implication simply choose % such that for every i
(=0,1..... n) the K, i-tuples are the first in lexicographic order.

Let now w, (i = 0.1,...,n) denote the weight assigned to each i-tuple, we are
interested in minimizing or maximizing S, w,K, for order ideals with level number
K. We <hall impose monotonicity restrictions on the sequence (Wo, Wiy .., Wa).

In order to state our Theorem 4.2 below we need the definition of a quasi-
cvlinder, If ¥} =27 for some 5,0 =< s < n, then all the subsets of an s-element set
form a cvlinder. We can always assume that the s-clement set equals {1,2,...., s}.
A quasi-cylinder is a generalization of this concept for other cardinalities.

A quasi-cylinder of cardinality N consists of the first N subsets of {1,...,n}in
lexicographic order. Observe that if N = %o 428 (b, > -+ > b, =0) then the
quasi-cvlinder consists of all the subsets of a b,-element set By, of all the sets of the
form A U{a,}, where a, Z B, and A is an arbitrary subset of a b;-element set -
B.C B,. of all the sets of the form A U {a,} U {a,}, where a. € By, a, € B;and A is
an arbitrary subset of a b,-element set B; C B;, and so on. The number of i-element
wbsets in this quasi-cylinder is

(1:> ¥ (ilfl>+ (ill‘2>+ * (i—l:'+1>'
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We call b,,..., b, the parameters of the quasi-cylinder.

Theorem 4.2. Denote by Ki=KQ®) (i=0,1,...,n) the number of i-element
menibers of an order ideal N and let 1< N <2" I‘hen o

(a) forwo<w,<Sw,<---<w, | <NS<2"minu u-~v2, Kw, is assumed if ¥ is a
quasi-sphere. ‘ : A

(b) for wozw, =2 w, 1<N<2" ming w-n2 Kw, is assumed if N is a
quasi-cylinder.

Proof. (a) is trivial and stated only for comparison. The proof of (b) is given in two

_parts, which we state as Lemma 4.3 and Lemma 4.4. In general there are several

families for which

n
min > Kw; is assumed.
wev=N

We get uniqueness by allowing only optimal families for which on every level the
elements are ‘the first in lexicographic order and in addition

2, iK; is maximized. C (4.3)

This helps in the proofs. We denote the unique optimal ()rder ideal by O(N, n, w),
where w = (Wo, ..., wa).

Lemma 4.3. For t‘he' optimal order ideal O(N, n, w) we have
(a) F(I,K,)gK‘.qu(l,K,'*'l) (l=1,,n)

(b) either we have strict inequality for every i on the right hand side of (a) or there is
an s with :

K. =F(s K. +1), K. .<FGi,K.+1) (i=s+1,....n)
andthenF(lK)-— i (i=1L2,....,s=1).

Lemma 4.4. If for K = (K., K,,..., K,) (a) and (b) in Lemma 4.3 hold, then one
can find integers b, > b,>--->b, =) such that

~(c) K, = <’;')+ <.lizl> + -0+ (i—]{)(”il5+ 1) (i =(),;l,...,rx),

where j(i)=r, b(z)>l—](z)+l but b i)+ 1<i~—ji). Afareouer b =51 if
](s)+l<1<s

The number in (c) is exactly the number of i-element members of a quasi-
cylinder with parameters b,,...,b. Thus, if we choose the first K, i-tuples in
lexicographic order for all i, then we obtain a quasi- cyhndcr Therefore Lemmas 4.3
and 4.4 yield (b) of Theorem 4.2.
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Proof of Lemma 4.3, (a) Denote by K = (K., K,,...,K,) the vector of Jevel
numbers for O(n, N, w). For p,q; 1<p<gq=<n; define the transformation
T..,:K—K’by ‘

K,=K, -1, Ki;=K,+1
K=K fori#Zpaq. | 4.4)

Clearly. = K!w, < 2 Kiw, and 2 i K> 2 i K.. Therefore K cannot be-optimal, if K’
satisfies (4.2). If K satisfics (4.2) and K' not, then this could have only two reasons
because F(i. K;) is monotonically increasing in K;:

K.=K,—1<F(p+1 KL) or

K, .<F(q,K)=F(q K, +1). ‘ 4.5)
For 4 = p + 1 those two inequalities are the same and therefore |

K,<F(p+1.Ku+1) for p=12,...,n . (46)

This proves (a).
(b) Suppose that there exists a g with

K, .= F(q.K,+1) (4.7)
(if there are more choose the largest) and a p.p+1<gq, with

F(p+1,K, ) <K, (4.8)
Apply the transformation T, ,. |

Since K, ,=F(p+1,K,..)=F(p +1,K.;) (4.5) could hold only if

K, =K, <F(q K, +1), but this contradicts (4.7).

Proof of Lemma 4.4. We proceed by induction in i. Suppose ‘that K, =+ =
K....=0 and K., >0. Let us first assume that we are in the case
K . <F(U, K +1) (i=1,2,...,n). (4.9)

We prove the statement first for i = m and then, decreasing always by 1, for all
iz0.Fori=m+1,(4.9)gives0<K,, <F(m +1,1)=m + 1. That means K,, can
be written in the m-canonical form

- m m—1 ' m-—-K,, +1 :
km = + ) PO ( [ > _ S
(m) (m )Tt -k 1) where m ~ K,, +1=1.

Observe that by =w, by=w —1,...,bx, =m —K,, + 1.
Suppose now that the statement holds for i and let us prove it for i — 1. Thus,
bi...... b, (i) are already defined and they satisfy (c). We make use of the fact that

FK+ D)= FQ.K)=1-1 il K =((:) P (‘:) (4.10)
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This and (4.9) imply
0<Ki—F(i,K)=z=i-j(i)-1. | A @.11)
Here . '
o b,) < m”>
) = coe | 4,
F(i, K)) (1,__1 + Ly (4.12)

and thercforé the (i — 1)-canonical form of K,_, is

by, ( b, > (i—ﬂ”—l) (i~ﬂn—2> o (1—ﬂn—z>
Q—l)+ Fli—ia) " i-j@-1) T lizje-2) "Nisjiy-z/)
If 2 =0, the canonical form of K,_, is given by (4.12), where again i — j(i)—z =1,

by (4.11), and the lemma is proved in this case even in a slightly stronger form:

b, > 0. This is important for the remaining case, which we now consider:
K= F(s, K. +1), K., < F(i, K, + 1), i=s+1,...,n

Y

F(i, Ki)=Ki_,, i=1,2,...,5s~ 1. (4.13)

We can prove in exactly the same way as earlier that (c) holds for all i = s with
suitable b’s. Moreover, by the above remark s =j(s), that is, (c) is ill an
s-canonical form of K,. For the next step we have from (4.10) and (4.15)

- K.y =F(s,K,))+s—j(s) (4.14)

and therefore

S ) A O oy RS R e

This is not an (s — I)-canonical form because of the term (s)- However, using (4.10)
we obtain ‘

K*fzF“‘“’K¥0=FG-4,K~r4)+U—l)=Fu—4,Kp_-ﬁ
:<S@2>+”'+<s—ﬁg—l>+(i:ﬁ3:;>+”'+QD' (4.16)

By continuing in the same way:

() g (TR ) ()

(j(s)_Siss—l)v
and

K = (1;'>+---+ (b'o") (()$i<"j(s)).

We proved the existence of b's:

b=s—i ifj(s)+l<is<s
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Theorem 4.5, Denote by K= K. (i=0,1,.....n) the number of i-element
members of an order ideal. Then

b
v =

nin Z K,w,, [ N=<s2"
T =N )

is assumed ,

() incase oS Wy S S Wi Z W Z 000 = w, by a union of a quasi-cylinder
and a quasi-sphere, ' :

(b)) incase waZ W =0 F W Swhy << w, by an intersection of a quasi-
cvlinder and a quasi-sphere.

Proof. (a) As in the proof of Theorem 4.2 choose the first K; i-tuples in
lexicographic order, and if there are more systems minimizing 2 Kiw; then choose
one for which in addition

> K, IM~i| is maximal.

We can repeat the steps of the proof of Lemma 4.3 for values i =M + 1. That is (a)
and (b) of Lemma 4.3 hold for i =M + 1. '

Furthermore we claim that for values of i <M an optimal K satisfies:

K o=Fi+1.K.) (p+l<i=M)

k=1 ©=i=p
K,.=F(p+2.K,.) | . (4.17)

for some p <0,

To sce this suppose that for (p,q); p<q = M;
K. ~F(q t 1.K,.) and (;) > K, | . (4.18)

and assume that ¢ is maximal and p is minimal with this property.
Then the transformation Tg,:

K= K(i#pq) K,=K-—-1 K=K*+1

does not increase S Ko, and increases £ Ki [M —i]. Also, K'.,=F(i, K% for -
i=1,.... M. where the only critical case K,..= F(p, K, +1) follows from K, =
(," ). Thus (4.18) would imply that K could not be optimal. The negation of (4.18) is
(4.17). Let us now choose the first KJ i-tuples in lexicographic order for all i’s
(O=<i<n). where

K. =K, (p+1<i=n)
K:

F(i +1.K5.)  (O<isp+l) (4.19)
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The system of K{'s satisfy (b) of Lemma 4.3. By Lemma 4.4 this implies that the
corresponding family 9. is a quasi-cylinder. On the other hand let us choose the
“first Ki i-tuples in lexicographic order, where '

Ki=0 (p+1<i<n) |
Ki=K. (0<is<p+1). (4.20)

This defines (a) quasi-sphere 9, and clearly 9 =, U Y.

(b) For 0=<i <M (a) and (b) of Lemma 4.3 hold. Set K= K,(0<i < M).
Let us define the numbers Ki(M < i < n) inductively: K= Ka,, K{., is the largest
number satisfying

Ki=F(i+1,K:.). . o | (4.21)

By definition thesel numbers satisfy K{<F(i+1,Ki.,+1) and therefore K¢ |
satisfies (a) and (b) of Lemma 4.3. By Lemma 4.4 the corresponding family Y, is a
cylinder. We prove now that for an optimal K:

K = K§ M=i=<p)
Ki=0" (p+1<isn)

for some p = M.
This will complete the proof, because then our optimal family is the intersection of
. and the quasi-sphere U, given by '

K:= (:’) 0<is<p)
pi1 = Kp+|'
Suppose that (4.22) does not hold, thus for some (p,q), M <p <q =<n,
0< K, # K, K,>0 .
and also - _
K, <K; (by (421)). (4.23)

Let p be minimal and let g.be maximal with property (4.23), then
K =K{M<=<i<p) and K,. =0.
The transformation T, ,:
| Ki=K,,  Ki=K,, |
would improve our family and using (4.21)A0nc readily verifies that (4.2) still holds.

The proof is complete.

Remark 1. In Theorem 4.5 we did not determine *‘the™ best family, we proved
only that it must have a certain pattern,
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Remark 2. A theorem of Lindsey says (see [7, 15, 24, 3])
IPHXVH(A.B)ZA,BE?[, d(A, B)=1}] (4.24)

is assumed for a quasi-cylinder. This a consequence of our Theorem 4.2. To see this
we have to prove first that there is an optimal ¥l which is an order ideal. This can be

~seen by applying the transformation, which omits a fixed element a from all the

subsets A €Y such that A —{a} € Y. Next, for an order ideal 9
HA.B):ABEN, ACB,|A|l=i-1,|B]|=i}l= K@i

and the expression in (4.24) equals
max >, K.(?)i = — min > K. (- i).
i=1

“Tosder ideat 75
M =N

Theorem 4.2(b) yields that a quasi-cylinder is an optimal 2.

5. An application to random graphs

Let G be a non-directed graph. The edges of G are deleted independently with
probability p. and it is asked whether the new graph will or will not possess a certain
property. For instance, if G is k-times connected, what is the probability that the
new graph G’ is not k-times connected. In this case the graphs G’, which are not

k -times connected, form an order ideal as a family of subsets of the edges of G. We

shall not consider a'specific graphic property, we give estimates in general, where
only one thing is assumed for the property in question: if a G’ does not have the
given property and G” is a subgraph of G’ (subsets of the edges), then G” does not
have the property cither. '

In other words we have the sequence I+ -1 of length n (the number of edges)
and an order ideal Y is given. Our aim is to give estimates on the probability P(2()
of the event, that 11-- -1 goes to Y, if the 1's can change independently to () with
probability p. )

If K, denotes the number of i-clement subsets in ¥, then

n

PEy =D Kp™'(1-p). o (5.1)

Here p” (1= p)" is a monotonically increasing or decreasing function of i

depending on whether p <!or p >1. By Theorem 4.2, Section 4, fixing the size of
W we obtain lower and upper estimates on P(). - 7\

If we are interested in how P(91) changes with p, estimates on the derivative of
PN are useful.

(_Jil;:‘l = E Kltn=ip" " '(1=p)y —p"i(l=p)~']
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Here

(n—i)p""'(1=p) —p" li(1-p) "'
<(n-i-p""A-p)' =@+ Dp""'(1-p)

holds if and only if

. 2np*—3np+p+n—|
1 = 1_-2p .

AN

That is, these coefficients are decreasing until a certain point and from this point on
they are increasing. We can use Theorem 4.5 to get lower and upper estimates.
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